// Copyright (c) 2012 The WebM project authors. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the LICENSE file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. #include "mkvparser.hpp" #include #include #include #include #ifdef _MSC_VER // Disable MSVC warnings that suggest making code non-portable. #pragma warning(disable : 4996) #endif mkvparser::IMkvReader::~IMkvReader() {} void mkvparser::GetVersion(int& major, int& minor, int& build, int& revision) { major = 1; minor = 0; build = 0; revision = 28; } long long mkvparser::ReadUInt(IMkvReader* pReader, long long pos, long& len) { assert(pReader); assert(pos >= 0); int status; //#ifdef _DEBUG // long long total, available; // status = pReader->Length(&total, &available); // assert(status >= 0); // assert((total < 0) || (available <= total)); // assert(pos < available); // assert((available - pos) >= 1); //assume here max u-int len is 8 //#endif len = 1; unsigned char b; status = pReader->Read(pos, 1, &b); if (status < 0) // error or underflow return status; if (status > 0) // interpreted as "underflow" return E_BUFFER_NOT_FULL; if (b == 0) // we can't handle u-int values larger than 8 bytes return E_FILE_FORMAT_INVALID; unsigned char m = 0x80; while (!(b & m)) { m >>= 1; ++len; } //#ifdef _DEBUG // assert((available - pos) >= len); //#endif long long result = b & (~m); ++pos; for (int i = 1; i < len; ++i) { status = pReader->Read(pos, 1, &b); if (status < 0) { len = 1; return status; } if (status > 0) { len = 1; return E_BUFFER_NOT_FULL; } result <<= 8; result |= b; ++pos; } return result; } long long mkvparser::GetUIntLength(IMkvReader* pReader, long long pos, long& len) { assert(pReader); assert(pos >= 0); long long total, available; int status = pReader->Length(&total, &available); assert(status >= 0); assert((total < 0) || (available <= total)); len = 1; if (pos >= available) return pos; // too few bytes available unsigned char b; status = pReader->Read(pos, 1, &b); if (status < 0) return status; assert(status == 0); if (b == 0) // we can't handle u-int values larger than 8 bytes return E_FILE_FORMAT_INVALID; unsigned char m = 0x80; while (!(b & m)) { m >>= 1; ++len; } return 0; // success } // TODO(vigneshv): This function assumes that unsigned values never have their // high bit set. long long mkvparser::UnserializeUInt(IMkvReader* pReader, long long pos, long long size) { assert(pReader); assert(pos >= 0); if ((size <= 0) || (size > 8)) return E_FILE_FORMAT_INVALID; long long result = 0; for (long long i = 0; i < size; ++i) { unsigned char b; const long status = pReader->Read(pos, 1, &b); if (status < 0) return status; result <<= 8; result |= b; ++pos; } return result; } long mkvparser::UnserializeFloat(IMkvReader* pReader, long long pos, long long size_, double& result) { assert(pReader); assert(pos >= 0); if ((size_ != 4) && (size_ != 8)) return E_FILE_FORMAT_INVALID; const long size = static_cast(size_); unsigned char buf[8]; const int status = pReader->Read(pos, size, buf); if (status < 0) // error return status; if (size == 4) { union { float f; unsigned long ff; }; ff = 0; for (int i = 0;;) { ff |= buf[i]; if (++i >= 4) break; ff <<= 8; } result = f; } else { assert(size == 8); union { double d; unsigned long long dd; }; dd = 0; for (int i = 0;;) { dd |= buf[i]; if (++i >= 8) break; dd <<= 8; } result = d; } return 0; } long mkvparser::UnserializeInt(IMkvReader* pReader, long long pos, long size, long long& result) { assert(pReader); assert(pos >= 0); assert(size > 0); assert(size <= 8); { signed char b; const long status = pReader->Read(pos, 1, (unsigned char*)&b); if (status < 0) return status; result = b; ++pos; } for (long i = 1; i < size; ++i) { unsigned char b; const long status = pReader->Read(pos, 1, &b); if (status < 0) return status; result <<= 8; result |= b; ++pos; } return 0; // success } long mkvparser::UnserializeString(IMkvReader* pReader, long long pos, long long size_, char*& str) { delete[] str; str = NULL; if (size_ >= LONG_MAX) // we need (size+1) chars return E_FILE_FORMAT_INVALID; const long size = static_cast(size_); str = new (std::nothrow) char[size + 1]; if (str == NULL) return -1; unsigned char* const buf = reinterpret_cast(str); const long status = pReader->Read(pos, size, buf); if (status) { delete[] str; str = NULL; return status; } str[size] = '\0'; return 0; // success } long mkvparser::ParseElementHeader(IMkvReader* pReader, long long& pos, long long stop, long long& id, long long& size) { if ((stop >= 0) && (pos >= stop)) return E_FILE_FORMAT_INVALID; long len; id = ReadUInt(pReader, pos, len); if (id < 0) return E_FILE_FORMAT_INVALID; pos += len; // consume id if ((stop >= 0) && (pos >= stop)) return E_FILE_FORMAT_INVALID; size = ReadUInt(pReader, pos, len); if (size < 0) return E_FILE_FORMAT_INVALID; pos += len; // consume length of size // pos now designates payload if ((stop >= 0) && ((pos + size) > stop)) return E_FILE_FORMAT_INVALID; return 0; // success } bool mkvparser::Match(IMkvReader* pReader, long long& pos, unsigned long id_, long long& val) { assert(pReader); assert(pos >= 0); long long total, available; const long status = pReader->Length(&total, &available); assert(status >= 0); assert((total < 0) || (available <= total)); if (status < 0) return false; long len; const long long id = ReadUInt(pReader, pos, len); assert(id >= 0); assert(len > 0); assert(len <= 8); assert((pos + len) <= available); if ((unsigned long)id != id_) return false; pos += len; // consume id const long long size = ReadUInt(pReader, pos, len); assert(size >= 0); assert(size <= 8); assert(len > 0); assert(len <= 8); assert((pos + len) <= available); pos += len; // consume length of size of payload val = UnserializeUInt(pReader, pos, size); assert(val >= 0); pos += size; // consume size of payload return true; } bool mkvparser::Match(IMkvReader* pReader, long long& pos, unsigned long id_, unsigned char*& buf, size_t& buflen) { assert(pReader); assert(pos >= 0); long long total, available; long status = pReader->Length(&total, &available); assert(status >= 0); assert((total < 0) || (available <= total)); if (status < 0) return false; long len; const long long id = ReadUInt(pReader, pos, len); assert(id >= 0); assert(len > 0); assert(len <= 8); assert((pos + len) <= available); if ((unsigned long)id != id_) return false; pos += len; // consume id const long long size_ = ReadUInt(pReader, pos, len); assert(size_ >= 0); assert(len > 0); assert(len <= 8); assert((pos + len) <= available); pos += len; // consume length of size of payload assert((pos + size_) <= available); const long buflen_ = static_cast(size_); buf = new (std::nothrow) unsigned char[buflen_]; assert(buf); // TODO status = pReader->Read(pos, buflen_, buf); assert(status == 0); // TODO buflen = buflen_; pos += size_; // consume size of payload return true; } namespace mkvparser { EBMLHeader::EBMLHeader() : m_docType(NULL) { Init(); } EBMLHeader::~EBMLHeader() { delete[] m_docType; } void EBMLHeader::Init() { m_version = 1; m_readVersion = 1; m_maxIdLength = 4; m_maxSizeLength = 8; if (m_docType) { delete[] m_docType; m_docType = NULL; } m_docTypeVersion = 1; m_docTypeReadVersion = 1; } long long EBMLHeader::Parse(IMkvReader* pReader, long long& pos) { assert(pReader); long long total, available; long status = pReader->Length(&total, &available); if (status < 0) // error return status; pos = 0; long long end = (available >= 1024) ? 1024 : available; for (;;) { unsigned char b = 0; while (pos < end) { status = pReader->Read(pos, 1, &b); if (status < 0) // error return status; if (b == 0x1A) break; ++pos; } if (b != 0x1A) { if (pos >= 1024) return E_FILE_FORMAT_INVALID; // don't bother looking anymore if ((total >= 0) && ((total - available) < 5)) return E_FILE_FORMAT_INVALID; return available + 5; // 5 = 4-byte ID + 1st byte of size } if ((total >= 0) && ((total - pos) < 5)) return E_FILE_FORMAT_INVALID; if ((available - pos) < 5) return pos + 5; // try again later long len; const long long result = ReadUInt(pReader, pos, len); if (result < 0) // error return result; if (result == 0x0A45DFA3) { // EBML Header ID pos += len; // consume ID break; } ++pos; // throw away just the 0x1A byte, and try again } // pos designates start of size field // get length of size field long len; long long result = GetUIntLength(pReader, pos, len); if (result < 0) // error return result; if (result > 0) // need more data return result; assert(len > 0); assert(len <= 8); if ((total >= 0) && ((total - pos) < len)) return E_FILE_FORMAT_INVALID; if ((available - pos) < len) return pos + len; // try again later // get the EBML header size result = ReadUInt(pReader, pos, len); if (result < 0) // error return result; pos += len; // consume size field // pos now designates start of payload if ((total >= 0) && ((total - pos) < result)) return E_FILE_FORMAT_INVALID; if ((available - pos) < result) return pos + result; end = pos + result; Init(); while (pos < end) { long long id, size; status = ParseElementHeader(pReader, pos, end, id, size); if (status < 0) // error return status; if (size == 0) // weird return E_FILE_FORMAT_INVALID; if (id == 0x0286) { // version m_version = UnserializeUInt(pReader, pos, size); if (m_version <= 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x02F7) { // read version m_readVersion = UnserializeUInt(pReader, pos, size); if (m_readVersion <= 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x02F2) { // max id length m_maxIdLength = UnserializeUInt(pReader, pos, size); if (m_maxIdLength <= 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x02F3) { // max size length m_maxSizeLength = UnserializeUInt(pReader, pos, size); if (m_maxSizeLength <= 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x0282) { // doctype if (m_docType) return E_FILE_FORMAT_INVALID; status = UnserializeString(pReader, pos, size, m_docType); if (status) // error return status; } else if (id == 0x0287) { // doctype version m_docTypeVersion = UnserializeUInt(pReader, pos, size); if (m_docTypeVersion <= 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x0285) { // doctype read version m_docTypeReadVersion = UnserializeUInt(pReader, pos, size); if (m_docTypeReadVersion <= 0) return E_FILE_FORMAT_INVALID; } pos += size; } assert(pos == end); return 0; } Segment::Segment(IMkvReader* pReader, long long elem_start, // long long elem_size, long long start, long long size) : m_pReader(pReader), m_element_start(elem_start), // m_element_size(elem_size), m_start(start), m_size(size), m_pos(start), m_pUnknownSize(0), m_pSeekHead(NULL), m_pInfo(NULL), m_pTracks(NULL), m_pCues(NULL), m_pChapters(NULL), m_clusters(NULL), m_clusterCount(0), m_clusterPreloadCount(0), m_clusterSize(0) {} Segment::~Segment() { const long count = m_clusterCount + m_clusterPreloadCount; Cluster** i = m_clusters; Cluster** j = m_clusters + count; while (i != j) { Cluster* const p = *i++; assert(p); delete p; } delete[] m_clusters; delete m_pTracks; delete m_pInfo; delete m_pCues; delete m_pChapters; delete m_pSeekHead; } long long Segment::CreateInstance(IMkvReader* pReader, long long pos, Segment*& pSegment) { assert(pReader); assert(pos >= 0); pSegment = NULL; long long total, available; const long status = pReader->Length(&total, &available); if (status < 0) // error return status; if (available < 0) return -1; if ((total >= 0) && (available > total)) return -1; // I would assume that in practice this loop would execute // exactly once, but we allow for other elements (e.g. Void) // to immediately follow the EBML header. This is fine for // the source filter case (since the entire file is available), // but in the splitter case over a network we should probably // just give up early. We could for example decide only to // execute this loop a maximum of, say, 10 times. // TODO: // There is an implied "give up early" by only parsing up // to the available limit. We do do that, but only if the // total file size is unknown. We could decide to always // use what's available as our limit (irrespective of whether // we happen to know the total file length). This would have // as its sense "parse this much of the file before giving up", // which a slightly different sense from "try to parse up to // 10 EMBL elements before giving up". for (;;) { if ((total >= 0) && (pos >= total)) return E_FILE_FORMAT_INVALID; // Read ID long len; long long result = GetUIntLength(pReader, pos, len); if (result) // error, or too few available bytes return result; if ((total >= 0) && ((pos + len) > total)) return E_FILE_FORMAT_INVALID; if ((pos + len) > available) return pos + len; const long long idpos = pos; const long long id = ReadUInt(pReader, pos, len); if (id < 0) // error return id; pos += len; // consume ID // Read Size result = GetUIntLength(pReader, pos, len); if (result) // error, or too few available bytes return result; if ((total >= 0) && ((pos + len) > total)) return E_FILE_FORMAT_INVALID; if ((pos + len) > available) return pos + len; long long size = ReadUInt(pReader, pos, len); if (size < 0) // error return size; pos += len; // consume length of size of element // Pos now points to start of payload // Handle "unknown size" for live streaming of webm files. const long long unknown_size = (1LL << (7 * len)) - 1; if (id == 0x08538067) { // Segment ID if (size == unknown_size) size = -1; else if (total < 0) size = -1; else if ((pos + size) > total) size = -1; pSegment = new (std::nothrow) Segment(pReader, idpos, // elem_size pos, size); if (pSegment == 0) return -1; // generic error return 0; // success } if (size == unknown_size) return E_FILE_FORMAT_INVALID; if ((total >= 0) && ((pos + size) > total)) return E_FILE_FORMAT_INVALID; if ((pos + size) > available) return pos + size; pos += size; // consume payload } } long long Segment::ParseHeaders() { // Outermost (level 0) segment object has been constructed, // and pos designates start of payload. We need to find the // inner (level 1) elements. long long total, available; const int status = m_pReader->Length(&total, &available); if (status < 0) // error return status; assert((total < 0) || (available <= total)); const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; assert((segment_stop < 0) || (total < 0) || (segment_stop <= total)); assert((segment_stop < 0) || (m_pos <= segment_stop)); for (;;) { if ((total >= 0) && (m_pos >= total)) break; if ((segment_stop >= 0) && (m_pos >= segment_stop)) break; long long pos = m_pos; const long long element_start = pos; if ((pos + 1) > available) return (pos + 1); long len; long long result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return result; if (result > 0) // underflow (weird) return (pos + 1); if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > available) return pos + len; const long long idpos = pos; const long long id = ReadUInt(m_pReader, idpos, len); if (id < 0) // error return id; if (id == 0x0F43B675) // Cluster ID break; pos += len; // consume ID if ((pos + 1) > available) return (pos + 1); // Read Size result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return result; if (result > 0) // underflow (weird) return (pos + 1); if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > available) return pos + len; const long long size = ReadUInt(m_pReader, pos, len); if (size < 0) // error return size; pos += len; // consume length of size of element const long long element_size = size + pos - element_start; // Pos now points to start of payload if ((segment_stop >= 0) && ((pos + size) > segment_stop)) return E_FILE_FORMAT_INVALID; // We read EBML elements either in total or nothing at all. if ((pos + size) > available) return pos + size; if (id == 0x0549A966) { // Segment Info ID if (m_pInfo) return E_FILE_FORMAT_INVALID; m_pInfo = new (std::nothrow) SegmentInfo(this, pos, size, element_start, element_size); if (m_pInfo == NULL) return -1; const long status = m_pInfo->Parse(); if (status) return status; } else if (id == 0x0654AE6B) { // Tracks ID if (m_pTracks) return E_FILE_FORMAT_INVALID; m_pTracks = new (std::nothrow) Tracks(this, pos, size, element_start, element_size); if (m_pTracks == NULL) return -1; const long status = m_pTracks->Parse(); if (status) return status; } else if (id == 0x0C53BB6B) { // Cues ID if (m_pCues == NULL) { m_pCues = new (std::nothrow) Cues(this, pos, size, element_start, element_size); if (m_pCues == NULL) return -1; } } else if (id == 0x014D9B74) { // SeekHead ID if (m_pSeekHead == NULL) { m_pSeekHead = new (std::nothrow) SeekHead(this, pos, size, element_start, element_size); if (m_pSeekHead == NULL) return -1; const long status = m_pSeekHead->Parse(); if (status) return status; } } else if (id == 0x0043A770) { // Chapters ID if (m_pChapters == NULL) { m_pChapters = new (std::nothrow) Chapters(this, pos, size, element_start, element_size); if (m_pChapters == NULL) return -1; const long status = m_pChapters->Parse(); if (status) return status; } } m_pos = pos + size; // consume payload } assert((segment_stop < 0) || (m_pos <= segment_stop)); if (m_pInfo == NULL) // TODO: liberalize this behavior return E_FILE_FORMAT_INVALID; if (m_pTracks == NULL) return E_FILE_FORMAT_INVALID; return 0; // success } long Segment::LoadCluster(long long& pos, long& len) { for (;;) { const long result = DoLoadCluster(pos, len); if (result <= 1) return result; } } long Segment::DoLoadCluster(long long& pos, long& len) { if (m_pos < 0) return DoLoadClusterUnknownSize(pos, len); long long total, avail; long status = m_pReader->Length(&total, &avail); if (status < 0) // error return status; assert((total < 0) || (avail <= total)); const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; long long cluster_off = -1; // offset relative to start of segment long long cluster_size = -1; // size of cluster payload for (;;) { if ((total >= 0) && (m_pos >= total)) return 1; // no more clusters if ((segment_stop >= 0) && (m_pos >= segment_stop)) return 1; // no more clusters pos = m_pos; // Read ID if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long idpos = pos; const long long id = ReadUInt(m_pReader, idpos, len); if (id < 0) // error (or underflow) return static_cast(id); pos += len; // consume ID // Read Size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(m_pReader, pos, len); if (size < 0) // error return static_cast(size); pos += len; // consume length of size of element // pos now points to start of payload if (size == 0) { // weird m_pos = pos; continue; } const long long unknown_size = (1LL << (7 * len)) - 1; #if 0 // we must handle this to support live webm if (size == unknown_size) return E_FILE_FORMAT_INVALID; //TODO: allow this #endif if ((segment_stop >= 0) && (size != unknown_size) && ((pos + size) > segment_stop)) { return E_FILE_FORMAT_INVALID; } #if 0 // commented-out, to support incremental cluster parsing len = static_cast(size); if ((pos + size) > avail) return E_BUFFER_NOT_FULL; #endif if (id == 0x0C53BB6B) { // Cues ID if (size == unknown_size) return E_FILE_FORMAT_INVALID; // TODO: liberalize if (m_pCues == NULL) { const long long element_size = (pos - idpos) + size; m_pCues = new Cues(this, pos, size, idpos, element_size); assert(m_pCues); // TODO } m_pos = pos + size; // consume payload continue; } if (id != 0x0F43B675) { // Cluster ID if (size == unknown_size) return E_FILE_FORMAT_INVALID; // TODO: liberalize m_pos = pos + size; // consume payload continue; } // We have a cluster. cluster_off = idpos - m_start; // relative pos if (size != unknown_size) cluster_size = size; break; } assert(cluster_off >= 0); // have cluster long long pos_; long len_; status = Cluster::HasBlockEntries(this, cluster_off, pos_, len_); if (status < 0) { // error, or underflow pos = pos_; len = len_; return status; } // status == 0 means "no block entries found" // status > 0 means "found at least one block entry" // TODO: // The issue here is that the segment increments its own // pos ptr past the most recent cluster parsed, and then // starts from there to parse the next cluster. If we // don't know the size of the current cluster, then we // must either parse its payload (as we do below), looking // for the cluster (or cues) ID to terminate the parse. // This isn't really what we want: rather, we really need // a way to create the curr cluster object immediately. // The pity is that cluster::parse can determine its own // boundary, and we largely duplicate that same logic here. // // Maybe we need to get rid of our look-ahead preloading // in source::parse??? // // As we're parsing the blocks in the curr cluster //(in cluster::parse), we should have some way to signal // to the segment that we have determined the boundary, // so it can adjust its own segment::m_pos member. // // The problem is that we're asserting in asyncreadinit, // because we adjust the pos down to the curr seek pos, // and the resulting adjusted len is > 2GB. I'm suspicious // that this is even correct, but even if it is, we can't // be loading that much data in the cache anyway. const long idx = m_clusterCount; if (m_clusterPreloadCount > 0) { assert(idx < m_clusterSize); Cluster* const pCluster = m_clusters[idx]; assert(pCluster); assert(pCluster->m_index < 0); const long long off = pCluster->GetPosition(); assert(off >= 0); if (off == cluster_off) { // preloaded already if (status == 0) // no entries found return E_FILE_FORMAT_INVALID; if (cluster_size >= 0) pos += cluster_size; else { const long long element_size = pCluster->GetElementSize(); if (element_size <= 0) return E_FILE_FORMAT_INVALID; // TODO: handle this case pos = pCluster->m_element_start + element_size; } pCluster->m_index = idx; // move from preloaded to loaded ++m_clusterCount; --m_clusterPreloadCount; m_pos = pos; // consume payload assert((segment_stop < 0) || (m_pos <= segment_stop)); return 0; // success } } if (status == 0) { // no entries found if (cluster_size < 0) return E_FILE_FORMAT_INVALID; // TODO: handle this pos += cluster_size; if ((total >= 0) && (pos >= total)) { m_pos = total; return 1; // no more clusters } if ((segment_stop >= 0) && (pos >= segment_stop)) { m_pos = segment_stop; return 1; // no more clusters } m_pos = pos; return 2; // try again } // status > 0 means we have an entry Cluster* const pCluster = Cluster::Create(this, idx, cluster_off); // element_size); assert(pCluster); AppendCluster(pCluster); assert(m_clusters); assert(idx < m_clusterSize); assert(m_clusters[idx] == pCluster); if (cluster_size >= 0) { pos += cluster_size; m_pos = pos; assert((segment_stop < 0) || (m_pos <= segment_stop)); return 0; } m_pUnknownSize = pCluster; m_pos = -pos; return 0; // partial success, since we have a new cluster // status == 0 means "no block entries found" // pos designates start of payload // m_pos has NOT been adjusted yet (in case we need to come back here) #if 0 if (cluster_size < 0) { //unknown size const long long payload_pos = pos; //absolute pos of cluster payload for (;;) { //determine cluster size if ((total >= 0) && (pos >= total)) break; if ((segment_stop >= 0) && (pos >= segment_stop)) break; //no more clusters //Read ID if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(m_pReader, pos, len); if (result < 0) //error return static_cast(result); if (result > 0) //weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long idpos = pos; const long long id = ReadUInt(m_pReader, idpos, len); if (id < 0) //error (or underflow) return static_cast(id); //This is the distinguished set of ID's we use to determine //that we have exhausted the sub-element's inside the cluster //whose ID we parsed earlier. if (id == 0x0F43B675) //Cluster ID break; if (id == 0x0C53BB6B) //Cues ID break; switch (id) { case 0x20: //BlockGroup case 0x23: //Simple Block case 0x67: //TimeCode case 0x2B: //PrevSize break; default: assert(false); break; } pos += len; //consume ID (of sub-element) //Read Size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(m_pReader, pos, len); if (result < 0) //error return static_cast(result); if (result > 0) //weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(m_pReader, pos, len); if (size < 0) //error return static_cast(size); pos += len; //consume size field of element //pos now points to start of sub-element's payload if (size == 0) //weird continue; const long long unknown_size = (1LL << (7 * len)) - 1; if (size == unknown_size) return E_FILE_FORMAT_INVALID; //not allowed for sub-elements if ((segment_stop >= 0) && ((pos + size) > segment_stop)) //weird return E_FILE_FORMAT_INVALID; pos += size; //consume payload of sub-element assert((segment_stop < 0) || (pos <= segment_stop)); } //determine cluster size cluster_size = pos - payload_pos; assert(cluster_size >= 0); pos = payload_pos; //reset and re-parse original cluster } if (m_clusterPreloadCount > 0) { assert(idx < m_clusterSize); Cluster* const pCluster = m_clusters[idx]; assert(pCluster); assert(pCluster->m_index < 0); const long long off = pCluster->GetPosition(); assert(off >= 0); if (off == cluster_off) //preloaded already return E_FILE_FORMAT_INVALID; //subtle } m_pos = pos + cluster_size; //consume payload assert((segment_stop < 0) || (m_pos <= segment_stop)); return 2; //try to find another cluster #endif } long Segment::DoLoadClusterUnknownSize(long long& pos, long& len) { assert(m_pos < 0); assert(m_pUnknownSize); #if 0 assert(m_pUnknownSize->GetElementSize() < 0); //TODO: verify this const long long element_start = m_pUnknownSize->m_element_start; pos = -m_pos; assert(pos > element_start); //We have already consumed the (cluster) ID and size fields. //We just need to consume the blocks and other sub-elements //of this cluster, until we discover the boundary. long long total, avail; long status = m_pReader->Length(&total, &avail); if (status < 0) //error return status; assert((total < 0) || (avail <= total)); const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; long long element_size = -1; for (;;) { //determine cluster size if ((total >= 0) && (pos >= total)) { element_size = total - element_start; assert(element_size > 0); break; } if ((segment_stop >= 0) && (pos >= segment_stop)) { element_size = segment_stop - element_start; assert(element_size > 0); break; } //Read ID if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(m_pReader, pos, len); if (result < 0) //error return static_cast(result); if (result > 0) //weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long idpos = pos; const long long id = ReadUInt(m_pReader, idpos, len); if (id < 0) //error (or underflow) return static_cast(id); //This is the distinguished set of ID's we use to determine //that we have exhausted the sub-element's inside the cluster //whose ID we parsed earlier. if ((id == 0x0F43B675) || (id == 0x0C53BB6B)) { //Cluster ID or Cues ID element_size = pos - element_start; assert(element_size > 0); break; } #ifdef _DEBUG switch (id) { case 0x20: //BlockGroup case 0x23: //Simple Block case 0x67: //TimeCode case 0x2B: //PrevSize break; default: assert(false); break; } #endif pos += len; //consume ID (of sub-element) //Read Size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(m_pReader, pos, len); if (result < 0) //error return static_cast(result); if (result > 0) //weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(m_pReader, pos, len); if (size < 0) //error return static_cast(size); pos += len; //consume size field of element //pos now points to start of sub-element's payload if (size == 0) //weird continue; const long long unknown_size = (1LL << (7 * len)) - 1; if (size == unknown_size) return E_FILE_FORMAT_INVALID; //not allowed for sub-elements if ((segment_stop >= 0) && ((pos + size) > segment_stop)) //weird return E_FILE_FORMAT_INVALID; pos += size; //consume payload of sub-element assert((segment_stop < 0) || (pos <= segment_stop)); } //determine cluster size assert(element_size >= 0); m_pos = element_start + element_size; m_pUnknownSize = 0; return 2; //continue parsing #else const long status = m_pUnknownSize->Parse(pos, len); if (status < 0) // error or underflow return status; if (status == 0) // parsed a block return 2; // continue parsing assert(status > 0); // nothing left to parse of this cluster const long long start = m_pUnknownSize->m_element_start; const long long size = m_pUnknownSize->GetElementSize(); assert(size >= 0); pos = start + size; m_pos = pos; m_pUnknownSize = 0; return 2; // continue parsing #endif } void Segment::AppendCluster(Cluster* pCluster) { assert(pCluster); assert(pCluster->m_index >= 0); const long count = m_clusterCount + m_clusterPreloadCount; long& size = m_clusterSize; assert(size >= count); const long idx = pCluster->m_index; assert(idx == m_clusterCount); if (count >= size) { const long n = (size <= 0) ? 2048 : 2 * size; Cluster** const qq = new Cluster* [n]; Cluster** q = qq; Cluster** p = m_clusters; Cluster** const pp = p + count; while (p != pp) *q++ = *p++; delete[] m_clusters; m_clusters = qq; size = n; } if (m_clusterPreloadCount > 0) { assert(m_clusters); Cluster** const p = m_clusters + m_clusterCount; assert(*p); assert((*p)->m_index < 0); Cluster** q = p + m_clusterPreloadCount; assert(q < (m_clusters + size)); for (;;) { Cluster** const qq = q - 1; assert((*qq)->m_index < 0); *q = *qq; q = qq; if (q == p) break; } } m_clusters[idx] = pCluster; ++m_clusterCount; } void Segment::PreloadCluster(Cluster* pCluster, ptrdiff_t idx) { assert(pCluster); assert(pCluster->m_index < 0); assert(idx >= m_clusterCount); const long count = m_clusterCount + m_clusterPreloadCount; long& size = m_clusterSize; assert(size >= count); if (count >= size) { const long n = (size <= 0) ? 2048 : 2 * size; Cluster** const qq = new Cluster* [n]; Cluster** q = qq; Cluster** p = m_clusters; Cluster** const pp = p + count; while (p != pp) *q++ = *p++; delete[] m_clusters; m_clusters = qq; size = n; } assert(m_clusters); Cluster** const p = m_clusters + idx; Cluster** q = m_clusters + count; assert(q >= p); assert(q < (m_clusters + size)); while (q > p) { Cluster** const qq = q - 1; assert((*qq)->m_index < 0); *q = *qq; q = qq; } m_clusters[idx] = pCluster; ++m_clusterPreloadCount; } long Segment::Load() { assert(m_clusters == NULL); assert(m_clusterSize == 0); assert(m_clusterCount == 0); // assert(m_size >= 0); // Outermost (level 0) segment object has been constructed, // and pos designates start of payload. We need to find the // inner (level 1) elements. const long long header_status = ParseHeaders(); if (header_status < 0) // error return static_cast(header_status); if (header_status > 0) // underflow return E_BUFFER_NOT_FULL; assert(m_pInfo); assert(m_pTracks); for (;;) { const int status = LoadCluster(); if (status < 0) // error return status; if (status >= 1) // no more clusters return 0; } } SeekHead::SeekHead(Segment* pSegment, long long start, long long size_, long long element_start, long long element_size) : m_pSegment(pSegment), m_start(start), m_size(size_), m_element_start(element_start), m_element_size(element_size), m_entries(0), m_entry_count(0), m_void_elements(0), m_void_element_count(0) {} SeekHead::~SeekHead() { delete[] m_entries; delete[] m_void_elements; } long SeekHead::Parse() { IMkvReader* const pReader = m_pSegment->m_pReader; long long pos = m_start; const long long stop = m_start + m_size; // first count the seek head entries int entry_count = 0; int void_element_count = 0; while (pos < stop) { long long id, size; const long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (id == 0x0DBB) // SeekEntry ID ++entry_count; else if (id == 0x6C) // Void ID ++void_element_count; pos += size; // consume payload assert(pos <= stop); } assert(pos == stop); m_entries = new (std::nothrow) Entry[entry_count]; if (m_entries == NULL) return -1; m_void_elements = new (std::nothrow) VoidElement[void_element_count]; if (m_void_elements == NULL) return -1; // now parse the entries and void elements Entry* pEntry = m_entries; VoidElement* pVoidElement = m_void_elements; pos = m_start; while (pos < stop) { const long long idpos = pos; long long id, size; const long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (id == 0x0DBB) { // SeekEntry ID if (ParseEntry(pReader, pos, size, pEntry)) { Entry& e = *pEntry++; e.element_start = idpos; e.element_size = (pos + size) - idpos; } } else if (id == 0x6C) { // Void ID VoidElement& e = *pVoidElement++; e.element_start = idpos; e.element_size = (pos + size) - idpos; } pos += size; // consume payload assert(pos <= stop); } assert(pos == stop); ptrdiff_t count_ = ptrdiff_t(pEntry - m_entries); assert(count_ >= 0); assert(count_ <= entry_count); m_entry_count = static_cast(count_); count_ = ptrdiff_t(pVoidElement - m_void_elements); assert(count_ >= 0); assert(count_ <= void_element_count); m_void_element_count = static_cast(count_); return 0; } int SeekHead::GetCount() const { return m_entry_count; } const SeekHead::Entry* SeekHead::GetEntry(int idx) const { if (idx < 0) return 0; if (idx >= m_entry_count) return 0; return m_entries + idx; } int SeekHead::GetVoidElementCount() const { return m_void_element_count; } const SeekHead::VoidElement* SeekHead::GetVoidElement(int idx) const { if (idx < 0) return 0; if (idx >= m_void_element_count) return 0; return m_void_elements + idx; } #if 0 void Segment::ParseCues(long long off) { if (m_pCues) return; //odbgstream os; //os << "Segment::ParseCues (begin)" << endl; long long pos = m_start + off; const long long element_start = pos; const long long stop = m_start + m_size; long len; long long result = GetUIntLength(m_pReader, pos, len); assert(result == 0); assert((pos + len) <= stop); const long long idpos = pos; const long long id = ReadUInt(m_pReader, idpos, len); assert(id == 0x0C53BB6B); //Cues ID pos += len; //consume ID assert(pos < stop); //Read Size result = GetUIntLength(m_pReader, pos, len); assert(result == 0); assert((pos + len) <= stop); const long long size = ReadUInt(m_pReader, pos, len); assert(size >= 0); pos += len; //consume length of size of element assert((pos + size) <= stop); const long long element_size = size + pos - element_start; //Pos now points to start of payload m_pCues = new Cues(this, pos, size, element_start, element_size); assert(m_pCues); //TODO //os << "Segment::ParseCues (end)" << endl; } #else long Segment::ParseCues(long long off, long long& pos, long& len) { if (m_pCues) return 0; // success if (off < 0) return -1; long long total, avail; const int status = m_pReader->Length(&total, &avail); if (status < 0) // error return status; assert((total < 0) || (avail <= total)); pos = m_start + off; if ((total < 0) || (pos >= total)) return 1; // don't bother parsing cues const long long element_start = pos; const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // underflow (weird) { len = 1; return E_BUFFER_NOT_FULL; } if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long idpos = pos; const long long id = ReadUInt(m_pReader, idpos, len); if (id != 0x0C53BB6B) // Cues ID return E_FILE_FORMAT_INVALID; pos += len; // consume ID assert((segment_stop < 0) || (pos <= segment_stop)); // Read Size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // underflow (weird) { len = 1; return E_BUFFER_NOT_FULL; } if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(m_pReader, pos, len); if (size < 0) // error return static_cast(size); if (size == 0) // weird, although technically not illegal return 1; // done pos += len; // consume length of size of element assert((segment_stop < 0) || (pos <= segment_stop)); // Pos now points to start of payload const long long element_stop = pos + size; if ((segment_stop >= 0) && (element_stop > segment_stop)) return E_FILE_FORMAT_INVALID; if ((total >= 0) && (element_stop > total)) return 1; // don't bother parsing anymore len = static_cast(size); if (element_stop > avail) return E_BUFFER_NOT_FULL; const long long element_size = element_stop - element_start; m_pCues = new (std::nothrow) Cues(this, pos, size, element_start, element_size); assert(m_pCues); // TODO return 0; // success } #endif #if 0 void Segment::ParseSeekEntry( long long start, long long size_) { long long pos = start; const long long stop = start + size_; long len; const long long seekIdId = ReadUInt(m_pReader, pos, len); //seekIdId; assert(seekIdId == 0x13AB); //SeekID ID assert((pos + len) <= stop); pos += len; //consume id const long long seekIdSize = ReadUInt(m_pReader, pos, len); assert(seekIdSize >= 0); assert((pos + len) <= stop); pos += len; //consume size const long long seekId = ReadUInt(m_pReader, pos, len); //payload assert(seekId >= 0); assert(len == seekIdSize); assert((pos + len) <= stop); pos += seekIdSize; //consume payload const long long seekPosId = ReadUInt(m_pReader, pos, len); //seekPosId; assert(seekPosId == 0x13AC); //SeekPos ID assert((pos + len) <= stop); pos += len; //consume id const long long seekPosSize = ReadUInt(m_pReader, pos, len); assert(seekPosSize >= 0); assert((pos + len) <= stop); pos += len; //consume size assert((pos + seekPosSize) <= stop); const long long seekOff = UnserializeUInt(m_pReader, pos, seekPosSize); assert(seekOff >= 0); assert(seekOff < m_size); pos += seekPosSize; //consume payload assert(pos == stop); const long long seekPos = m_start + seekOff; assert(seekPos < (m_start + m_size)); if (seekId == 0x0C53BB6B) //Cues ID ParseCues(seekOff); } #else bool SeekHead::ParseEntry(IMkvReader* pReader, long long start, long long size_, Entry* pEntry) { if (size_ <= 0) return false; long long pos = start; const long long stop = start + size_; long len; // parse the container for the level-1 element ID const long long seekIdId = ReadUInt(pReader, pos, len); // seekIdId; if (seekIdId != 0x13AB) // SeekID ID return false; if ((pos + len) > stop) return false; pos += len; // consume SeekID id const long long seekIdSize = ReadUInt(pReader, pos, len); if (seekIdSize <= 0) return false; if ((pos + len) > stop) return false; pos += len; // consume size of field if ((pos + seekIdSize) > stop) return false; // Note that the SeekId payload really is serialized // as a "Matroska integer", not as a plain binary value. // In fact, Matroska requires that ID values in the // stream exactly match the binary representation as listed // in the Matroska specification. // // This parser is more liberal, and permits IDs to have // any width. (This could make the representation in the stream // different from what's in the spec, but it doesn't matter here, // since we always normalize "Matroska integer" values.) pEntry->id = ReadUInt(pReader, pos, len); // payload if (pEntry->id <= 0) return false; if (len != seekIdSize) return false; pos += seekIdSize; // consume SeekID payload const long long seekPosId = ReadUInt(pReader, pos, len); if (seekPosId != 0x13AC) // SeekPos ID return false; if ((pos + len) > stop) return false; pos += len; // consume id const long long seekPosSize = ReadUInt(pReader, pos, len); if (seekPosSize <= 0) return false; if ((pos + len) > stop) return false; pos += len; // consume size if ((pos + seekPosSize) > stop) return false; pEntry->pos = UnserializeUInt(pReader, pos, seekPosSize); if (pEntry->pos < 0) return false; pos += seekPosSize; // consume payload if (pos != stop) return false; return true; } #endif Cues::Cues(Segment* pSegment, long long start_, long long size_, long long element_start, long long element_size) : m_pSegment(pSegment), m_start(start_), m_size(size_), m_element_start(element_start), m_element_size(element_size), m_cue_points(NULL), m_count(0), m_preload_count(0), m_pos(start_) {} Cues::~Cues() { const long n = m_count + m_preload_count; CuePoint** p = m_cue_points; CuePoint** const q = p + n; while (p != q) { CuePoint* const pCP = *p++; assert(pCP); delete pCP; } delete[] m_cue_points; } long Cues::GetCount() const { if (m_cue_points == NULL) return -1; return m_count; // TODO: really ignore preload count? } bool Cues::DoneParsing() const { const long long stop = m_start + m_size; return (m_pos >= stop); } void Cues::Init() const { if (m_cue_points) return; assert(m_count == 0); assert(m_preload_count == 0); IMkvReader* const pReader = m_pSegment->m_pReader; const long long stop = m_start + m_size; long long pos = m_start; long cue_points_size = 0; while (pos < stop) { const long long idpos = pos; long len; const long long id = ReadUInt(pReader, pos, len); assert(id >= 0); // TODO assert((pos + len) <= stop); pos += len; // consume ID const long long size = ReadUInt(pReader, pos, len); assert(size >= 0); assert((pos + len) <= stop); pos += len; // consume Size field assert((pos + size) <= stop); if (id == 0x3B) // CuePoint ID PreloadCuePoint(cue_points_size, idpos); pos += size; // consume payload assert(pos <= stop); } } void Cues::PreloadCuePoint(long& cue_points_size, long long pos) const { assert(m_count == 0); if (m_preload_count >= cue_points_size) { const long n = (cue_points_size <= 0) ? 