/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include // SSE2 #include "vp9/common/vp9_idct.h" // for cospi constants #include "vpx_ports/mem.h" void vp9_fdct4x4_sse2(const int16_t *input, int16_t *output, int stride) { // This 2D transform implements 4 vertical 1D transforms followed // by 4 horizontal 1D transforms. The multiplies and adds are as given // by Chen, Smith and Fralick ('77). The commands for moving the data // around have been minimized by hand. // For the purposes of the comments, the 16 inputs are referred to at i0 // through iF (in raster order), intermediate variables are a0, b0, c0 // through f, and correspond to the in-place computations mapped to input // locations. The outputs, o0 through oF are labeled according to the // output locations. // Constants // These are the coefficients used for the multiplies. // In the comments, pN means cos(N pi /64) and mN is -cos(N pi /64), // where cospi_N_64 = cos(N pi /64) const __m128i k__cospi_A = _mm_setr_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64); const __m128i k__cospi_B = _mm_setr_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64); const __m128i k__cospi_C = _mm_setr_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64, cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64); const __m128i k__cospi_D = _mm_setr_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64, cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64); const __m128i k__cospi_E = _mm_setr_epi16(cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64, cospi_16_64); const __m128i k__cospi_F = _mm_setr_epi16(cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64, cospi_16_64, -cospi_16_64); const __m128i k__cospi_G = _mm_setr_epi16(cospi_8_64, cospi_24_64, cospi_8_64, cospi_24_64, -cospi_8_64, -cospi_24_64, -cospi_8_64, -cospi_24_64); const __m128i k__cospi_H = _mm_setr_epi16(cospi_24_64, -cospi_8_64, cospi_24_64, -cospi_8_64, -cospi_24_64, cospi_8_64, -cospi_24_64, cospi_8_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); // This second rounding constant saves doing some extra adds at the end const __m128i k__DCT_CONST_ROUNDING2 = _mm_set1_epi32(DCT_CONST_ROUNDING +(DCT_CONST_ROUNDING << 1)); const int DCT_CONST_BITS2 = DCT_CONST_BITS+2; const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1); const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0); __m128i in0, in1; // Load inputs. { in0 = _mm_loadl_epi64((const __m128i *)(input + 0 * stride)); in1 = _mm_loadl_epi64((const __m128i *)(input + 1 * stride)); in1 = _mm_unpacklo_epi64(in1, _mm_loadl_epi64((const __m128i *) (input + 2 * stride))); in0 = _mm_unpacklo_epi64(in0, _mm_loadl_epi64((const __m128i *) (input + 3 * stride))); // in0 = [i0 i1 i2 i3 iC iD iE iF] // in1 = [i4 i5 i6 i7 i8 i9 iA iB] // multiply by 16 to give some extra precision in0 = _mm_slli_epi16(in0, 4); in1 = _mm_slli_epi16(in1, 4); // if (i == 0 && input[0]) input[0] += 1; // add 1 to the upper left pixel if it is non-zero, which helps reduce // the round-trip error { // The mask will only contain whether the first value is zero, all // other comparison will fail as something shifted by 4 (above << 4) // can never be equal to one. To increment in the non-zero case, we // add the mask and one for the first element: // - if zero, mask = -1, v = v - 1 + 1 = v // - if non-zero, mask = 0, v = v + 0 + 1 = v + 1 __m128i mask = _mm_cmpeq_epi16(in0, k__nonzero_bias_a); in0 = _mm_add_epi16(in0, mask); in0 = _mm_add_epi16(in0, k__nonzero_bias_b); } } // There are 4 total stages, alternating between an add/subtract stage // followed by an multiply-and-add stage. { // Stage 1: Add/subtract // in0 = [i0 i1 i2 i3 iC iD iE iF] // in1 = [i4 i5 i6 i7 i8 i9 iA iB] const __m128i r0 = _mm_unpacklo_epi16(in0, in1); const __m128i r1 = _mm_unpackhi_epi16(in0, in1); // r0 = [i0 i4 i1 i5 i2 i6 i3 i7] // r1 = [iC i8 iD i9 iE iA iF iB] const __m128i r2 = _mm_shuffle_epi32(r0, 0xB4); const __m128i r3 = _mm_shuffle_epi32(r1, 0xB4); // r2 = [i0 i4 i1 i5 i3 i7 i2 i6] // r3 = [iC i8 iD i9 iF iB iE iA] const __m128i t0 = _mm_add_epi16(r2, r3); const __m128i t1 = _mm_sub_epi16(r2, r3); // t0 = [a0 a4 a1 a5 a3 a7 a2 a6] // t1 = [aC a8 aD a9 aF aB aE aA] // Stage 2: multiply by constants (which gets us into 32 bits). // The constants needed here are: // k__cospi_A = [p16 p16 p16 p16 p16 m16 p16 m16] // k__cospi_B = [p16 m16 p16 m16 p16 p16 p16 p16] // k__cospi_C = [p08 p24 p08 p24 p24 m08 p24 m08] // k__cospi_D = [p24 m08 p24 m08 p08 p24 p08 p24] const __m128i u0 = _mm_madd_epi16(t0, k__cospi_A); const __m128i u2 = _mm_madd_epi16(t0, k__cospi_B); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_C); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_D); // Then