2048 : 2 * cue_points_size; CuePoint** const qq = new CuePoint* [n]; CuePoint** q = qq; // beginning of target CuePoint** p = m_cue_points; // beginning of source CuePoint** const pp = p + m_preload_count; // end of source while (p != pp) *q++ = *p++; delete[] m_cue_points; m_cue_points = qq; cue_points_size = n; } CuePoint* const pCP = new CuePoint(m_preload_count, pos); m_cue_points[m_preload_count++] = pCP; } bool Cues::LoadCuePoint() const { // odbgstream os; // os << "Cues::LoadCuePoint" << endl; const long long stop = m_start + m_size; if (m_pos >= stop) return false; // nothing else to do Init(); IMkvReader* const pReader = m_pSegment->m_pReader; while (m_pos < stop) { const long long idpos = m_pos; long len; const long long id = ReadUInt(pReader, m_pos, len); assert(id >= 0); // TODO assert((m_pos + len) <= stop); m_pos += len; // consume ID const long long size = ReadUInt(pReader, m_pos, len); assert(size >= 0); assert((m_pos + len) <= stop); m_pos += len; // consume Size field assert((m_pos + size) <= stop); if (id != 0x3B) { // CuePoint ID m_pos += size; // consume payload assert(m_pos <= stop); continue; } assert(m_preload_count > 0); CuePoint* const pCP = m_cue_points[m_count]; assert(pCP); assert((pCP->GetTimeCode() >= 0) || (-pCP->GetTimeCode() == idpos)); if (pCP->GetTimeCode() < 0 && (-pCP->GetTimeCode() != idpos)) return false; pCP->Load(pReader); ++m_count; --m_preload_count; m_pos += size; // consume payload assert(m_pos <= stop); return true; // yes, we loaded a cue point } // return (m_pos < stop); return false; // no, we did not load a cue point } bool Cues::Find(long long time_ns, const Track* pTrack, const CuePoint*& pCP, const CuePoint::TrackPosition*& pTP) const { assert(time_ns >= 0); assert(pTrack); #if 0 LoadCuePoint(); //establish invariant assert(m_cue_points); assert(m_count > 0); CuePoint** const ii = m_cue_points; CuePoint** i = ii; CuePoint** const jj = ii + m_count + m_preload_count; CuePoint** j = jj; pCP = *i; assert(pCP); if (time_ns <= pCP->GetTime(m_pSegment)) { pTP = pCP->Find(pTrack); return (pTP != NULL); } IMkvReader* const pReader = m_pSegment->m_pReader; while (i < j) { //INVARIANT: //[ii, i) <= time_ns //[i, j) ? //[j, jj) > time_ns CuePoint** const k = i + (j - i) / 2; assert(k < jj); CuePoint* const pCP = *k; assert(pCP); pCP->Load(pReader); const long long t = pCP->GetTime(m_pSegment); if (t <= time_ns) i = k + 1; else j = k; assert(i <= j); } assert(i == j); assert(i <= jj); assert(i > ii); pCP = *--i; assert(pCP); assert(pCP->GetTime(m_pSegment) <= time_ns); #else if (m_cue_points == NULL) return false; if (m_count == 0) return false; CuePoint** const ii = m_cue_points; CuePoint** i = ii; CuePoint** const jj = ii + m_count; CuePoint** j = jj; pCP = *i; assert(pCP); if (time_ns <= pCP->GetTime(m_pSegment)) { pTP = pCP->Find(pTrack); return (pTP != NULL); } while (i < j) { // INVARIANT: //[ii, i) <= time_ns //[i, j) ? //[j, jj) > time_ns CuePoint** const k = i + (j - i) / 2; assert(k < jj); CuePoint* const pCP = *k; assert(pCP); const long long t = pCP->GetTime(m_pSegment); if (t <= time_ns) i = k + 1; else j = k; assert(i <= j); } assert(i == j); assert(i <= jj); assert(i > ii); pCP = *--i; assert(pCP); assert(pCP->GetTime(m_pSegment) <= time_ns); #endif // TODO: here and elsewhere, it's probably not correct to search // for the cue point with this time, and then search for a matching // track. In principle, the matching track could be on some earlier // cue point, and with our current algorithm, we'd miss it. To make // this bullet-proof, we'd need to create a secondary structure, // with a list of cue points that apply to a track, and then search // that track-based structure for a matching cue point. pTP = pCP->Find(pTrack); return (pTP != NULL); } #if 0 bool Cues::FindNext( long long time_ns, const Track* pTrack, const CuePoint*& pCP, const CuePoint::TrackPosition*& pTP) const { pCP = 0; pTP = 0; if (m_count == 0) return false; assert(m_cue_points); const CuePoint* const* const ii = m_cue_points; const CuePoint* const* i = ii; const CuePoint* const* const jj = ii + m_count; const CuePoint* const* j = jj; while (i < j) { //INVARIANT: //[ii, i) <= time_ns //[i, j) ? //[j, jj) > time_ns const CuePoint* const* const k = i + (j - i) / 2; assert(k < jj); pCP = *k; assert(pCP); const long long t = pCP->GetTime(m_pSegment); if (t <= time_ns) i = k + 1; else j = k; assert(i <= j); } assert(i == j); assert(i <= jj); if (i >= jj) //time_ns is greater than max cue point return false; pCP = *i; assert(pCP); assert(pCP->GetTime(m_pSegment) > time_ns); pTP = pCP->Find(pTrack); return (pTP != NULL); } #endif const CuePoint* Cues::GetFirst() const { if (m_cue_points == NULL) return NULL; if (m_count == 0) return NULL; #if 0 LoadCuePoint(); //init cues const size_t count = m_count + m_preload_count; if (count == 0) //weird return NULL; #endif CuePoint* const* const pp = m_cue_points; assert(pp); CuePoint* const pCP = pp[0]; assert(pCP); assert(pCP->GetTimeCode() >= 0); return pCP; } const CuePoint* Cues::GetLast() const { if (m_cue_points == NULL) return NULL; if (m_count <= 0) return NULL; #if 0 LoadCuePoint(); //init cues const size_t count = m_count + m_preload_count; if (count == 0) //weird return NULL; const size_t index = count - 1; CuePoint* const* const pp = m_cue_points; assert(pp); CuePoint* const pCP = pp[index]; assert(pCP); pCP->Load(m_pSegment->m_pReader); assert(pCP->GetTimeCode() >= 0); #else const long index = m_count - 1; CuePoint* const* const pp = m_cue_points; assert(pp); CuePoint* const pCP = pp[index]; assert(pCP); assert(pCP->GetTimeCode() >= 0); #endif return pCP; } const CuePoint* Cues::GetNext(const CuePoint* pCurr) const { if (pCurr == NULL) return NULL; assert(pCurr->GetTimeCode() >= 0); assert(m_cue_points); assert(m_count >= 1); #if 0 const size_t count = m_count + m_preload_count; size_t index = pCurr->m_index; assert(index < count); CuePoint* const* const pp = m_cue_points; assert(pp); assert(pp[index] == pCurr); ++index; if (index >= count) return NULL; CuePoint* const pNext = pp[index]; assert(pNext); pNext->Load(m_pSegment->m_pReader); #else long index = pCurr->m_index; assert(index < m_count); CuePoint* const* const pp = m_cue_points; assert(pp); assert(pp[index] == pCurr); ++index; if (index >= m_count) return NULL; CuePoint* const pNext = pp[index]; assert(pNext); assert(pNext->GetTimeCode() >= 0); #endif return pNext; } const BlockEntry* Cues::GetBlock(const CuePoint* pCP, const CuePoint::TrackPosition* pTP) const { if (pCP == NULL) return NULL; if (pTP == NULL) return NULL; return m_pSegment->GetBlock(*pCP, *pTP); } const BlockEntry* Segment::GetBlock(const CuePoint& cp, const CuePoint::TrackPosition& tp) { Cluster** const ii = m_clusters; Cluster** i = ii; const long count = m_clusterCount + m_clusterPreloadCount; Cluster** const jj = ii + count; Cluster** j = jj; while (i < j) { // INVARIANT: //[ii, i) < pTP->m_pos //[i, j) ? //[j, jj) > pTP->m_pos Cluster** const k = i + (j - i) / 2; assert(k < jj); Cluster* const pCluster = *k; assert(pCluster); // const long long pos_ = pCluster->m_pos; // assert(pos_); // const long long pos = pos_ * ((pos_ < 0) ? -1 : 1); const long long pos = pCluster->GetPosition(); assert(pos >= 0); if (pos < tp.m_pos) i = k + 1; else if (pos > tp.m_pos) j = k; else return pCluster->GetEntry(cp, tp); } assert(i == j); // assert(Cluster::HasBlockEntries(this, tp.m_pos)); Cluster* const pCluster = Cluster::Create(this, -1, tp.m_pos); //, -1); assert(pCluster); const ptrdiff_t idx = i - m_clusters; PreloadCluster(pCluster, idx); assert(m_clusters); assert(m_clusterPreloadCount > 0); assert(m_clusters[idx] == pCluster); return pCluster->GetEntry(cp, tp); } const Cluster* Segment::FindOrPreloadCluster(long long requested_pos) { if (requested_pos < 0) return 0; Cluster** const ii = m_clusters; Cluster** i = ii; const long count = m_clusterCount + m_clusterPreloadCount; Cluster** const jj = ii + count; Cluster** j = jj; while (i < j) { // INVARIANT: //[ii, i) < pTP->m_pos //[i, j) ? //[j, jj) > pTP->m_pos Cluster** const k = i + (j - i) / 2; assert(k < jj); Cluster* const pCluster = *k; assert(pCluster); // const long long pos_ = pCluster->m_pos; // assert(pos_); // const long long pos = pos_ * ((pos_ < 0) ? -1 : 1); const long long pos = pCluster->GetPosition(); assert(pos >= 0); if (pos < requested_pos) i = k + 1; else if (pos > requested_pos) j = k; else return pCluster; } assert(i == j); // assert(Cluster::HasBlockEntries(this, tp.m_pos)); Cluster* const pCluster = Cluster::Create(this, -1, requested_pos); //-1); assert(pCluster); const ptrdiff_t idx = i - m_clusters; PreloadCluster(pCluster, idx); assert(m_clusters); assert(m_clusterPreloadCount > 0); assert(m_clusters[idx] == pCluster); return pCluster; } CuePoint::CuePoint(long idx, long long pos) : m_element_start(0), m_element_size(0), m_index(idx), m_timecode(-1 * pos), m_track_positions(NULL), m_track_positions_count(0) { assert(pos > 0); } CuePoint::~CuePoint() { delete[] m_track_positions; } void CuePoint::Load(IMkvReader* pReader) { // odbgstream os; // os << "CuePoint::Load(begin): timecode=" << m_timecode << endl; if (m_timecode >= 0) // already loaded return; assert(m_track_positions == NULL); assert(m_track_positions_count == 0); long long pos_ = -m_timecode; const long long element_start = pos_; long long stop; { long len; const long long id = ReadUInt(pReader, pos_, len); assert(id == 0x3B); // CuePoint ID if (id != 0x3B) return; pos_ += len; // consume ID const long long size = ReadUInt(pReader, pos_, len); assert(size >= 0); pos_ += len; // consume Size field // pos_ now points to start of payload stop = pos_ + size; } const long long element_size = stop - element_start; long long pos = pos_; // First count number of track positions while (pos < stop) { long len; const long long id = ReadUInt(pReader, pos, len); assert(id >= 0); // TODO assert((pos + len) <= stop); pos += len; // consume ID const long long size = ReadUInt(pReader, pos, len); assert(size >= 0); assert((pos + len) <= stop); pos += len; // consume Size field assert((pos + size) <= stop); if (id == 0x33) // CueTime ID m_timecode = UnserializeUInt(pReader, pos, size); else if (id == 0x37) // CueTrackPosition(s) ID ++m_track_positions_count; pos += size; // consume payload assert(pos <= stop); } assert(m_timecode >= 0); assert(m_track_positions_count > 0); // os << "CuePoint::Load(cont'd): idpos=" << idpos // << " timecode=" << m_timecode // << endl; m_track_positions = new TrackPosition[m_track_positions_count]; // Now parse track positions TrackPosition* p = m_track_positions; pos = pos_; while (pos < stop) { long len; const long long id = ReadUInt(pReader, pos, len); assert(id >= 0); // TODO assert((pos + len) <= stop); pos += len; // consume ID const long long size = ReadUInt(pReader, pos, len); assert(size >= 0); assert((pos + len) <= stop); pos += len; // consume Size field assert((pos + size) <= stop); if (id == 0x37) { // CueTrackPosition(s) ID TrackPosition& tp = *p++; tp.Parse(pReader, pos, size); } pos += size; // consume payload assert(pos <= stop); } assert(size_t(p - m_track_positions) == m_track_positions_count); m_element_start = element_start; m_element_size = element_size; } void CuePoint::TrackPosition::Parse(IMkvReader* pReader, long long start_, long long size_) { const long long stop = start_ + size_; long long pos = start_; m_track = -1; m_pos = -1; m_block = 1; // default while (pos < stop) { long len; const long long id = ReadUInt(pReader, pos, len); assert(id >= 0); // TODO assert((pos + len) <= stop); pos += len; // consume ID const long long size = ReadUInt(pReader, pos, len); assert(size >= 0); assert((pos + len) <= stop); pos += len; // consume Size field assert((pos + size) <= stop); if (id == 0x77) // CueTrack ID m_track = UnserializeUInt(pReader, pos, size); else if (id == 0x71) // CueClusterPos ID m_pos = UnserializeUInt(pReader, pos, size); else if (id == 0x1378) // CueBlockNumber m_block = UnserializeUInt(pReader, pos, size); pos += size; // consume payload assert(pos <= stop); } assert(m_pos >= 0); assert(m_track > 0); // assert(m_block > 0); } const CuePoint::TrackPosition* CuePoint::Find(const Track* pTrack) const { assert(pTrack); const long long n = pTrack->GetNumber(); const TrackPosition* i = m_track_positions; const TrackPosition* const j = i + m_track_positions_count; while (i != j) { const TrackPosition& p = *i++; if (p.m_track == n) return &p; } return NULL; // no matching track number found } long long CuePoint::GetTimeCode() const { return m_timecode; } long long CuePoint::GetTime(const Segment* pSegment) const { assert(pSegment); assert(m_timecode >= 0); const SegmentInfo* const pInfo = pSegment->GetInfo(); assert(pInfo); const long long scale = pInfo->GetTimeCodeScale(); assert(scale >= 1); const long long time = scale * m_timecode; return time; } #if 0 long long Segment::Unparsed() const { if (m_size < 0) return LLONG_MAX; const long long stop = m_start + m_size; const long long result = stop - m_pos; assert(result >= 0); return result; } #else bool Segment::DoneParsing() const { if (m_size < 0) { long long total, avail; const int status = m_pReader->Length(&total, &avail); if (status < 0) // error return true; // must assume done if (total < 0) return false; // assume live stream return (m_pos >= total); } const long long stop = m_start + m_size; return (m_pos >= stop); } #endif const Cluster* Segment::GetFirst() const { if ((m_clusters == NULL) || (m_clusterCount <= 0)) return &m_eos; Cluster* const pCluster = m_clusters[0]; assert(pCluster); return pCluster; } const Cluster* Segment::GetLast() const { if ((m_clusters == NULL) || (m_clusterCount <= 0)) return &m_eos; const long idx = m_clusterCount - 1; Cluster* const pCluster = m_clusters[idx]; assert(pCluster); return pCluster; } unsigned long Segment::GetCount() const { return m_clusterCount; } const Cluster* Segment::GetNext(const Cluster* pCurr) { assert(pCurr); assert(pCurr != &m_eos); assert(m_clusters); long idx = pCurr->m_index; if (idx >= 0) { assert(m_clusterCount > 0); assert(idx < m_clusterCount); assert(pCurr == m_clusters[idx]); ++idx; if (idx >= m_clusterCount) return &m_eos; // caller will LoadCluster as desired Cluster* const pNext = m_clusters[idx]; assert(pNext); assert(pNext->m_index >= 0); assert(pNext->m_index == idx); return pNext; } assert(m_clusterPreloadCount > 0); long long pos = pCurr->m_element_start; assert(m_size >= 0); // TODO const long long stop = m_start + m_size; // end of segment { long len; long long result = GetUIntLength(m_pReader, pos, len); assert(result == 0); assert((pos + len) <= stop); // TODO if (result != 0) return NULL; const long long id = ReadUInt(m_pReader, pos, len); assert(id == 0x0F43B675); // Cluster ID if (id != 0x0F43B675) return NULL; pos += len; // consume ID // Read Size result = GetUIntLength(m_pReader, pos, len); assert(result == 0); // TODO assert((pos + len) <= stop); // TODO const long long size = ReadUInt(m_pReader, pos, len); assert(size > 0); // TODO // assert((pCurr->m_size <= 0) || (pCurr->m_size == size)); pos += len; // consume length of size of element assert((pos + size) <= stop); // TODO // Pos now points to start of payload pos += size; // consume payload } long long off_next = 0; while (pos < stop) { long len; long long result = GetUIntLength(m_pReader, pos, len); assert(result == 0); assert((pos + len) <= stop); // TODO if (result != 0) return NULL; const long long idpos = pos; // pos of next (potential) cluster const long long id = ReadUInt(m_pReader, idpos, len); assert(id > 0); // TODO pos += len; // consume ID // Read Size result = GetUIntLength(m_pReader, pos, len); assert(result == 0); // TODO assert((pos + len) <= stop); // TODO const long long size = ReadUInt(m_pReader, pos, len); assert(size >= 0); // TODO pos += len; // consume length of size of element assert((pos + size) <= stop); // TODO // Pos now points to start of payload if (size == 0) // weird continue; if (id == 0x0F43B675) { // Cluster ID const long long off_next_ = idpos - m_start; long long pos_; long len_; const long status = Cluster::HasBlockEntries(this, off_next_, pos_, len_); assert(status >= 0); if (status > 0) { off_next = off_next_; break; } } pos += size; // consume payload } if (off_next <= 0) return 0; Cluster** const ii = m_clusters + m_clusterCount; Cluster** i = ii; Cluster** const jj = ii + m_clusterPreloadCount; Cluster** j = jj; while (i < j) { // INVARIANT: //[0, i) < pos_next //[i, j) ? //[j, jj) > pos_next Cluster** const k = i + (j - i) / 2; assert(k < jj); Cluster* const pNext = *k; assert(pNext); assert(pNext->m_index < 0); // const long long pos_ = pNext->m_pos; // assert(pos_); // pos = pos_ * ((pos_ < 0) ? -1 : 1); pos = pNext->GetPosition(); if (pos < off_next) i = k + 1; else if (pos > off_next) j = k; else return pNext; } assert(i == j); Cluster* const pNext = Cluster::Create(this, -1, off_next); assert(pNext); const ptrdiff_t idx_next = i - m_clusters; // insertion position PreloadCluster(pNext, idx_next); assert(m_clusters); assert(idx_next < m_clusterSize); assert(m_clusters[idx_next] == pNext); return pNext; } long Segment::ParseNext(const Cluster* pCurr, const Cluster*& pResult, long long& pos, long& len) { assert(pCurr); assert(!pCurr->EOS()); assert(m_clusters); pResult = 0; if (pCurr->m_index >= 0) { // loaded (not merely preloaded) assert(m_clusters[pCurr->m_index] == pCurr); const long next_idx = pCurr->m_index + 1; if (next_idx < m_clusterCount) { pResult = m_clusters[next_idx]; return 0; // success } // curr cluster is last among loaded const long result = LoadCluster(pos, len); if (result < 0) // error or underflow return result; if (result > 0) // no more clusters { // pResult = &m_eos; return 1; } pResult = GetLast(); return 0; // success } assert(m_pos > 0); long long total, avail; long status = m_pReader->Length(&total, &avail); if (status < 0) // error return status; assert((total < 0) || (avail <= total)); const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; // interrogate curr cluster pos = pCurr->m_element_start; if (pCurr->m_element_size >= 0) pos += pCurr->m_element_size; else { if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long id = ReadUInt(m_pReader, pos, len); if (id != 0x0F43B675) // weird: not Cluster ID return -1; pos += len; // consume ID // Read Size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(m_pReader, pos, len); if (size < 0) // error return static_cast(size); pos += len; // consume size field const long long unknown_size = (1LL << (7 * len)) - 1; if (size == unknown_size) // TODO: should never happen return E_FILE_FORMAT_INVALID; // TODO: resolve this // assert((pCurr->m_size <= 0) || (pCurr->m_size == size)); if ((segment_stop >= 0) && ((pos + size) > segment_stop)) return E_FILE_FORMAT_INVALID; // Pos now points to start of payload pos += size; // consume payload (that is, the current cluster) assert((segment_stop < 0) || (pos <= segment_stop)); // By consuming the payload, we are assuming that the curr // cluster isn't interesting. That is, we don't bother checking // whether the payload of the curr cluster is less than what // happens to be available (obtained via IMkvReader::Length). // Presumably the caller has already dispensed with the current // cluster, and really does want the next cluster. } // pos now points to just beyond the last fully-loaded cluster for (;;) { const long status = DoParseNext(pResult, pos, len); if (status <= 1) return status; } } long Segment::DoParseNext(const Cluster*& pResult, long long& pos, long& len) { long long total, avail; long status = m_pReader->Length(&total, &avail); if (status < 0) // error return status; assert((total < 0) || (avail <= total)); const long long segment_stop = (m_size < 0) ? -1 : m_start + m_size; // Parse next cluster. This is strictly a parsing activity. // Creation of a new cluster object happens later, after the // parsing is done. long long off_next = 0; long long cluster_size = -1; for (;;) { if ((total >= 0) && (pos >= total)) return 1; // EOF if ((segment_stop >= 0) && (pos >= segment_stop)) return 1; // EOF if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long idpos = pos; // absolute const long long idoff = pos - m_start; // relative const long long id = ReadUInt(m_pReader, idpos, len); // absolute if (id < 0) // error return static_cast(id); if (id == 0) // weird return -1; // generic error pos += len; // consume ID // Read Size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(m_pReader, pos, len); if (size < 0) // error return static_cast(size); pos += len; // consume length of size of element // Pos now points to start of payload if (size == 0) // weird continue; const long long unknown_size = (1LL << (7 * len)) - 1; if ((segment_stop >= 0) && (size != unknown_size) && ((pos + size) > segment_stop)) { return E_FILE_FORMAT_INVALID; } if (id == 0x0C53BB6B) { // Cues ID if (size == unknown_size) return E_FILE_FORMAT_INVALID; const long long element_stop = pos + size; if ((segment_stop >= 0) && (element_stop > segment_stop)) return E_FILE_FORMAT_INVALID; const long long element_start = idpos; const long long element_size = element_stop - element_start; if (m_pCues == NULL) { m_pCues = new Cues(this, pos, size, element_start, element_size); assert(m_pCues); // TODO } pos += size; // consume payload assert((segment_stop < 0) || (pos <= segment_stop)); continue; } if (id != 0x0F43B675) { // not a Cluster ID if (size == unknown_size) return E_FILE_FORMAT_INVALID; pos += size; // consume payload assert((segment_stop < 0) || (pos <= segment_stop)); continue; } #if 0 // this is commented-out to support incremental cluster parsing len = static_cast(size); if (element_stop > avail) return E_BUFFER_NOT_FULL; #endif // We have a cluster. off_next = idoff; if (size != unknown_size) cluster_size = size; break; } assert(off_next > 0); // have cluster // We have parsed the next cluster. // We have not created a cluster object yet. What we need // to do now is determine whether it has already be preloaded //(in which case, an object for this cluster has already been // created), and if not, create a new cluster object. Cluster** const ii = m_clusters + m_clusterCount; Cluster** i = ii; Cluster** const jj = ii + m_clusterPreloadCount; Cluster** j = jj; while (i < j) { // INVARIANT: //[0, i) < pos_next //[i, j) ? //[j, jj) > pos_next Cluster** const k = i + (j - i) / 2; assert(k < jj); const Cluster* const pNext = *k; assert(pNext); assert(pNext->m_index < 0); pos = pNext->GetPosition(); assert(pos >= 0); if (pos < off_next) i = k + 1; else if (pos > off_next) j = k; else { pResult = pNext; return 0; // success } } assert(i == j); long long pos_; long len_; status = Cluster::HasBlockEntries(this, off_next, pos_, len_); if (status < 0) { // error or underflow pos = pos_; len = len_; return status; } if (status > 0) { // means "found at least one block entry" Cluster* const pNext = Cluster::Create(this, -1, // preloaded off_next); // element_size); assert(pNext); const ptrdiff_t idx_next = i - m_clusters; // insertion position PreloadCluster(pNext, idx_next); assert(m_clusters); assert(idx_next < m_clusterSize); assert(m_clusters[idx_next] == pNext); pResult = pNext; return 0; // success } // status == 0 means "no block entries found" if (cluster_size < 0) { // unknown size const long long payload_pos = pos; // absolute pos of cluster payload for (;;) { // determine cluster size if ((total >= 0) && (pos >= total)) break; if ((segment_stop >= 0) && (pos >= segment_stop)) break; // no more clusters // Read ID if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long idpos = pos; const long long id = ReadUInt(m_pReader, idpos, len); if (id < 0) // error (or underflow) return static_cast(id); // This is the distinguished set of ID's we use to determine // that we have exhausted the sub-element's inside the cluster // whose ID we parsed earlier. if (id == 0x0F43B675) // Cluster ID break; if (id == 0x0C53BB6B) // Cues ID break; pos += len; // consume ID (of sub-element) // Read Size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(m_pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(m_pReader, pos, len); if (size < 0) // error return static_cast(size); pos += len; // consume size field of element // pos now points to start of sub-element's payload if (size == 0) // weird continue; const long long unknown_size = (1LL << (7 * len)) - 1; if (size == unknown_size) return E_FILE_FORMAT_INVALID; // not allowed for sub-elements if ((segment_stop >= 0) && ((pos + size) > segment_stop)) // weird return E_FILE_FORMAT_INVALID; pos += size; // consume payload of sub-element assert((segment_stop < 0) || (pos <= segment_stop)); } // determine cluster size cluster_size = pos - payload_pos; assert(cluster_size >= 0); // TODO: handle cluster_size = 0 pos = payload_pos; // reset and re-parse original cluster } pos += cluster_size; // consume payload assert((segment_stop < 0) || (pos <= segment_stop)); return 2; // try to find a cluster that follows next } const Cluster* Segment::FindCluster(long long time_ns) const { if ((m_clusters == NULL) || (m_clusterCount <= 0)) return &m_eos; { Cluster* const pCluster = m_clusters[0]; assert(pCluster); assert(pCluster->m_index == 0); if (time_ns <= pCluster->GetTime()) return pCluster; } // Binary search of cluster array long i = 0; long j = m_clusterCount; while (i < j) { // INVARIANT: //[0, i) <= time_ns //[i, j) ? //[j, m_clusterCount) > time_ns const long k = i + (j - i) / 2; assert(k < m_clusterCount); Cluster* const pCluster = m_clusters[k]; assert(pCluster); assert(pCluster->m_index == k); const long long t = pCluster->GetTime(); if (t <= time_ns) i = k + 1; else j = k; assert(i <= j); } assert(i == j); assert(i > 0); assert(i <= m_clusterCount); const long k = i - 1; Cluster* const pCluster = m_clusters[k]; assert(pCluster); assert(pCluster->m_index == k); assert(pCluster->GetTime() <= time_ns); return pCluster; } #if 0 const BlockEntry* Segment::Seek( long long time_ns, const Track* pTrack) const { assert(pTrack); if ((m_clusters == NULL) || (m_clusterCount <= 0)) return pTrack->GetEOS(); Cluster** const i = m_clusters; assert(i); { Cluster* const pCluster = *i; assert(pCluster); assert(pCluster->m_index == 0); //m_clusterCount > 0 assert(pCluster->m_pSegment == this); if (time_ns <= pCluster->GetTime()) return pCluster->GetEntry(pTrack); } Cluster** const j = i + m_clusterCount; if (pTrack->GetType() == 2) { //audio //TODO: we could decide to use cues for this, as we do for video. //But we only use it for video because looking around for a keyframe //can get expensive. Audio doesn't require anything special so a //straight cluster search is good enough (we assume). Cluster** lo = i; Cluster** hi = j; while (lo < hi) { //INVARIANT: //[i, lo) <= time_ns //[lo, hi) ? //[hi, j) > time_ns Cluster** const mid = lo + (hi - lo) / 2; assert(mid < hi); Cluster* const pCluster = *mid; assert(pCluster); assert(pCluster->m_index == long(mid - m_clusters)); assert(pCluster->m_pSegment == this); const long long t = pCluster->GetTime(); if (t <= time_ns) lo = mid + 1; else hi = mid; assert(lo <= hi); } assert(lo == hi); assert(lo > i); assert(lo <= j); while (lo > i) { Cluster* const pCluster = *--lo; assert(pCluster); assert(pCluster->GetTime() <= time_ns); const BlockEntry* const pBE = pCluster->GetEntry(pTrack); if ((pBE != 0) && !pBE->EOS()) return pBE; //landed on empty cluster (no entries) } return pTrack->GetEOS(); //weird } assert(pTrack->GetType() == 1); //video Cluster** lo = i; Cluster** hi = j; while (lo < hi) { //INVARIANT: //[i, lo) <= time_ns //[lo, hi) ? //[hi, j) > time_ns Cluster** const mid = lo + (hi - lo) / 2; assert(mid < hi); Cluster* const pCluster = *mid; assert(pCluster); const long long t = pCluster->GetTime(); if (t <= time_ns) lo = mid + 1; else hi = mid; assert(lo <= hi); } assert(lo == hi); assert(lo > i); assert(lo <= j); Cluster* pCluster = *--lo; assert(pCluster); assert(pCluster->GetTime() <= time_ns); { const BlockEntry* const pBE = pCluster->GetEntry(pTrack, time_ns); if ((pBE != 0) && !pBE->EOS()) //found a keyframe return pBE; } const VideoTrack* const pVideo = static_cast(pTrack); while (lo != i) { pCluster = *--lo; assert(pCluster); assert(pCluster->GetTime() <= time_ns); const BlockEntry* const pBlockEntry = pCluster->GetMaxKey(pVideo); if ((pBlockEntry != 0) && !pBlockEntry->EOS()) return pBlockEntry; } //weird: we're on the first cluster, but no keyframe found //should never happen but we must return something anyway return pTrack->GetEOS(); } #endif #if 0 bool Segment::SearchCues( long long time_ns, Track* pTrack, Cluster*& pCluster, const BlockEntry*& pBlockEntry, const CuePoint*& pCP, const CuePoint::TrackPosition*& pTP) { if (pTrack->GetType() != 1) //not video return false; //TODO: for now, just handle video stream if (m_pCues == NULL) return false; if (!m_pCues->Find(time_ns, pTrack, pCP, pTP)) return false; //weird assert(pCP); assert(pTP); assert(pTP->m_track == pTrack->GetNumber()); //We have the cue point and track position we want, //so we now need to search for the cluster having //the indicated position. return GetCluster(pCP, pTP, pCluster, pBlockEntry); } #endif const Tracks* Segment::GetTracks() const { return m_pTracks; } const SegmentInfo* Segment::GetInfo() const { return m_pInfo; } const Cues* Segment::GetCues() const { return m_pCues; } const Chapters* Segment::GetChapters() const { return m_pChapters; } const SeekHead* Segment::GetSeekHead() const { return m_pSeekHead; } long long Segment::GetDuration() const { assert(m_pInfo); return m_pInfo->GetDuration(); } Chapters::Chapters(Segment* pSegment, long long payload_start, long long payload_size, long long element_start, long long element_size) : m_pSegment(pSegment), m_start(payload_start), m_size(payload_size), m_element_start(element_start), m_element_size(element_size), m_editions(NULL), m_editions_size(0), m_editions_count(0) {} Chapters::~Chapters() { while (m_editions_count > 0) { Edition& e = m_editions[--m_editions_count]; e.Clear(); } } long Chapters::Parse() { IMkvReader* const pReader = m_pSegment->m_pReader; long long pos = m_start; // payload start const long long stop = pos + m_size; // payload stop while (pos < stop) { long long id, size; long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (size == 0) // weird continue; if (id == 0x05B9) { // EditionEntry ID status = ParseEdition(pos, size); if (status < 0) // error return status; } pos += size; assert(pos <= stop); } assert(pos == stop); return 0; } int Chapters::GetEditionCount() const { return m_editions_count; } const Chapters::Edition* Chapters::GetEdition(int idx) const { if (idx < 0) return NULL; if (idx >= m_editions_count) return NULL; return m_editions + idx; } bool Chapters::ExpandEditionsArray() { if (m_editions_size > m_editions_count) return true; // nothing else to do const int size = (m_editions_size == 0) ? 1 : 2 * m_editions_size; Edition* const editions = new (std::nothrow) Edition[size]; if (editions == NULL) return false; for (int idx = 0; idx < m_editions_count; ++idx) { m_editions[idx].ShallowCopy(editions[idx]); } delete[] m_editions; m_editions = editions; m_editions_size = size; return true; } long Chapters::ParseEdition(long long pos, long long size) { if (!ExpandEditionsArray()) return -1; Edition& e = m_editions[m_editions_count++]; e.Init(); return e.Parse(m_pSegment->m_pReader, pos, size); } Chapters::Edition::Edition() {} Chapters::Edition::~Edition() {} int Chapters::Edition::GetAtomCount() const { return m_atoms_count; } const Chapters::Atom* Chapters::Edition::GetAtom(int index) const { if (index < 0) return NULL; if (index >= m_atoms_count) return NULL; return m_atoms + index; } void Chapters::Edition::Init() { m_atoms = NULL; m_atoms_size = 0; m_atoms_count = 0; } void Chapters::Edition::ShallowCopy(Edition& rhs) const { rhs.m_atoms = m_atoms; rhs.m_atoms_size = m_atoms_size; rhs.m_atoms_count = m_atoms_count; } void Chapters::Edition::Clear() { while (m_atoms_count > 0) { Atom& a = m_atoms[--m_atoms_count]; a.Clear(); } delete[] m_atoms; m_atoms = NULL; m_atoms_size = 0; } long Chapters::Edition::Parse(IMkvReader* pReader, long long pos, long long size) { const long long stop = pos + size; while (pos < stop) { long long id, size; long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (size == 0) // weird continue; if (id == 0x36) { // Atom ID status = ParseAtom(pReader, pos, size); if (status < 0) // error return status; } pos += size; assert(pos <= stop); } assert(pos == stop); return 0; } long Chapters::Edition::ParseAtom(IMkvReader* pReader, long long pos, long long size) { if (!ExpandAtomsArray()) return -1; Atom& a = m_atoms[m_atoms_count++]; a.Init(); return a.Parse(pReader, pos, size); } bool Chapters::Edition::ExpandAtomsArray() { if (m_atoms_size > m_atoms_count) return true; // nothing else to do const int size = (m_atoms_size == 0) ? 1 : 2 * m_atoms_size; Atom* const atoms = new (std::nothrow) Atom[size]; if (atoms == NULL) return false; for (int idx = 0; idx < m_atoms_count; ++idx) { m_atoms[idx].ShallowCopy(atoms[idx]); } delete[] m_atoms; m_atoms = atoms; m_atoms_size = size; return true; } Chapters::Atom::Atom() {} Chapters::Atom::~Atom() {} unsigned long long Chapters::Atom::GetUID() const { return m_uid; } const char* Chapters::Atom::GetStringUID() const { return m_string_uid; } long long Chapters::Atom::GetStartTimecode() const { return m_start_timecode; } long long Chapters::Atom::GetStopTimecode() const { return m_stop_timecode; } long long Chapters::Atom::GetStartTime(const Chapters* pChapters) const { return GetTime(pChapters, m_start_timecode); } long long Chapters::Atom::GetStopTime(const Chapters* pChapters) const { return GetTime(pChapters, m_stop_timecode); } int Chapters::Atom::GetDisplayCount() const { return m_displays_count; } const Chapters::Display* Chapters::Atom::GetDisplay(int index) const { if (index < 0) return NULL; if (index >= m_displays_count) return NULL; return m_displays + index; } void Chapters::Atom::Init() { m_string_uid = NULL; m_uid = 0; m_start_timecode = -1; m_stop_timecode = -1; m_displays = NULL; m_displays_size = 0; m_displays_count = 0; } void Chapters::Atom::ShallowCopy(Atom& rhs) const { rhs.m_string_uid = m_string_uid; rhs.m_uid = m_uid; rhs.m_start_timecode = m_start_timecode; rhs.m_stop_timecode = m_stop_timecode; rhs.m_displays = m_displays; rhs.m_displays_size = m_displays_size; rhs.m_displays_count = m_displays_count; } void Chapters::Atom::Clear() { delete[] m_string_uid; m_string_uid = NULL; while (m_displays_count > 0) { Display& d = m_displays[--m_displays_count]; d.Clear(); } delete[] m_displays; m_displays = NULL; m_displays_size = 0; } long Chapters::Atom::Parse(IMkvReader* pReader, long long pos, long long size) { const long long stop = pos + size; while (pos < stop) { long long id, size; long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (size == 0) // weird continue; if (id == 0x00) { // Display ID status = ParseDisplay(pReader, pos, size); if (status < 0) // error return status; } else if (id == 0x1654) { // StringUID ID status = UnserializeString(pReader, pos, size, m_string_uid); if (status < 0) // error return status; } else if (id == 0x33C4) { // UID ID long long val; status = UnserializeInt(pReader, pos, size, val); if (val < 0) // error return status; m_uid = static_cast(val); } else if (id == 0x11) { // TimeStart ID const long long val = UnserializeUInt(pReader, pos, size); if (val < 0) // error return static_cast(val); m_start_timecode = val; } else if (id == 0x12) { // TimeEnd ID const long long val = UnserializeUInt(pReader, pos, size); if (val < 0) // error return static_cast(val); m_stop_timecode = val; } pos += size; assert(pos <= stop); } assert(pos == stop); return 0; } long long Chapters::Atom::GetTime(const Chapters* pChapters, long long timecode) { if (pChapters == NULL) return -1; Segment* const pSegment = pChapters->m_pSegment; if (pSegment == NULL) // weird return -1; const SegmentInfo* const pInfo = pSegment->GetInfo(); if (pInfo == NULL) return -1; const long long timecode_scale = pInfo->GetTimeCodeScale(); if (timecode_scale < 1) // weird return -1; if (timecode < 0) return -1; const long long result = timecode_scale * timecode; return result; } long Chapters::Atom::ParseDisplay(IMkvReader* pReader, long long pos, long long size) { if (!ExpandDisplaysArray()) return -1; Display& d = m_displays[m_displays_count++]; d.Init(); return d.Parse(pReader, pos, size); } bool Chapters::Atom::ExpandDisplaysArray() { if (m_displays_size > m_displays_count) return true; // nothing else to do const int size = (m_displays_size == 0) ? 1 : 2 * m_displays_size; Display* const displays = new (std::nothrow) Display[size]; if (displays == NULL) return false; for (int idx = 0; idx < m_displays_count; ++idx) { m_displays[idx].ShallowCopy(displays[idx]); } delete[] m_displays; m_displays = displays; m_displays_size = size; return true; } Chapters::Display::Display() {} Chapters::Display::~Display() {} const char* Chapters::Display::GetString() const { return m_string; } const char* Chapters::Display::GetLanguage() const { return m_language; } const char* Chapters::Display::GetCountry() const { return m_country; } void Chapters::Display::Init() { m_string = NULL; m_language = NULL; m_country = NULL; } void Chapters::Display::ShallowCopy(Display& rhs) const { rhs.m_string = m_string; rhs.m_language = m_language; rhs.m_country = m_country; } void Chapters::Display::Clear() { delete[] m_string; m_string = NULL; delete[] m_language; m_language = NULL; delete[] m_country; m_country = NULL; } long Chapters::Display::Parse(IMkvReader* pReader, long long pos, long long size) { const long long stop = pos + size; while (pos < stop) { long long id, size; long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (size == 0) // weird continue; if (id == 0x05) { // ChapterString ID status = UnserializeString(pReader, pos, size, m_string); if (status) return status; } else if (id == 0x037C) { // ChapterLanguage ID status = UnserializeString(pReader, pos, size, m_language); if (status) return status; } else if (id == 0x037E) { // ChapterCountry ID status = UnserializeString(pReader, pos, size, m_country); if (status) return status; } pos += size; assert(pos <= stop); } assert(pos == stop); return 0; } SegmentInfo::SegmentInfo(Segment* pSegment, long long start, long long size_, long long element_start, long long element_size) : m_pSegment(pSegment), m_start(start), m_size(size_), m_element_start(element_start), m_element_size(element_size), m_pMuxingAppAsUTF8(NULL), m_pWritingAppAsUTF8(NULL), m_pTitleAsUTF8(NULL) {} SegmentInfo::~SegmentInfo() { delete[] m_pMuxingAppAsUTF8; m_pMuxingAppAsUTF8 = NULL; delete[] m_pWritingAppAsUTF8; m_pWritingAppAsUTF8 = NULL; delete[] m_pTitleAsUTF8; m_pTitleAsUTF8 = NULL; } long SegmentInfo::Parse() { assert(m_pMuxingAppAsUTF8 == NULL); assert(m_pWritingAppAsUTF8 == NULL); assert(m_pTitleAsUTF8 == NULL); IMkvReader* const pReader = m_pSegment->m_pReader; long long pos = m_start; const long long stop = m_start + m_size; m_timecodeScale = 1000000; m_duration = -1; while (pos < stop) { long long id, size; const long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (id == 0x0AD7B1) { // Timecode Scale m_timecodeScale = UnserializeUInt(pReader, pos, size); if (m_timecodeScale <= 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x0489) { // Segment duration const long status = UnserializeFloat(pReader, pos, size, m_duration); if (status < 0) return status; if (m_duration < 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x0D80) { // MuxingApp const long status = UnserializeString(pReader, pos, size, m_pMuxingAppAsUTF8); if (status) return status; } else if (id == 0x1741) { // WritingApp const long status = UnserializeString(pReader, pos, size, m_pWritingAppAsUTF8); if (status) return status; } else if (id == 0x3BA9) { // Title const long status = UnserializeString(pReader, pos, size, m_pTitleAsUTF8); if (status) return status; } pos += size; assert(pos <= stop); } assert(pos == stop); return 0; } long long SegmentInfo::GetTimeCodeScale() const { return m_timecodeScale; } long long SegmentInfo::GetDuration() const { if (m_duration < 0) return -1; assert(m_timecodeScale >= 1); const double dd = double(m_duration) * double(m_timecodeScale); const long long d = static_cast(dd); return d; } const char* SegmentInfo::GetMuxingAppAsUTF8() const { return m_pMuxingAppAsUTF8; } const char* SegmentInfo::GetWritingAppAsUTF8() const { return m_pWritingAppAsUTF8; } const char* SegmentInfo::GetTitleAsUTF8() const { return m_pTitleAsUTF8; } /////////////////////////////////////////////////////////////// // ContentEncoding element ContentEncoding::ContentCompression::ContentCompression() : algo(0), settings(NULL), settings_len(0) {} ContentEncoding::ContentCompression::~ContentCompression() { delete[] settings; } ContentEncoding::ContentEncryption::ContentEncryption() : algo(0), key_id(NULL), key_id_len(0), signature(NULL), signature_len(0), sig_key_id(NULL), sig_key_id_len(0), sig_algo(0), sig_hash_algo(0) {} ContentEncoding::ContentEncryption::~ContentEncryption() { delete[] key_id; delete[] signature; delete[] sig_key_id; } ContentEncoding::ContentEncoding() : compression_entries_(NULL), compression_entries_end_(NULL), encryption_entries_(NULL), encryption_entries_end_(NULL), encoding_order_(0), encoding_scope_(1), encoding_type_(0) {} ContentEncoding::~ContentEncoding() { ContentCompression** comp_i = compression_entries_; ContentCompression** const comp_j = compression_entries_end_; while (comp_i != comp_j) { ContentCompression* const comp = *comp_i++; delete comp; } delete[] compression_entries_; ContentEncryption** enc_i = encryption_entries_; ContentEncryption** const enc_j = encryption_entries_end_; while (enc_i != enc_j) { ContentEncryption* const enc = *enc_i++; delete enc; } delete[] encryption_entries_; } const ContentEncoding::ContentCompression* ContentEncoding::GetCompressionByIndex(unsigned long idx) const { const ptrdiff_t count = compression_entries_end_ - compression_entries_; assert(count >= 0); if (idx >= static_cast(count)) return NULL; return compression_entries_[idx]; } unsigned long ContentEncoding::GetCompressionCount() const { const ptrdiff_t count = compression_entries_end_ - compression_entries_; assert(count >= 0); return static_cast(count); } const ContentEncoding::ContentEncryption* ContentEncoding::GetEncryptionByIndex( unsigned long idx) const { const ptrdiff_t count = encryption_entries_end_ - encryption_entries_; assert(count >= 0); if (idx >= static_cast(count)) return NULL; return encryption_entries_[idx]; } unsigned long ContentEncoding::GetEncryptionCount() const { const ptrdiff_t count = encryption_entries_end_ - encryption_entries_; assert(count >= 0); return static_cast(count); } long ContentEncoding::ParseContentEncAESSettingsEntry( long long start, long long size, IMkvReader* pReader, ContentEncAESSettings* aes) { assert(pReader); assert(aes); long long pos = start; const long long stop = start + size; while (pos < stop) { long long id, size; const long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (id == 0x7E8) { // AESSettingsCipherMode aes->cipher_mode = UnserializeUInt(pReader, pos, size); if (aes->cipher_mode != 1) return E_FILE_FORMAT_INVALID; } pos += size; // consume payload assert(pos <= stop); } return 0; } long ContentEncoding::ParseContentEncodingEntry(long long start, long long size, IMkvReader* pReader) { assert(pReader); long long pos = start; const long long stop = start + size; // Count ContentCompression and ContentEncryption elements. int compression_count = 0; int encryption_count = 0; while (pos < stop) { long long id, size; const long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (id == 0x1034) // ContentCompression ID ++compression_count; if (id == 0x1035) // ContentEncryption ID ++encryption_count; pos += size; // consume payload assert(pos <= stop); } if (compression_count <= 0 && encryption_count <= 0) return -1; if (compression_count > 0) { compression_entries_ = new (std::nothrow) ContentCompression* [compression_count]; if (!compression_entries_) return -1; compression_entries_end_ = compression_entries_; } if (encryption_count > 0) { encryption_entries_ = new (std::nothrow) ContentEncryption* [encryption_count]; if (!encryption_entries_) { delete[] compression_entries_; return -1; } encryption_entries_end_ = encryption_entries_; } pos = start; while (pos < stop) { long long id, size; long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (id == 0x1031) { // ContentEncodingOrder encoding_order_ = UnserializeUInt(pReader, pos, size); } else if (id == 0x1032) { // ContentEncodingScope encoding_scope_ = UnserializeUInt(pReader, pos, size); if (encoding_scope_ < 1) return -1; } else if (id == 0x1033) { // ContentEncodingType encoding_type_ = UnserializeUInt(pReader, pos, size); } else if (id == 0x1034) { // ContentCompression ID ContentCompression* const compression = new (std::nothrow) ContentCompression(); if (!compression) return -1; status = ParseCompressionEntry(pos, size, pReader, compression); if (status) { delete compression; return status; } *compression_entries_end_++ = compression; } else if (id == 0x1035) { // ContentEncryption ID ContentEncryption* const encryption = new (std::nothrow) ContentEncryption(); if (!encryption) return -1; status = ParseEncryptionEntry(pos, size, pReader, encryption); if (status) { delete encryption; return status; } *encryption_entries_end_++ = encryption; } pos += size; // consume payload assert(pos <= stop); } assert(pos == stop); return 0; } long ContentEncoding::ParseCompressionEntry(long long start, long long size, IMkvReader* pReader, ContentCompression* compression) { assert(pReader); assert(compression); long long pos = start; const long long stop = start + size; bool valid = false; while (pos < stop) { long long id, size; const long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (id == 0x254) { // ContentCompAlgo long long algo = UnserializeUInt(pReader, pos, size); if (algo < 0) return E_FILE_FORMAT_INVALID; compression->algo = algo; valid = true; } else if (id == 0x255) { // ContentCompSettings if (size <= 0) return E_FILE_FORMAT_INVALID; const size_t buflen = static_cast(size); typedef unsigned char* buf_t; const buf_t buf = new (std::nothrow) unsigned char[buflen]; if (buf == NULL) return -1; const int read_status = pReader->Read(pos, static_cast(buflen), buf); if (read_status) { delete[] buf; return status; } compression->settings = buf; compression->settings_len = buflen; } pos += size; // consume payload assert(pos <= stop); } // ContentCompAlgo is mandatory if (!valid) return E_FILE_FORMAT_INVALID; return 0; } long ContentEncoding::ParseEncryptionEntry(long long start, long long size, IMkvReader* pReader, ContentEncryption* encryption) { assert(pReader); assert(encryption); long long pos = start; const long long stop = start + size; while (pos < stop) { long long id, size; const long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (id == 0x7E1) { // ContentEncAlgo encryption->algo = UnserializeUInt(pReader, pos, size); if (encryption->algo != 5) return E_FILE_FORMAT_INVALID; } else if (id == 0x7E2) { // ContentEncKeyID delete[] encryption -> key_id; encryption->key_id = NULL; encryption->key_id_len = 0; if (size <= 0) return E_FILE_FORMAT_INVALID; const size_t buflen = static_cast(size); typedef unsigned char* buf_t; const buf_t buf = new (std::nothrow) unsigned char[buflen]; if (buf == NULL) return -1; const int read_status = pReader->Read(pos, static_cast(buflen), buf); if (read_status) { delete[] buf; return status; } encryption->key_id = buf; encryption->key_id_len = buflen; } else if (id == 0x7E3) { // ContentSignature delete[] encryption -> signature; encryption->signature = NULL; encryption->signature_len = 0; if (size <= 0) return E_FILE_FORMAT_INVALID; const size_t buflen = static_cast(size); typedef unsigned char* buf_t; const buf_t buf = new (std::nothrow) unsigned char[buflen]; if (buf == NULL) return -1; const int read_status = pReader->Read(pos, static_cast(buflen), buf); if (read_status) { delete[] buf; return status; } encryption->signature = buf; encryption->signature_len = buflen; } else if (id == 0x7E4) { // ContentSigKeyID delete[] encryption -> sig_key_id; encryption->sig_key_id = NULL; encryption->sig_key_id_len = 0; if (size <= 0) return E_FILE_FORMAT_INVALID; const size_t buflen = static_cast(size); typedef unsigned char* buf_t; const buf_t buf = new (std::nothrow) unsigned char[buflen]; if (buf == NULL) return -1; const int read_status = pReader->Read(pos, static_cast(buflen), buf); if (read_status) { delete[] buf; return status; } encryption->sig_key_id = buf; encryption->sig_key_id_len = buflen; } else if (id == 0x7E5) { // ContentSigAlgo encryption->sig_algo = UnserializeUInt(pReader, pos, size); } else if (id == 0x7E6) { // ContentSigHashAlgo encryption->sig_hash_algo = UnserializeUInt(pReader, pos, size); } else if (id == 0x7E7) { // ContentEncAESSettings const long status = ParseContentEncAESSettingsEntry( pos, size, pReader, &encryption->aes_settings); if (status) return status; } pos += size; // consume payload assert(pos <= stop); } return 0; } Track::Track(Segment* pSegment, long long element_start, long long element_size) : m_pSegment(pSegment), m_element_start(element_start), m_element_size(element_size), content_encoding_entries_(NULL), content_encoding_entries_end_(NULL) {} Track::~Track() { Info& info = const_cast(m_info); info.Clear(); ContentEncoding** i = content_encoding_entries_; ContentEncoding** const j = content_encoding_entries_end_; while (i != j) { ContentEncoding* const encoding = *i++; delete encoding; } delete[] content_encoding_entries_; } long Track::Create(Segment* pSegment, const Info& info, long long element_start, long long element_size, Track*& pResult) { if (pResult) return -1; Track* const pTrack = new (std::nothrow) Track(pSegment, element_start, element_size); if (pTrack == NULL) return -1; // generic error const int status = info.Copy(pTrack->m_info); if (status) { // error delete pTrack; return status; } pResult = pTrack; return 0; // success } Track::Info::Info() : uid(0), defaultDuration(0), codecDelay(0), seekPreRoll(0), nameAsUTF8(NULL), language(NULL), codecId(NULL), codecNameAsUTF8(NULL), codecPrivate(NULL), codecPrivateSize(0), lacing(false) {} Track::Info::~Info() { Clear(); } void Track::Info::Clear() { delete[] nameAsUTF8; nameAsUTF8 = NULL; delete[] language; language = NULL; delete[] codecId; codecId = NULL; delete[] codecPrivate; codecPrivate = NULL; codecPrivateSize = 0; delete[] codecNameAsUTF8; codecNameAsUTF8 = NULL; } int Track::Info::CopyStr(char* Info::*str, Info& dst_) const { if (str == static_cast(NULL)) return -1; char*& dst = dst_.*str; if (dst) // should be NULL already return -1; const char* const src = this->*str; if (src == NULL) return 0; const size_t len = strlen(src); dst = new (std::nothrow) char[len + 1]; if (dst == NULL) return -1; strcpy(dst, src); return 0; } int Track::Info::Copy(Info& dst) const { if (&dst == this) return 0; dst.type = type; dst.number = number; dst.defaultDuration = defaultDuration; dst.codecDelay = codecDelay; dst.seekPreRoll = seekPreRoll; dst.uid = uid; dst.lacing = lacing; dst.settings = settings; // We now copy the string member variables from src to dst. // This involves memory allocation so in principle the operation // can fail (indeed, that's why we have Info::Copy), so we must // report this to the caller. An error return from this function // therefore implies that the copy was only partially successful. if (int status = CopyStr(&Info::nameAsUTF8, dst)) return status; if (int status = CopyStr(&Info::language, dst)) return status; if (int status = CopyStr(&Info::codecId, dst)) return status; if (int status = CopyStr(&Info::codecNameAsUTF8, dst)) return status; if (codecPrivateSize > 0) { if (codecPrivate == NULL) return -1; if (dst.codecPrivate) return -1; if (dst.codecPrivateSize != 0) return -1; dst.codecPrivate = new (std::nothrow) unsigned char[codecPrivateSize]; if (dst.codecPrivate == NULL) return -1; memcpy(dst.codecPrivate, codecPrivate, codecPrivateSize); dst.codecPrivateSize = codecPrivateSize; } return 0; } const BlockEntry* Track::GetEOS() const { return &m_eos; } long Track::GetType() const { return m_info.type; } long Track::GetNumber() const { return m_info.number; } unsigned long long Track::GetUid() const { return m_info.uid; } const char* Track::GetNameAsUTF8() const { return m_info.nameAsUTF8; } const char* Track::GetLanguage() const { return m_info.language; } const char* Track::GetCodecNameAsUTF8() const { return m_info.codecNameAsUTF8; } const char* Track::GetCodecId() const { return m_info.codecId; } const unsigned char* Track::GetCodecPrivate(size_t& size) const { size = m_info.codecPrivateSize; return m_info.codecPrivate; } bool Track::GetLacing() const { return m_info.lacing; } unsigned long long Track::GetDefaultDuration() const { return m_info.defaultDuration; } unsigned long long Track::GetCodecDelay() const { return m_info.codecDelay; } unsigned long long Track::GetSeekPreRoll() const { return m_info.seekPreRoll; } long Track::GetFirst(const BlockEntry*& pBlockEntry) const { const Cluster* pCluster = m_pSegment->GetFirst(); for (int i = 0;;) { if (pCluster == NULL) { pBlockEntry = GetEOS(); return 1; } if (pCluster->EOS()) { #if 0 if (m_pSegment->Unparsed() <= 0) { //all clusters have been loaded pBlockEntry = GetEOS(); return 1; } #else if (m_pSegment->DoneParsing()) { pBlockEntry = GetEOS(); return 1; } #endif pBlockEntry = 0; return E_BUFFER_NOT_FULL; } long status = pCluster->GetFirst(pBlockEntry); if (status < 0) // error return status; if (pBlockEntry == 0) { // empty cluster pCluster = m_pSegment->GetNext(pCluster); continue; } for (;;) { const Block* const pBlock = pBlockEntry->GetBlock(); assert(pBlock); const long long tn = pBlock->GetTrackNumber(); if ((tn == m_info.number) && VetEntry(pBlockEntry)) return 0; const BlockEntry* pNextEntry; status = pCluster->GetNext(pBlockEntry, pNextEntry); if (status < 0) // error return status; if (pNextEntry == 0) break; pBlockEntry = pNextEntry; } ++i; if (i >= 100) break; pCluster = m_pSegment->GetNext(pCluster); } // NOTE: if we get here, it means that we didn't find a block with // a matching track number. We interpret that as an error (which // might be too conservative). pBlockEntry = GetEOS(); // so we can return a non-NULL value return 1; } long Track::GetNext(const BlockEntry* pCurrEntry, const BlockEntry*& pNextEntry) const { assert(pCurrEntry); assert(!pCurrEntry->EOS()); //? const Block* const pCurrBlock = pCurrEntry->GetBlock(); assert(pCurrBlock && pCurrBlock->GetTrackNumber() == m_info.number); if (!pCurrBlock || pCurrBlock->GetTrackNumber() != m_info.number) return -1; const Cluster* pCluster = pCurrEntry->GetCluster(); assert(pCluster); assert(!pCluster->EOS()); long status = pCluster->GetNext(pCurrEntry, pNextEntry); if (status < 0) // error return status; for (int i = 0;;) { while (pNextEntry) { const Block* const pNextBlock = pNextEntry->GetBlock(); assert(pNextBlock); if (pNextBlock->GetTrackNumber() == m_info.number) return 0; pCurrEntry = pNextEntry; status = pCluster->GetNext(pCurrEntry, pNextEntry); if (status < 0) // error return status; } pCluster = m_pSegment->GetNext(pCluster); if (pCluster == NULL) { pNextEntry = GetEOS(); return 1; } if (pCluster->EOS()) { #if 0 if (m_pSegment->Unparsed() <= 0) //all clusters have been loaded { pNextEntry = GetEOS(); return 1; } #else if (m_pSegment->DoneParsing()) { pNextEntry = GetEOS(); return 1; } #endif // TODO: there is a potential O(n^2) problem here: we tell the // caller to (pre)load another cluster, which he does, but then he // calls GetNext again, which repeats the same search. This is // a pathological case, since the only way it can happen is if // there exists a long sequence of clusters none of which contain a // block from this track. One way around this problem is for the // caller to be smarter when he loads another cluster: don't call // us back until you have a cluster that contains a block from this // track. (Of course, that's not cheap either, since our caller // would have to scan the each cluster as it's loaded, so that // would just push back the problem.) pNextEntry = NULL; return E_BUFFER_NOT_FULL; } status = pCluster->GetFirst(pNextEntry); if (status < 0) // error return status; if (pNextEntry == NULL) // empty cluster continue; ++i; if (i >= 100) break; } // NOTE: if we get here, it means that we didn't find a block with // a matching track number after lots of searching, so we give // up trying. pNextEntry = GetEOS(); // so we can return a non-NULL value return 1; } bool Track::VetEntry(const BlockEntry* pBlockEntry) const { assert(pBlockEntry); const Block* const pBlock = pBlockEntry->GetBlock(); assert(pBlock); assert(pBlock->GetTrackNumber() == m_info.number); if (!pBlock || pBlock->GetTrackNumber() != m_info.number) return false; // This function is used during a seek to determine whether the // frame is a valid seek target. This default function simply // returns true, which means all frames are valid seek targets. // It gets overridden by the VideoTrack class, because only video // keyframes can be used as seek target. return true; } long Track::Seek(long long time_ns, const BlockEntry*& pResult) const { const long status = GetFirst(pResult); if (status < 0) // buffer underflow, etc return status; assert(pResult); if (pResult->EOS()) return 0; const Cluster* pCluster = pResult->GetCluster(); assert(pCluster); assert(pCluster->GetIndex() >= 0); if (time_ns <= pResult->GetBlock()->GetTime(pCluster)) return 0; Cluster** const clusters = m_pSegment->m_clusters; assert(clusters); const long count = m_pSegment->GetCount(); // loaded only, not preloaded assert(count > 0); Cluster** const i = clusters + pCluster->GetIndex(); assert(i); assert(*i == pCluster); assert(pCluster->GetTime() <= time_ns); Cluster** const j = clusters + count; Cluster** lo = i; Cluster** hi = j; while (lo < hi) { // INVARIANT: //[i, lo) <= time_ns //[lo, hi) ? //[hi, j) > time_ns Cluster** const mid = lo + (hi - lo) / 2; assert(mid < hi); pCluster = *mid; assert(pCluster); assert(pCluster->GetIndex() >= 0); assert(pCluster->GetIndex() == long(mid - m_pSegment->m_clusters)); const long long t = pCluster->GetTime(); if (t <= time_ns) lo = mid + 1; else hi = mid; assert(lo <= hi); } assert(lo == hi); assert(lo > i); assert(lo <= j); while (lo > i) { pCluster = *--lo; assert(pCluster); assert(pCluster->GetTime() <= time_ns); pResult = pCluster->GetEntry(this); if ((pResult != 0) && !pResult->EOS()) return 0; // landed on empty cluster (no entries) } pResult = GetEOS(); // weird return 0; } const ContentEncoding* Track::GetContentEncodingByIndex( unsigned long idx) const { const ptrdiff_t count = content_encoding_entries_end_ - content_encoding_entries_; assert(count >= 0); if (idx >= static_cast(count)) return NULL; return content_encoding_entries_[idx]; } unsigned long Track::GetContentEncodingCount() const { const ptrdiff_t count = content_encoding_entries_end_ - content_encoding_entries_; assert(count >= 0); return static_cast(count); } long Track::ParseContentEncodingsEntry(long long start, long long size) { IMkvReader* const pReader = m_pSegment->m_pReader; assert(pReader); long long pos = start; const long long stop = start + size; // Count ContentEncoding elements. int count = 0; while (pos < stop) { long long id, size; const long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; // pos now designates start of element if (id == 0x2240) // ContentEncoding ID ++count; pos += size; // consume payload assert(pos <= stop); } if (count <= 0) return -1; content_encoding_entries_ = new (std::nothrow) ContentEncoding* [count]; if (!content_encoding_entries_) return -1; content_encoding_entries_end_ = content_encoding_entries_; pos = start; while (pos < stop) { long long id, size; long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; // pos now designates start of element if (id == 0x2240) { // ContentEncoding ID ContentEncoding* const content_encoding = new (std::nothrow) ContentEncoding(); if (!content_encoding) return -1; status = content_encoding->ParseContentEncodingEntry(pos, size, pReader); if (status) { delete content_encoding; return status; } *content_encoding_entries_end_++ = content_encoding; } pos += size; // consume payload assert(pos <= stop); } assert(pos == stop); return 0; } Track::EOSBlock::EOSBlock() : BlockEntry(NULL, LONG_MIN) {} BlockEntry::Kind Track::EOSBlock::GetKind() const { return kBlockEOS; } const Block* Track::EOSBlock::GetBlock() const { return NULL; } VideoTrack::VideoTrack(Segment* pSegment, long long element_start, long long element_size) : Track(pSegment, element_start, element_size) {} long VideoTrack::Parse(Segment* pSegment, const Info& info, long long element_start, long long element_size, VideoTrack*& pResult) { if (pResult) return -1; if (info.type != Track::kVideo) return -1; long long width = 0; long long height = 0; double rate = 0.0; IMkvReader* const pReader = pSegment->m_pReader; const Settings& s = info.settings; assert(s.start >= 0); assert(s.size >= 0); long long pos = s.start; assert(pos >= 0); const long long stop = pos + s.size; while (pos < stop) { long long id, size; const long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (id == 0x30) { // pixel width width = UnserializeUInt(pReader, pos, size); if (width <= 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x3A) { // pixel height height = UnserializeUInt(pReader, pos, size); if (height <= 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x0383E3) { // frame rate const long status = UnserializeFloat(pReader, pos, size, rate); if (status < 0) return status; if (rate <= 0) return E_FILE_FORMAT_INVALID; } pos += size; // consume payload assert(pos <= stop); } assert(pos == stop); VideoTrack* const pTrack = new (std::nothrow) VideoTrack(pSegment, element_start, element_size); if (pTrack == NULL) return -1; // generic error const int status = info.Copy(pTrack->m_info); if (status) { // error delete pTrack; return status; } pTrack->m_width = width; pTrack->m_height = height; pTrack->m_rate = rate; pResult = pTrack; return 0; // success } bool VideoTrack::VetEntry(const BlockEntry* pBlockEntry) const { return Track::VetEntry(pBlockEntry) && pBlockEntry->GetBlock()->IsKey(); } long VideoTrack::Seek(long long time_ns, const BlockEntry*& pResult) const { const long status = GetFirst(pResult); if (status < 0) // buffer underflow, etc return status; assert(pResult); if (pResult->EOS()) return 0; const Cluster* pCluster = pResult->GetCluster(); assert(pCluster); assert(pCluster->GetIndex() >= 0); if (time_ns <= pResult->GetBlock()->GetTime(pCluster)) return 0; Cluster** const clusters = m_pSegment->m_clusters; assert(clusters); const long count = m_pSegment->GetCount(); // loaded only, not pre-loaded assert(count > 0); Cluster** const i = clusters + pCluster->GetIndex(); assert(i); assert(*i == pCluster); assert(pCluster->GetTime() <= time_ns); Cluster** const j = clusters + count; Cluster** lo = i; Cluster** hi = j; while (lo < hi) { // INVARIANT: //[i, lo) <= time_ns //[lo, hi) ? //[hi, j) > time_ns Cluster** const mid = lo + (hi - lo) / 2; assert(mid < hi); pCluster = *mid; assert(pCluster); assert(pCluster->GetIndex() >= 0); assert(pCluster->GetIndex() == long(mid - m_pSegment->m_clusters)); const long long t = pCluster->GetTime(); if (t <= time_ns) lo = mid + 1; else hi = mid; assert(lo <= hi); } assert(lo == hi); assert(lo > i); assert(lo <= j); pCluster = *--lo; assert(pCluster); assert(pCluster->GetTime() <= time_ns); pResult = pCluster->GetEntry(this, time_ns); if ((pResult != 0) && !pResult->EOS()) // found a keyframe return 0; while (lo != i) { pCluster = *--lo; assert(pCluster); assert(pCluster->GetTime() <= time_ns); #if 0 //TODO: //We need to handle the case when a cluster //contains multiple keyframes. Simply returning //the largest keyframe on the cluster isn't //good enough. pResult = pCluster->GetMaxKey(this); #else pResult = pCluster->GetEntry(this, time_ns); #endif if ((pResult != 0) && !pResult->EOS()) return 0; } // weird: we're on the first cluster, but no keyframe found // should never happen but we must return something anyway pResult = GetEOS(); return 0; } long long VideoTrack::GetWidth() const { return m_width; } long long VideoTrack::GetHeight() const { return m_height; } double VideoTrack::GetFrameRate() const { return m_rate; } AudioTrack::AudioTrack(Segment* pSegment, long long element_start, long long element_size) : Track(pSegment, element_start, element_size) {} long AudioTrack::Parse(Segment* pSegment, const Info& info, long long element_start, long long element_size, AudioTrack*& pResult) { if (pResult) return -1; if (info.type != Track::kAudio) return -1; IMkvReader* const pReader = pSegment->m_pReader; const Settings& s = info.settings; assert(s.start >= 0); assert(s.size >= 0); long long pos = s.start; assert(pos >= 0); const long long stop = pos + s.size; double rate = 8000.0; // MKV default long long channels = 1; long long bit_depth = 0; while (pos < stop) { long long id, size; long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (id == 0x35) { // Sample Rate status = UnserializeFloat(pReader, pos, size, rate); if (status < 0) return status; if (rate <= 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x1F) { // Channel Count channels = UnserializeUInt(pReader, pos, size); if (channels <= 0) return E_FILE_FORMAT_INVALID; } else if (id == 0x2264) { // Bit Depth bit_depth = UnserializeUInt(pReader, pos, size); if (bit_depth <= 0) return E_FILE_FORMAT_INVALID; } pos += size; // consume payload assert(pos <= stop); } assert(pos == stop); AudioTrack* const pTrack = new (std::nothrow) AudioTrack(pSegment, element_start, element_size); if (pTrack == NULL) return -1; // generic error const int status = info.Copy(pTrack->m_info); if (status) { delete pTrack; return status; } pTrack->m_rate = rate; pTrack->m_channels = channels; pTrack->m_bitDepth = bit_depth; pResult = pTrack; return 0; // success } double AudioTrack::GetSamplingRate() const { return m_rate; } long long AudioTrack::GetChannels() const { return m_channels; } long long AudioTrack::GetBitDepth() const { return m_bitDepth; } Tracks::Tracks(Segment* pSegment, long long start, long long size_, long long element_start, long long element_size) : m_pSegment(pSegment), m_start(start), m_size(size_), m_element_start(element_start), m_element_size(element_size), m_trackEntries(NULL), m_trackEntriesEnd(NULL) {} long Tracks::Parse() { assert(m_trackEntries == NULL); assert(m_trackEntriesEnd == NULL); const long long stop = m_start + m_size; IMkvReader* const pReader = m_pSegment->m_pReader; int count = 0; long long pos = m_start; while (pos < stop) { long long id, size; const long status = ParseElementHeader(pReader, pos, stop, id, size); if (status < 0) // error return status; if (size == 0) // weird continue; if (id == 0x2E) // TrackEntry ID ++count; pos += size; // consume payload assert(pos <= stop); } assert(pos == stop); if (count <= 0) return 0; // success m_trackEntries = new (std::nothrow) Track* [count]; if (m_trackEntries == NULL) return -1; m_trackEntriesEnd = m_trackEntries; pos = m_start; while (pos < stop) { const long long element_start = pos; long long id, payload_size; const long status = ParseElementHeader(pReader, pos, stop, id, payload_size); if (status < 0) // error return status; if (payload_size == 0) // weird continue; const long long payload_stop = pos + payload_size; assert(payload_stop <= stop); // checked in ParseElement const long long element_size = payload_stop - element_start; if (id == 0x2E) { // TrackEntry ID Track*& pTrack = *m_trackEntriesEnd; pTrack = NULL; const long status = ParseTrackEntry(pos, payload_size, element_start, element_size, pTrack); if (status) return status; if (pTrack) ++m_trackEntriesEnd; } pos = payload_stop; assert(pos <= stop); } assert(pos == stop); return 0; // success } unsigned long Tracks::GetTracksCount() const { const ptrdiff_t result = m_trackEntriesEnd - m_trackEntries; assert(result >= 0); return static_cast(result); } long Tracks::ParseTrackEntry(long long track_start, long long track_size, long long element_start, long long element_size, Track*& pResult) const { if (pResult) return -1; IMkvReader* const pReader = m_pSegment->m_pReader; long long pos = track_start; const long long track_stop = track_start + track_size; Track::Info info; info.type = 0; info.number = 0; info.uid = 0; info.defaultDuration = 0; Track::Settings v; v.start = -1; v.size = -1; Track::Settings a; a.start = -1; a.size = -1; Track::Settings e; // content_encodings_settings; e.start = -1; e.size = -1; long long lacing = 1; // default is true while (pos < track_stop) { long long id, size; const long status = ParseElementHeader(pReader, pos, track_stop, id, size); if (status < 0) // error return status; if (size < 0) return E_FILE_FORMAT_INVALID; const long long start = pos; if (id == 0x60) { // VideoSettings ID v.start = start; v.size = size; } else if (id == 0x61) { // AudioSettings ID a.start = start; a.size = size; } else if (id == 0x2D80) { // ContentEncodings ID e.start = start; e.size = size; } else if (id == 0x33C5) { // Track UID if (size > 8) return E_FILE_FORMAT_INVALID; info.uid = 0; long long pos_ = start; const long long pos_end = start + size; while (pos_ != pos_end) { unsigned char b; const int status = pReader->Read(pos_, 1, &b); if (status) return status; info.uid <<= 8; info.uid |= b; ++pos_; } } else if (id == 0x57) { // Track Number const long long num = UnserializeUInt(pReader, pos, size); if ((num <= 0) || (num > 127)) return E_FILE_FORMAT_INVALID; info.number = static_cast(num); } else if (id == 0x03) { // Track Type const long long type = UnserializeUInt(pReader, pos, size); if ((type <= 0) || (type > 254)) return E_FILE_FORMAT_INVALID; info.type = static_cast(type); } else if (id == 0x136E) { // Track Name const long status = UnserializeString(pReader, pos, size, info.nameAsUTF8); if (status) return status; } else if (id == 0x02B59C) { // Track Language const long status = UnserializeString(pReader, pos, size, info.language); if (status) return status; } else if (id == 0x03E383) { // Default Duration const long long duration = UnserializeUInt(pReader, pos, size); if (duration < 0) return E_FILE_FORMAT_INVALID; info.defaultDuration = static_cast(duration); } else if (id == 0x06) { // CodecID const long status = UnserializeString(pReader, pos, size, info.codecId); if (status) return status; } else if (id == 0x1C) { // lacing lacing = UnserializeUInt(pReader, pos, size); if ((lacing < 0) || (lacing > 1)) return E_FILE_FORMAT_INVALID; } else if (id == 0x23A2) { // Codec Private delete[] info.codecPrivate; info.codecPrivate = NULL; info.codecPrivateSize = 0; const size_t buflen = static_cast(size); if (buflen) { typedef unsigned char* buf_t; const buf_t buf = new (std::nothrow) unsigned char[buflen]; if (buf == NULL) return -1; const int status = pReader->Read(pos, static_cast(buflen), buf); if (status) { delete[] buf; return status; } info.codecPrivate = buf; info.codecPrivateSize = buflen; } } else if (id == 0x058688) { // Codec Name const long status = UnserializeString(pReader, pos, size, info.codecNameAsUTF8); if (status) return status; } else if (id == 0x16AA) { // Codec Delay info.codecDelay = UnserializeUInt(pReader, pos, size); } else if (id == 0x16BB) { // Seek Pre Roll info.seekPreRoll = UnserializeUInt(pReader, pos, size); } pos += size; // consume payload assert(pos <= track_stop); } assert(pos == track_stop); if (info.number <= 0) // not specified return E_FILE_FORMAT_INVALID; if (GetTrackByNumber(info.number)) return E_FILE_FORMAT_INVALID; if (info.type <= 0) // not specified return E_FILE_FORMAT_INVALID; info.lacing = (lacing > 0) ? true : false; if (info.type == Track::kVideo) { if (v.start < 0) return E_FILE_FORMAT_INVALID; if (a.start >= 0) return E_FILE_FORMAT_INVALID; info.settings = v; VideoTrack* pTrack = NULL; const long status = VideoTrack::Parse(m_pSegment, info, element_start, element_size, pTrack); if (status) return status; pResult = pTrack; assert(pResult); if (e.start >= 0) pResult->ParseContentEncodingsEntry(e.start, e.size); } else if (info.type == Track::kAudio) { if (a.start < 0) return E_FILE_FORMAT_INVALID; if (v.start >= 0) return E_FILE_FORMAT_INVALID; info.settings = a; AudioTrack* pTrack = NULL; const long status = AudioTrack::Parse(m_pSegment, info, element_start, element_size, pTrack); if (status) return status; pResult = pTrack; assert(pResult); if (e.start >= 0) pResult->ParseContentEncodingsEntry(e.start, e.size); } else { // neither video nor audio - probably metadata or subtitles if (a.start >= 0) return E_FILE_FORMAT_INVALID; if (v.start >= 0) return E_FILE_FORMAT_INVALID; if (e.start >= 0) return E_FILE_FORMAT_INVALID; info.settings.start = -1; info.settings.size = 0; Track* pTrack = NULL; const long status = Track::Create(m_pSegment, info, element_start, element_size, pTrack); if (status) return status; pResult = pTrack; assert(pResult); } return 0; // success } Tracks::~Tracks() { Track** i = m_trackEntries; Track** const j = m_trackEntriesEnd; while (i != j) { Track* const pTrack = *i++; delete pTrack; } delete[] m_trackEntries; } const Track* Tracks::GetTrackByNumber(long tn) const { if (tn < 0) return NULL; Track** i = m_trackEntries; Track** const j = m_trackEntriesEnd; while (i != j) { Track* const pTrack = *i++; if (pTrack == NULL) continue; if (tn == pTrack->GetNumber()) return pTrack; } return NULL; // not found } const Track* Tracks::GetTrackByIndex(unsigned long idx) const { const ptrdiff_t count = m_trackEntriesEnd - m_trackEntries; if (idx >= static_cast(count)) return NULL; return m_trackEntries[idx]; } #if 0 long long Cluster::Unparsed() const { if (m_timecode < 0) //not even partially loaded return LLONG_MAX; assert(m_pos >= m_element_start); //assert(m_element_size > m_size); const long long element_stop = m_element_start + m_element_size; assert(m_pos <= element_stop); const long long result = element_stop - m_pos; assert(result >= 0); return result; } #endif long Cluster::Load(long long& pos, long& len) const { assert(m_pSegment); assert(m_pos >= m_element_start); if (m_timecode >= 0) // at least partially loaded return 0; assert(m_pos == m_element_start); assert(m_element_size < 0); IMkvReader* const pReader = m_pSegment->m_pReader; long long total, avail; const int status = pReader->Length(&total, &avail); if (status < 0) // error return status; assert((total < 0) || (avail <= total)); assert((total < 0) || (m_pos <= total)); // TODO: verify this pos = m_pos; long long cluster_size = -1; { if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(pReader, pos, len); if (result < 0) // error or underflow return static_cast(result); if (result > 0) // underflow (weird) return E_BUFFER_NOT_FULL; // if ((pos + len) > segment_stop) // return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long id_ = ReadUInt(pReader, pos, len); if (id_ < 0) // error return static_cast(id_); if (id_ != 0x0F43B675) // Cluster ID return E_FILE_FORMAT_INVALID; pos += len; // consume id // read cluster size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; // if ((pos + len) > segment_stop) // return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(pReader, pos, len); if (size < 0) // error return static_cast(cluster_size); if (size == 0) return E_FILE_FORMAT_INVALID; // TODO: verify this pos += len; // consume length of size of element const long long unknown_size = (1LL << (7 * len)) - 1; if (size != unknown_size) cluster_size = size; } // pos points to start of payload #if 0 len = static_cast(size_); if (cluster_stop > avail) return E_BUFFER_NOT_FULL; #endif long long timecode = -1; long long new_pos = -1; bool bBlock = false; long long cluster_stop = (cluster_size < 0) ? -1 : pos + cluster_size; for (;;) { if ((cluster_stop >= 0) && (pos >= cluster_stop)) break; // Parse ID if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long id = ReadUInt(pReader, pos, len); if (id < 0) // error return static_cast(id); if (id == 0) return E_FILE_FORMAT_INVALID; // This is the distinguished set of ID's we use to determine // that we have exhausted the sub-element's inside the cluster // whose ID we parsed earlier. if (id == 0x0F43B675) // Cluster ID break; if (id == 0x0C53BB6B) // Cues ID break; pos += len; // consume ID field // Parse Size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(pReader, pos, len); if (size < 0) // error return static_cast(size); const long long unknown_size = (1LL << (7 * len)) - 1; if (size == unknown_size) return E_FILE_FORMAT_INVALID; pos += len; // consume size field if ((cluster_stop >= 0) && (pos > cluster_stop)) return E_FILE_FORMAT_INVALID; // pos now points to start of payload if (size == 0) // weird continue; if ((cluster_stop >= 0) && ((pos + size) > cluster_stop)) return E_FILE_FORMAT_INVALID; if (id == 0x67) { // TimeCode ID len = static_cast(size); if ((pos + size) > avail) return E_BUFFER_NOT_FULL; timecode = UnserializeUInt(pReader, pos, size); if (timecode < 0) // error (or underflow) return static_cast(timecode); new_pos = pos + size; if (bBlock) break; } else if (id == 0x20) { // BlockGroup ID bBlock = true; break; } else if (id == 0x23) { // SimpleBlock ID bBlock = true; break; } pos += size; // consume payload assert((cluster_stop < 0) || (pos <= cluster_stop)); } assert((cluster_stop < 0) || (pos <= cluster_stop)); if (timecode < 0) // no timecode found return E_FILE_FORMAT_INVALID; if (!bBlock) return E_FILE_FORMAT_INVALID; m_pos = new_pos; // designates position just beyond timecode payload m_timecode = timecode; // m_timecode >= 0 means we're partially loaded if (cluster_size >= 0) m_element_size = cluster_stop - m_element_start; return 0; } long Cluster::Parse(long long& pos, long& len) const { long status = Load(pos, len); if (status < 0) return status; assert(m_pos >= m_element_start); assert(m_timecode >= 0); // assert(m_size > 0); // assert(m_element_size > m_size); const long long cluster_stop = (m_element_size < 0) ? -1 : m_element_start + m_element_size; if ((cluster_stop >= 0) && (m_pos >= cluster_stop)) return 1; // nothing else to do IMkvReader* const pReader = m_pSegment->m_pReader; long long total, avail; status = pReader->Length(&total, &avail); if (status < 0) // error return status; assert((total < 0) || (avail <= total)); pos = m_pos; for (;;) { if ((cluster_stop >= 0) && (pos >= cluster_stop)) break; if ((total >= 0) && (pos >= total)) { if (m_element_size < 0) m_element_size = pos - m_element_start; break; } // Parse ID if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long id = ReadUInt(pReader, pos, len); if (id < 0) // error return static_cast(id); if (id == 0) // weird return E_FILE_FORMAT_INVALID; // This is the distinguished set of ID's we use to determine // that we have exhausted the sub-element's inside the cluster // whose ID we parsed earlier. if ((id == 0x0F43B675) || (id == 0x0C53BB6B)) { // Cluster or Cues ID if (m_element_size < 0) m_element_size = pos - m_element_start; break; } pos += len; // consume ID field // Parse Size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(pReader, pos, len); if (size < 0) // error return static_cast(size); const long long unknown_size = (1LL << (7 * len)) - 1; if (size == unknown_size) return E_FILE_FORMAT_INVALID; pos += len; // consume size field if ((cluster_stop >= 0) && (pos > cluster_stop)) return E_FILE_FORMAT_INVALID; // pos now points to start of payload if (size == 0) // weird continue; // const long long block_start = pos; const long long block_stop = pos + size; if (cluster_stop >= 0) { if (block_stop > cluster_stop) { if ((id == 0x20) || (id == 0x23)) return E_FILE_FORMAT_INVALID; pos = cluster_stop; break; } } else if ((total >= 0) && (block_stop > total)) { m_element_size = total - m_element_start; pos = total; break; } else if (block_stop > avail) { len = static_cast(size); return E_BUFFER_NOT_FULL; } Cluster* const this_ = const_cast(this); if (id == 0x20) // BlockGroup return this_->ParseBlockGroup(size, pos, len); if (id == 0x23) // SimpleBlock return this_->ParseSimpleBlock(size, pos, len); pos += size; // consume payload assert((cluster_stop < 0) || (pos <= cluster_stop)); } assert(m_element_size > 0); m_pos = pos; assert((cluster_stop < 0) || (m_pos <= cluster_stop)); if (m_entries_count > 0) { const long idx = m_entries_count - 1; const BlockEntry* const pLast = m_entries[idx]; assert(pLast); const Block* const pBlock = pLast->GetBlock(); assert(pBlock); const long long start = pBlock->m_start; if ((total >= 0) && (start > total)) return -1; // defend against trucated stream const long long size = pBlock->m_size; const long long stop = start + size; assert((cluster_stop < 0) || (stop <= cluster_stop)); if ((total >= 0) && (stop > total)) return -1; // defend against trucated stream } return 1; // no more entries } long Cluster::ParseSimpleBlock(long long block_size, long long& pos, long& len) { const long long block_start = pos; const long long block_stop = pos + block_size; IMkvReader* const pReader = m_pSegment->m_pReader; long long total, avail; long status = pReader->Length(&total, &avail); if (status < 0) // error return status; assert((total < 0) || (avail <= total)); // parse track number if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((pos + len) > block_stop) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long track = ReadUInt(pReader, pos, len); if (track < 0) // error return static_cast(track); if (track == 0) return E_FILE_FORMAT_INVALID; #if 0 //TODO(matthewjheaney) //This turned out to be too conservative. The problem is that //if we see a track header in the tracks element with an unsupported //track type, we throw that track header away, so it is not present //in the track map. But even though we don't understand the track //header, there are still blocks in the cluster with that track //number. It was our decision to ignore that track header, so it's //up to us to deal with blocks associated with that track -- we //cannot simply report an error since technically there's nothing //wrong with the file. // //For now we go ahead and finish the parse, creating a block entry //for this block. This is somewhat wasteful, because without a //track header there's nothing you can do with the block. What //we really need here is a special return value that indicates to //the caller that he should ignore this particular block, and //continue parsing. const Tracks* const pTracks = m_pSegment->GetTracks(); assert(pTracks); const long tn = static_cast(track); const Track* const pTrack = pTracks->GetTrackByNumber(tn); if (pTrack == NULL) return E_FILE_FORMAT_INVALID; #endif pos += len; // consume track number if ((pos + 2) > block_stop) return E_FILE_FORMAT_INVALID; if ((pos + 2) > avail) { len = 2; return E_BUFFER_NOT_FULL; } pos += 2; // consume timecode if ((pos + 1) > block_stop) return E_FILE_FORMAT_INVALID; if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } unsigned char flags; status = pReader->Read(pos, 1, &flags); if (status < 0) { // error or underflow len = 1; return status; } ++pos; // consume flags byte assert(pos <= avail); if (pos >= block_stop) return E_FILE_FORMAT_INVALID; const int lacing = int(flags & 0x06) >> 1; if ((lacing != 0) && (block_stop > avail)) { len = static_cast(block_stop - pos); return E_BUFFER_NOT_FULL; } status = CreateBlock(0x23, // simple block id block_start, block_size, 0); // DiscardPadding if (status != 0) return status; m_pos = block_stop; return 0; // success } long Cluster::ParseBlockGroup(long long payload_size, long long& pos, long& len) { const long long payload_start = pos; const long long payload_stop = pos + payload_size; IMkvReader* const pReader = m_pSegment->m_pReader; long long total, avail; long status = pReader->Length(&total, &avail); if (status < 0) // error return status; assert((total < 0) || (avail <= total)); if ((total >= 0) && (payload_stop > total)) return E_FILE_FORMAT_INVALID; if (payload_stop > avail) { len = static_cast(payload_size); return E_BUFFER_NOT_FULL; } long long discard_padding = 0; while (pos < payload_stop) { // parse sub-block element ID if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((pos + len) > payload_stop) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long id = ReadUInt(pReader, pos, len); if (id < 0) // error return static_cast(id); if (id == 0) // not a value ID return E_FILE_FORMAT_INVALID; pos += len; // consume ID field // Parse Size if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((pos + len) > payload_stop) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(pReader, pos, len); if (size < 0) // error return static_cast(size); pos += len; // consume size field // pos now points to start of sub-block group payload if (pos > payload_stop) return E_FILE_FORMAT_INVALID; if (size == 0) // weird continue; const long long unknown_size = (1LL << (7 * len)) - 1; if (size == unknown_size) return E_FILE_FORMAT_INVALID; if (id == 0x35A2) { // DiscardPadding status = UnserializeInt(pReader, pos, size, discard_padding); if (status < 0) // error return status; } if (id != 0x21) { // sub-part of BlockGroup is not a Block pos += size; // consume sub-part of block group if (pos > payload_stop) return E_FILE_FORMAT_INVALID; continue; } const long long block_stop = pos + size; if (block_stop > payload_stop) return E_FILE_FORMAT_INVALID; // parse track number if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((pos + len) > block_stop) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long track = ReadUInt(pReader, pos, len); if (track < 0) // error return static_cast(track); if (track == 0) return E_FILE_FORMAT_INVALID; #if 0 //TODO(matthewjheaney) //This turned out to be too conservative. The problem is that //if we see a track header in the tracks element with an unsupported //track type, we throw that track header away, so it is not present //in the track map. But even though we don't understand the track //header, there are still blocks in the cluster with that track //number. It was our decision to ignore that track header, so it's //up to us to deal with blocks associated with that track -- we //cannot simply report an error since technically there's nothing //wrong with the file. // //For now we go ahead and finish the parse, creating a block entry //for this block. This is somewhat wasteful, because without a //track header there's nothing you can do with the block. What //we really need here is a special return value that indicates to //the caller that he should ignore this particular block, and //continue parsing. const Tracks* const pTracks = m_pSegment->GetTracks(); assert(pTracks); const long tn = static_cast(track); const Track* const pTrack = pTracks->GetTrackByNumber(tn); if (pTrack == NULL) return E_FILE_FORMAT_INVALID; #endif pos += len; // consume track number if ((pos + 2) > block_stop) return E_FILE_FORMAT_INVALID; if ((pos + 2) > avail) { len = 2; return E_BUFFER_NOT_FULL; } pos += 2; // consume timecode if ((pos + 1) > block_stop) return E_FILE_FORMAT_INVALID; if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } unsigned char flags; status = pReader->Read(pos, 1, &flags); if (status < 0) { // error or underflow len = 1; return status; } ++pos; // consume flags byte assert(pos <= avail); if (pos >= block_stop) return E_FILE_FORMAT_INVALID; const int lacing = int(flags & 0x06) >> 1; if ((lacing != 0) && (block_stop > avail)) { len = static_cast(block_stop - pos); return E_BUFFER_NOT_FULL; } pos = block_stop; // consume block-part of block group assert(pos <= payload_stop); } assert(pos == payload_stop); status = CreateBlock(0x20, // BlockGroup ID payload_start, payload_size, discard_padding); if (status != 0) return status; m_pos = payload_stop; return 0; // success } long Cluster::GetEntry(long index, const mkvparser::BlockEntry*& pEntry) const { assert(m_pos >= m_element_start); pEntry = NULL; if (index < 0) return -1; // generic error if (m_entries_count < 0) return E_BUFFER_NOT_FULL; assert(m_entries); assert(m_entries_size > 0); assert(m_entries_count <= m_entries_size); if (index < m_entries_count) { pEntry = m_entries[index]; assert(pEntry); return 1; // found entry } if (m_element_size < 0) // we don't know cluster end yet return E_BUFFER_NOT_FULL; // underflow const long long element_stop = m_element_start + m_element_size; if (m_pos >= element_stop) return 0; // nothing left to parse return E_BUFFER_NOT_FULL; // underflow, since more remains to be parsed } Cluster* Cluster::Create(Segment* pSegment, long idx, long long off) // long long element_size) { assert(pSegment); assert(off >= 0); const long long element_start = pSegment->m_start + off; Cluster* const pCluster = new Cluster(pSegment, idx, element_start); // element_size); assert(pCluster); return pCluster; } Cluster::Cluster() : m_pSegment(NULL), m_element_start(0), m_index(0), m_pos(0), m_element_size(0), m_timecode(0), m_entries(NULL), m_entries_size(0), m_entries_count(0) // means "no entries" {} Cluster::Cluster(Segment* pSegment, long idx, long long element_start /* long long element_size */) : m_pSegment(pSegment), m_element_start(element_start), m_index(idx), m_pos(element_start), m_element_size(-1 /* element_size */), m_timecode(-1), m_entries(NULL), m_entries_size(0), m_entries_count(-1) // means "has not been parsed yet" {} Cluster::~Cluster() { if (m_entries_count <= 0) return; BlockEntry** i = m_entries; BlockEntry** const j = m_entries + m_entries_count; while (i != j) { BlockEntry* p = *i++; assert(p); delete p; } delete[] m_entries; } bool Cluster::EOS() const { return (m_pSegment == NULL); } long Cluster::GetIndex() const { return m_index; } long long Cluster::GetPosition() const { const long long pos = m_element_start - m_pSegment->m_start; assert(pos >= 0); return pos; } long long Cluster::GetElementSize() const { return m_element_size; } #if 0 bool Cluster::HasBlockEntries( const Segment* pSegment, long long off) { assert(pSegment); assert(off >= 0); //relative to start of segment payload IMkvReader* const pReader = pSegment->m_pReader; long long pos = pSegment->m_start + off; //absolute long long size; { long len; const long long id = ReadUInt(pReader, pos, len); (void)id; assert(id >= 0); assert(id == 0x0F43B675); //Cluster ID pos += len; //consume id size = ReadUInt(pReader, pos, len); assert(size > 0); pos += len; //consume size //pos now points to start of payload } const long long stop = pos + size; while (pos < stop) { long len; const long long id = ReadUInt(pReader, pos, len); assert(id >= 0); //TODO assert((pos + len) <= stop); pos += len; //consume id const long long size = ReadUInt(pReader, pos, len); assert(size >= 0); //TODO assert((pos + len) <= stop); pos += len; //consume size if (id == 0x20) //BlockGroup ID return true; if (id == 0x23) //SimpleBlock ID return true; pos += size; //consume payload assert(pos <= stop); } return false; } #endif long Cluster::HasBlockEntries( const Segment* pSegment, long long off, // relative to start of segment payload long long& pos, long& len) { assert(pSegment); assert(off >= 0); // relative to segment IMkvReader* const pReader = pSegment->m_pReader; long long total, avail; long status = pReader->Length(&total, &avail); if (status < 0) // error return status; assert((total < 0) || (avail <= total)); pos = pSegment->m_start + off; // absolute if ((total >= 0) && (pos >= total)) return 0; // we don't even have a complete cluster const long long segment_stop = (pSegment->m_size < 0) ? -1 : pSegment->m_start + pSegment->m_size; long long cluster_stop = -1; // interpreted later to mean "unknown size" { if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // need more data return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((total >= 0) && ((pos + len) > total)) return 0; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long id = ReadUInt(pReader, pos, len); if (id < 0) // error return static_cast(id); if (id != 0x0F43B675) // weird: not cluster ID return -1; // generic error pos += len; // consume Cluster ID field // read size field if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // weird return E_BUFFER_NOT_FULL; if ((segment_stop >= 0) && ((pos + len) > segment_stop)) return E_FILE_FORMAT_INVALID; if ((total >= 0) && ((pos + len) > total)) return 0; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(pReader, pos, len); if (size < 0) // error return static_cast(size); if (size == 0) return 0; // cluster does not have entries pos += len; // consume size field // pos now points to start of payload const long long unknown_size = (1LL << (7 * len)) - 1; if (size != unknown_size) { cluster_stop = pos + size; assert(cluster_stop >= 0); if ((segment_stop >= 0) && (cluster_stop > segment_stop)) return E_FILE_FORMAT_INVALID; if ((total >= 0) && (cluster_stop > total)) // return E_FILE_FORMAT_INVALID; //too conservative return 0; // cluster does not have any entries } } for (;;) { if ((cluster_stop >= 0) && (pos >= cluster_stop)) return 0; // no entries detected if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } long long result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // need more data return E_BUFFER_NOT_FULL; if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long id = ReadUInt(pReader, pos, len); if (id < 0) // error return static_cast(id); // This is the distinguished set of ID's we use to determine // that we have exhausted the sub-element's inside the cluster // whose ID we parsed earlier. if (id == 0x0F43B675) // Cluster ID return 0; // no entries found if (id == 0x0C53BB6B) // Cues ID return 0; // no entries found pos += len; // consume id field if ((cluster_stop >= 0) && (pos >= cluster_stop)) return E_FILE_FORMAT_INVALID; // read size field if ((pos + 1) > avail) { len = 1; return E_BUFFER_NOT_FULL; } result = GetUIntLength(pReader, pos, len); if (result < 0) // error return static_cast(result); if (result > 0) // underflow return E_BUFFER_NOT_FULL; if ((cluster_stop >= 0) && ((pos + len) > cluster_stop)) return E_FILE_FORMAT_INVALID; if ((pos + len) > avail) return E_BUFFER_NOT_FULL; const long long size = ReadUInt(pReader, pos, len); if (size < 0) // error return static_cast(size); pos += len; // consume size field // pos now points to start of payload if ((cluster_stop >= 0) && (pos > cluster_stop)) return E_FILE_FORMAT_INVALID; if (size == 0) // weird continue; const long long unknown_size = (1LL << (7 * len)) - 1; if (size == unknown_size) return E_FILE_FORMAT_INVALID; // not supported inside cluster if ((cluster_stop >= 0) && ((pos + size) > cluster_stop)) return E_FILE_FORMAT_INVALID; if (id == 0x20) // BlockGroup ID return 1; // have at least one entry if (id == 0x23) // SimpleBlock ID return 1; // have at least one entry pos += size; // consume payload assert((cluster_stop < 0) || (pos <= cluster_stop)); } } long long Cluster::GetTimeCode() const { long long pos; long len; const long status = Load(pos, len); if (status < 0) // error return status; return m_timecode; } long long Cluster::GetTime() const { const long long tc = GetTimeCode(); if (tc < 0) return tc; const SegmentInfo* const pInfo = m_pSegment->GetInfo(); assert(pInfo); const long long scale = pInfo->GetTimeCodeScale(); assert(scale >= 1); const long long t = m_timecode * scale; return t; } long long Cluster::GetFirstTime() const { const BlockEntry* pEntry; const long status = GetFirst(pEntry); if (status < 0) // error return status; if (pEntry == NULL) // empty cluster return GetTime(); const Block* const pBlock = pEntry->GetBlock(); assert(pBlock); return pBlock->GetTime(this); } long long Cluster::GetLastTime() const { const BlockEntry* pEntry; const long status = GetLast(pEntry); if (status < 0) // error return status; if (pEntry == NULL) // empty cluster return GetTime(); const Block* const pBlock = pEntry->GetBlock(); assert(pBlock); return pBlock->GetTime(this); } long Cluster::CreateBlock(long long id, long long pos, // absolute pos of payload long long size, long long discard_padding) { assert((id == 0x20) || (id == 0x23)); // BlockGroup or SimpleBlock if (m_entries_count < 0) { // haven't parsed anything yet assert(m_entries == NULL); assert(m_entries_size == 0); m_entries_size = 1024; m_entries = new BlockEntry* [m_entries_size]; m_entries_count = 0; } else { assert(m_entries); assert(m_entries_size > 0); assert(m_entries_count <= m_entries_size); if (m_entries_count >= m_entries_size) { const long entries_size = 2 * m_entries_size; BlockEntry** const entries = new BlockEntry* [entries_size]; assert(entries); BlockEntry** src = m_entries; BlockEntry** const src_end = src + m_entries_count; BlockEntry** dst = entries; while (src != src_end) *dst++ = *src++; delete[] m_entries; m_entries = entries; m_entries_size = entries_size; } } if (id == 0x20) // BlockGroup ID return CreateBlockGroup(pos, size, discard_padding); else // SimpleBlock ID return CreateSimpleBlock(pos, size); } long Cluster::CreateBlockGroup(long long start_offset, long long size, long long discard_padding) { assert(m_entries); assert(m_entries_size > 0); assert(m_entries_count >= 0); assert(m_entries_count < m_entries_size); IMkvReader* const pReader = m_pSegment->m_pReader; long long pos = start_offset; const long long stop = start_offset + size; // For WebM files, there is a bias towards previous reference times //(in order to support alt-ref frames, which refer back to the previous // keyframe). Normally a 0 value is not possible, but here we tenatively // allow 0 as the value of a reference frame, with the interpretation // that this is a "previous" reference time. long long prev = 1; // nonce long long next = 0; // nonce long long duration = -1; // really, this is unsigned long long bpos = -1; long long bsize = -1; while (pos < stop) { long len; const long long id = ReadUInt(pReader, pos, len); assert(id >= 0); // TODO assert((pos + len) <= stop); pos += len; // consume ID const long long size = ReadUInt(pReader, pos, len); assert(size >= 0); // TODO assert((pos + len) <= stop); pos += len; // consume size if (id == 0x21) { // Block ID if (bpos < 0) { // Block ID bpos = pos; bsize = size; } } else if (id == 0x1B) { // Duration ID assert(size <= 8); duration = UnserializeUInt(pReader, pos, size); assert(duration >= 0); // TODO } else if (id == 0x7B) { // ReferenceBlock assert(size <= 8); const long size_ = static_cast(size); long long time; long status = UnserializeInt(pReader, pos, size_, time); assert(status == 0); if (status != 0) return -1; if (time <= 0) // see note above prev = time; else // weird next = time; } pos += size; // consume payload assert(pos <= stop); } assert(pos == stop); assert(bpos >= 0); assert(bsize >= 0); const long idx = m_entries_count; BlockEntry** const ppEntry = m_entries + idx; BlockEntry*& pEntry = *ppEntry; pEntry = new (std::nothrow) BlockGroup(this, idx, bpos, bsize, prev, next, duration, discard_padding); if (pEntry == NULL) return -1; // generic error BlockGroup* const p = static_cast(pEntry); const long status = p->Parse(); if (status == 0) { // success ++m_entries_count; return 0; } delete pEntry; pEntry = 0; return status; } long Cluster::CreateSimpleBlock(long long st, long long sz) { assert(m_entries); assert(m_entries_size > 0); assert(m_entries_count >= 0); assert(m_entries_count < m_entries_size); const long idx = m_entries_count; BlockEntry** const ppEntry = m_entries + idx; BlockEntry*& pEntry = *ppEntry; pEntry = new (std::nothrow) SimpleBlock(this, idx, st, sz); if (pEntry == NULL) return -1; // generic error SimpleBlock* const p = static_cast(pEntry); const long status = p->Parse(); if (status == 0) { ++m_entries_count; return 0; } delete pEntry; pEntry = 0; return status; } long Cluster::GetFirst(const BlockEntry*& pFirst) const { if (m_entries_count <= 0) { long long pos; long len; const long status = Parse(pos, len); if (status < 0) { // error pFirst = NULL; return status; } if (m_entries_count <= 0) { // empty cluster pFirst = NULL; return 0; } } assert(m_entries); pFirst = m_entries[0]; assert(pFirst); return 0; // success } long Cluster::GetLast(const BlockEntry*& pLast) const { for (;;) { long long pos; long len; const long status = Parse(pos, len); if (status < 0) { // error pLast = NULL; return status; } if (status > 0) // no new block break; } if (m_entries_count <= 0) { pLast = NULL; return 0; } assert(m_entries); const long idx = m_entries_count - 1; pLast = m_entries[idx]; assert(pLast); return 0; } long Cluster::GetNext(const BlockEntry* pCurr, const BlockEntry*& pNext) const { assert(pCurr); assert(m_entries); assert(m_entries_count > 0); size_t idx = pCurr->GetIndex(); assert(idx < size_t(m_entries_count)); assert(m_entries[idx] == pCurr); ++idx; if (idx >= size_t(m_entries_count)) { long long pos; long len; const long status = Parse(pos, len); if (status < 0) { // error pNext = NULL; return status; } if (status > 0) { pNext = NULL; return 0; } assert(m_entries); assert(m_entries_count > 0); assert(idx < size_t(m_entries_count)); } pNext = m_entries[idx]; assert(pNext); return 0; } long Cluster::GetEntryCount() const { return m_entries_count; } const BlockEntry* Cluster::GetEntry(const Track* pTrack, long long time_ns) const { assert(pTrack); if (m_pSegment == NULL) // this is the special EOS cluster return pTrack->GetEOS(); #if 0 LoadBlockEntries(); if ((m_entries == NULL) || (m_entries_count <= 0)) return NULL; //return EOS here? const BlockEntry* pResult = pTrack->GetEOS(); BlockEntry** i = m_entries; assert(i); BlockEntry** const j = i + m_entries_count; while (i != j) { const BlockEntry* const pEntry = *i++; assert(pEntry); assert(!pEntry->EOS()); const Block* const pBlock = pEntry->GetBlock(); assert(pBlock); if (pBlock->GetTrackNumber() != pTrack->GetNumber()) continue; if (pTrack->VetEntry(pEntry)) { if (time_ns < 0) //just want first candidate block return pEntry; const long long ns = pBlock->GetTime(this); if (ns > time_ns) break; pResult = pEntry; } else if (time_ns >= 0) { const long long ns = pBlock->GetTime(this); if (ns > time_ns) break; } } return pResult; #else const BlockEntry* pResult = pTrack->GetEOS(); long index = 0; for (;;) { if (index >= m_entries_count) { long long pos; long len; const long status = Parse(pos, len); assert(status >= 0); if (status > 0) // completely parsed, and no more entries return pResult; if (status < 0) // should never happen return 0; assert(m_entries); assert(index < m_entries_count); } const BlockEntry* const pEntry = m_entries[index]; assert(pEntry); assert(!pEntry->EOS()); const Block* const pBlock = pEntry->GetBlock(); assert(pBlock); if (pBlock->GetTrackNumber() != pTrack->GetNumber()) { ++index; continue; } if (pTrack->VetEntry(pEntry)) { if (time_ns < 0) // just want first candidate block return pEntry; const long long ns = pBlock->GetTime(this); if (ns > time_ns) return pResult; pResult = pEntry; // have a candidate } else if (time_ns >= 0) { const long long ns = pBlock->GetTime(this); if (ns > time_ns) return pResult; } ++index; } #endif } const BlockEntry* Cluster::GetEntry(const CuePoint& cp, const CuePoint::TrackPosition& tp) const { assert(m_pSegment); #if 0 LoadBlockEntries(); if (m_entries == NULL) return NULL; const long long count = m_entries_count; if (count <= 0) return NULL; const long long tc = cp.GetTimeCode(); if ((tp.m_block > 0) && (tp.m_block <= count)) { const size_t block = static_cast(tp.m_block); const size_t index = block - 1; const BlockEntry* const pEntry = m_entries[index]; assert(pEntry); assert(!pEntry->EOS()); const Block* const pBlock = pEntry->GetBlock(); assert(pBlock); if ((pBlock->GetTrackNumber() == tp.m_track) && (pBlock->GetTimeCode(this) == tc)) { return pEntry; } } const BlockEntry* const* i = m_entries; const BlockEntry* const* const j = i + count; while (i != j) { #ifdef _DEBUG const ptrdiff_t idx = i - m_entries; idx; #endif const BlockEntry* const pEntry = *i++; assert(pEntry); assert(!pEntry->EOS()); const Block* const pBlock = pEntry->GetBlock(); assert(pBlock); if (pBlock->GetTrackNumber() != tp.m_track) continue; const long long tc_ = pBlock->GetTimeCode(this); assert(tc_ >= 0); if (tc_ < tc) continue; if (tc_ > tc) return NULL; const Tracks* const pTracks = m_pSegment->GetTracks(); assert(pTracks); const long tn = static_cast(tp.m_track); const Track* const pTrack = pTracks->GetTrackByNumber(tn); if (pTrack == NULL) return NULL; const long long type = pTrack->GetType(); if (type == 2) //audio return pEntry; if (type != 1) //not video return NULL; if (!pBlock->IsKey()) return NULL; return pEntry; } return NULL; #else const long long tc = cp.GetTimeCode(); if (tp.m_block > 0) { const long block = static_cast(tp.m_block); const long index = block - 1; while (index >= m_entries_count) { long long pos; long len; const long status = Parse(pos, len); if (status < 0) // TODO: can this happen? return NULL; if (status > 0) // nothing remains to be parsed return NULL; } const BlockEntry* const pEntry = m_entries[index]; assert(pEntry); assert(!pEntry->EOS()); const Block* const pBlock = pEntry->GetBlock(); assert(pBlock); if ((pBlock->GetTrackNumber() == tp.m_track) && (pBlock->GetTimeCode(this) == tc)) { return pEntry; } } long index = 0; for (;;) { if (index >= m_entries_count) { long long pos; long len; const long status = Parse(pos, len); if (status < 0) // TODO: can this happen? return NULL; if (status > 0) // nothing remains to be parsed return NULL; assert(m_entries); assert(index < m_entries_count); } const BlockEntry* const pEntry = m_entries[index]; assert(pEntry); assert(!pEntry->EOS()); const Block* const pBlock = pEntry->GetBlock(); assert(pBlock); if (pBlock->GetTrackNumber() != tp.m_track) { ++index; continue; } const long long tc_ = pBlock->GetTimeCode(this); if (tc_ < tc) { ++index; continue; } if (tc_ > tc) return NULL; const Tracks* const pTracks = m_pSegment->GetTracks(); assert(pTracks); const long tn = static_cast(tp.m_track); const Track* const pTrack = pTracks->GetTrackByNumber(tn); if (pTrack == NULL) return NULL; const long long type = pTrack->GetType(); if (type == 2) // audio return pEntry; if (type != 1) // not video return NULL; if (!pBlock->IsKey()) return NULL; return pEntry; } #endif } #if 0 const BlockEntry* Cluster::GetMaxKey(const VideoTrack* pTrack) const { assert(pTrack); if (m_pSegment == NULL) //EOS return pTrack->GetEOS(); LoadBlockEntries(); if ((m_entries == NULL) || (m_entries_count <= 0)) return pTrack->GetEOS(); BlockEntry** i = m_entries + m_entries_count; BlockEntry** const j = m_entries; while (i != j) { const BlockEntry* const pEntry = *--i; assert(pEntry); assert(!pEntry->EOS()); const Block* const pBlock = pEntry->GetBlock(); assert(pBlock); if (pBlock->GetTrackNumber() != pTrack->GetNumber()) continue; if (pBlock->IsKey()) return pEntry; } return pTrack->GetEOS(); //no satisfactory block found } #endif BlockEntry::BlockEntry(Cluster* p, long idx) : m_pCluster(p), m_index(idx) {} BlockEntry::~BlockEntry() {} bool BlockEntry::EOS() const { return (GetKind() == kBlockEOS); } const Cluster* BlockEntry::GetCluster() const { return m_pCluster; } long BlockEntry::GetIndex() const { return m_index; } SimpleBlock::SimpleBlock(Cluster* pCluster, long idx, long long start, long long size) : BlockEntry(pCluster, idx), m_block(start, size, 0) {} long SimpleBlock::Parse() { return m_block.Parse(m_pCluster); } BlockEntry::Kind SimpleBlock::GetKind() const { return kBlockSimple; } const Block* SimpleBlock::GetBlock() const { return &m_block; } BlockGroup::BlockGroup(Cluster* pCluster, long idx, long long block_start, long long block_size, long long prev, long long next, long long duration, long long discard_padding) : BlockEntry(pCluster, idx), m_block(block_start, block_size, discard_padding), m_prev(prev), m_next(next), m_duration(duration) {} long BlockGroup::Parse() { const long status = m_block.Parse(m_pCluster); if (status) return status; m_block.SetKey((m_prev > 0) && (m_next <= 0)); return 0; } #if 0 void BlockGroup::ParseBlock(long long start, long long size) { IMkvReader* const pReader = m_pCluster->m_pSegment->m_pReader; Block* const pBlock = new Block(start, size, pReader); assert(pBlock); //TODO //TODO: the Matroska spec says you have multiple blocks within the //same block group, with blocks ranked by priority (the flag bits). assert(m_pBlock == NULL); m_pBlock = pBlock; } #endif BlockEntry::Kind BlockGroup::GetKind() const { return kBlockGroup; } const Block* BlockGroup::GetBlock() const { return &m_block; } long long BlockGroup::GetPrevTimeCode() const { return m_prev; } long long BlockGroup::GetNextTimeCode() const { return m_next; } long long BlockGroup::GetDurationTimeCode() const { return m_duration; } Block::Block(long long start, long long size_, long long discard_padding) : m_start(start), m_size(size_), m_track(0), m_timecode(-1), m_flags(0), m_frames(NULL), m_frame_count(-1), m_discard_padding(discard_padding) {} Block::~Block() { delete[] m_frames; } long Block::Parse(const Cluster* pCluster) { if (pCluster == NULL) return -1; if (pCluster->m_pSegment == NULL) return -1; assert(m_start >= 0); assert(m_size >= 0); assert(m_track <= 0); assert(m_frames == NULL); assert(m_frame_count <= 0); long long pos = m_start; const long long stop = m_start + m_size; long len; IMkvReader* const pReader = pCluster->m_pSegment->m_pReader; m_track = ReadUInt(pReader, pos, len); if (m_track <= 0) return E_FILE_FORMAT_INVALID; if ((pos + len) > stop) return E_FILE_FORMAT_INVALID; pos += len; // consume track number if ((stop - pos) < 2) return E_FILE_FORMAT_INVALID; long status; long long value; status = UnserializeInt(pReader, pos, 2, value); if (status) return E_FILE_FORMAT_INVALID; if (value < SHRT_MIN) return E_FILE_FORMAT_INVALID; if (value > SHRT_MAX) return E_FILE_FORMAT_INVALID; m_timecode = static_cast(value); pos += 2; if ((stop - pos) <= 0) return E_FILE_FORMAT_INVALID; status = pReader->Read(pos, 1, &m_flags); if (status) return E_FILE_FORMAT_INVALID; const int lacing = int(m_flags & 0x06) >> 1; ++pos; // consume flags byte if (lacing == 0) { // no lacing if (pos > stop) return E_FILE_FORMAT_INVALID; m_frame_count = 1; m_frames = new Frame[m_frame_count]; Frame& f = m_frames[0]; f.pos = pos; const long long frame_size = stop - pos; if (frame_size > LONG_MAX) return E_FILE_FORMAT_INVALID; f.len = static_cast(frame_size); return 0; // success } if (pos >= stop) return E_FILE_FORMAT_INVALID; unsigned char biased_count; status = pReader->Read(pos, 1, &biased_count); if (status) return E_FILE_FORMAT_INVALID; ++pos; // consume frame count assert(pos <= stop); m_frame_count = int(biased_count) + 1; m_frames = new Frame[m_frame_count]; assert(m_frames); if (lacing == 1) { // Xiph Frame* pf = m_frames; Frame* const pf_end = pf + m_frame_count; long size = 0; int frame_count = m_frame_count; while (frame_count > 1) { long frame_size = 0; for (;;) { unsigned char val; if (pos >= stop) return E_FILE_FORMAT_INVALID; status = pReader->Read(pos, 1, &val); if (status) return E_FILE_FORMAT_INVALID; ++pos; // consume xiph size byte frame_size += val; if (val < 255) break; } Frame& f = *pf++; assert(pf < pf_end); f.pos = 0; // patch later f.len = frame_size; size += frame_size; // contribution of this frame --frame_count; } assert(pf < pf_end); assert(pos <= stop); { Frame& f = *pf++; if (pf != pf_end) return E_FILE_FORMAT_INVALID; f.pos = 0; // patch later const long long total_size = stop - pos; if (total_size < size) return E_FILE_FORMAT_INVALID; const long long frame_size = total_size - size; if (frame_size > LONG_MAX) return E_FILE_FORMAT_INVALID; f.len = static_cast(frame_size); } pf = m_frames; while (pf != pf_end) { Frame& f = *pf++; assert((pos + f.len) <= stop); f.pos = pos; pos += f.len; } assert(pos == stop); } else if (lacing == 2) { // fixed-size lacing const long long total_size = stop - pos; if ((total_size % m_frame_count) != 0) return E_FILE_FORMAT_INVALID; const long long frame_size = total_size / m_frame_count; if (frame_size > LONG_MAX) return E_FILE_FORMAT_INVALID; Frame* pf = m_frames; Frame* const pf_end = pf + m_frame_count; while (pf != pf_end) { assert((pos + frame_size) <= stop); Frame& f = *pf++; f.pos = pos; f.len = static_cast(frame_size); pos += frame_size; } assert(pos == stop); } else { assert(lacing == 3); // EBML lacing if (pos >= stop) return E_FILE_FORMAT_INVALID; long size = 0; int frame_count = m_frame_count; long long frame_size = ReadUInt(pReader, pos, len); if (frame_size < 0) return E_FILE_FORMAT_INVALID; if (frame_size > LONG_MAX) return E_FILE_FORMAT_INVALID; if ((pos + len) > stop) return E_FILE_FORMAT_INVALID; pos += len; // consume length of size of first frame if ((pos + frame_size) > stop) return E_FILE_FORMAT_INVALID; Frame* pf = m_frames; Frame* const pf_end = pf + m_frame_count; { Frame& curr = *pf; curr.pos = 0; // patch later curr.len = static_cast(frame_size); size += curr.len; // contribution of this frame } --frame_count; while (frame_count > 1) { if (pos >= stop) return E_FILE_FORMAT_INVALID; assert(pf < pf_end); const Frame& prev = *pf++; assert(prev.len == frame_size); if (prev.len != frame_size) return E_FILE_FORMAT_INVALID; assert(pf < pf_end); Frame& curr = *pf; curr.pos = 0; // patch later const long long delta_size_ = ReadUInt(pReader, pos, len); if (delta_size_ < 0) return E_FILE_FORMAT_INVALID; if ((pos + len) > stop) return E_FILE_FORMAT_INVALID; pos += len; // consume length of (delta) size assert(pos <= stop); const int exp = 7 * len - 1; const long long bias = (1LL << exp) - 1LL; const long long delta_size = delta_size_ - bias; frame_size += delta_size; if (frame_size < 0) return E_FILE_FORMAT_INVALID; if (frame_size > LONG_MAX) return E_FILE_FORMAT_INVALID; curr.len = static_cast(frame_size); size += curr.len; // contribution of this frame --frame_count; } { assert(pos <= stop); assert(pf < pf_end); const Frame& prev = *pf++; assert(prev.len == frame_size); if (prev.len != frame_size) return E_FILE_FORMAT_INVALID; assert(pf < pf_end); Frame& curr = *pf++; assert(pf == pf_end); curr.pos = 0; // patch later const long long total_size = stop - pos; if (total_size < size) return E_FILE_FORMAT_INVALID; frame_size = total_size - size; if (frame_size > LONG_MAX) return E_FILE_FORMAT_INVALID; curr.len = static_cast(frame_size); } pf = m_frames; while (pf != pf_end) { Frame& f = *pf++; assert((pos + f.len) <= stop); f.pos = pos; pos += f.len; } assert(pos == stop); } return 0; // success } long long Block::GetTimeCode(const Cluster* pCluster) const { if (pCluster == 0) return m_timecode; const long long tc0 = pCluster->GetTimeCode(); assert(tc0 >= 0); const long long tc = tc0 + m_timecode; return tc; // unscaled timecode units } long long Block::GetTime(const Cluster* pCluster) const { assert(pCluster); const long long tc = GetTimeCode(pCluster); const Segment* const pSegment = pCluster->m_pSegment; const SegmentInfo* const pInfo = pSegment->GetInfo(); assert(pInfo); const long long scale = pInfo->GetTimeCodeScale(); assert(scale >= 1); const long long ns = tc * scale; return ns; } long long Block::GetTrackNumber() const { return m_track; } bool Block::IsKey() const { return ((m_flags & static_cast(1 << 7)) != 0); } void Block::SetKey(bool bKey) { if (bKey) m_flags |= static_cast(1 << 7); else m_flags &= 0x7F; } bool Block::IsInvisible() const { return bool(int(m_flags & 0x08) != 0); } Block::Lacing Block::GetLacing() const { const int value = int(m_flags & 0x06) >> 1; return static_cast(value); } int Block::GetFrameCount() const { return m_frame_count; } const Block::Frame& Block::GetFrame(int idx) const { assert(idx >= 0); assert(idx < m_frame_count); const Frame& f = m_frames[idx]; assert(f.pos > 0); assert(f.len > 0); return f; } long Block::Frame::Read(IMkvReader* pReader, unsigned char* buf) const { assert(pReader); assert(buf); const long status = pReader->Read(pos, len, buf); return status; } long long Block::GetDiscardPadding() const { return m_discard_padding; } } // end namespace mkvparser