add and right-shift to get back to 16-bit range const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); // w0 = [b0 b1 b7 b6] // w1 = [b8 b9 bF bE] // w2 = [b4 b5 b3 b2] // w3 = [bC bD bB bA] const __m128i x0 = _mm_packs_epi32(w0, w1); const __m128i x1 = _mm_packs_epi32(w2, w3); // x0 = [b0 b1 b7 b6 b8 b9 bF bE] // x1 = [b4 b5 b3 b2 bC bD bB bA] in0 = _mm_shuffle_epi32(x0, 0xD8); in1 = _mm_shuffle_epi32(x1, 0x8D); // in0 = [b0 b1 b8 b9 b7 b6 bF bE] // in1 = [b3 b2 bB bA b4 b5 bC bD] } { // vertical DCTs finished. Now we do the horizontal DCTs. // Stage 3: Add/subtract const __m128i t0 = _mm_add_epi16(in0, in1); const __m128i t1 = _mm_sub_epi16(in0, in1); // t0 = [c0 c1 c8 c9 c4 c5 cC cD] // t1 = [c3 c2 cB cA -c7 -c6 -cF -cE] // Stage 4: multiply by constants (which gets us into 32 bits). // The constants needed here are: // k__cospi_E = [p16 p16 p16 p16 p16 p16 p16 p16] // k__cospi_F = [p16 m16 p16 m16 p16 m16 p16 m16] // k__cospi_G = [p08 p24 p08 p24 m08 m24 m08 m24] // k__cospi_H = [p24 m08 p24 m08 m24 p08 m24 p08] const __m128i u0 = _mm_madd_epi16(t0, k__cospi_E); const __m128i u1 = _mm_madd_epi16(t0, k__cospi_F); const __m128i u2 = _mm_madd_epi16(t1, k__cospi_G); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_H); // Then add and right-shift to get back to 16-bit range // but this combines the final right-shift as well to save operations // This unusual rounding operations is to maintain bit-accurate // compatibility with the c version of this function which has two // rounding steps in a row. const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING2); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING2); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING2); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING2); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS2); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS2); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS2); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS2); // w0 = [o0 o4 o8 oC] // w1 = [o2 o6 oA oE] // w2 = [o1 o5 o9 oD] // w3 = [o3 o7 oB oF] // remember the o's are numbered according to the correct output location const __m128i x0 = _mm_packs_epi32(w0, w1); const __m128i x1 = _mm_packs_epi32(w2, w3); // x0 = [o0 o4 o8 oC o2 o6 oA oE] // x1 = [o1 o5 o9 oD o3 o7 oB oF] const __m128i y0 = _mm_unpacklo_epi16(x0, x1); const __m128i y1 = _mm_unpackhi_epi16(x0, x1); // y0 = [o0 o1 o4 o5 o8 o9 oC oD] // y1 = [o2 o3 o6 o7 oA oB oE oF] in0 = _mm_unpacklo_epi32(y0, y1); // in0 = [o0 o1 o2 o3 o4 o5 o6 o7] in1 = _mm_unpackhi_epi32(y0, y1); // in1 = [o8 o9 oA oB oC oD oE oF] } // Post-condition (v + 1) >> 2 is now incorporated into previous // add and right-shift commands. Only 2 store instructions needed // because we are using the fact that 1/3 are stored just after 0/2. { _mm_storeu_si128((__m128i *)(output + 0 * 4), in0); _mm_storeu_si128((__m128i *)(output + 2 * 4), in1); } } static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in, int stride) { const __m128i k__nonzero_bias_a = _mm_setr_epi16(0, 1, 1, 1, 1, 1, 1, 1); const __m128i k__nonzero_bias_b = _mm_setr_epi16(1, 0, 0, 0, 0, 0, 0, 0); __m128i mask; in[0] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride)); in[1] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride)); in[2] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride)); in[3] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride)); in[0] = _mm_slli_epi16(in[0], 4); in[1] = _mm_slli_epi16(in[1], 4); in[2] = _mm_slli_epi16(in[2], 4); in[3] = _mm_slli_epi16(in[3], 4); mask = _mm_cmpeq_epi16(in[0], k__nonzero_bias_a); in[0] = _mm_add_epi16(in[0], mask); in[0] = _mm_add_epi16(in[0], k__nonzero_bias_b); } static INLINE void write_buffer_4x4(int16_t *output, __m128i *res) { const __m128i kOne = _mm_set1_epi16(1); __m128i in01 = _mm_unpacklo_epi64(res[0], res[1]); __m128i in23 = _mm_unpacklo_epi64(res[2], res[3]); __m128i out01 = _mm_add_epi16(in01, kOne); __m128i out23 = _mm_add_epi16(in23, kOne); out01 = _mm_srai_epi16(out01, 2); out23 = _mm_srai_epi16(out23, 2); _mm_store_si128((__m128i *)(output + 0 * 8), out01); _mm_store_si128((__m128i *)(output + 1 * 8), out23); } static INLINE void transpose_4x4(__m128i *res) { // Combine and transpose // 00 01 02 03 20 21 22 23 // 10 11 12 13 30 31 32 33 const __m128i tr0_0 = _mm_unpacklo_epi16(res[0], res[1]); const __m128i tr0_1 = _mm_unpackhi_epi16(res[0], res[1]); // 00 10 01 11 02 12 03 13 // 20 30 21 31 22 32 23 33 res[0] = _mm_unpacklo_epi32(tr0_0, tr0_1); res[2] = _mm_unpackhi_epi32(tr0_0, tr0_1); // 00 10 20 30 01 11 21 31 // 02 12 22 32 03 13 23 33 // only use the first 4 16-bit integers res[1] = _mm_unpackhi_epi64(res[0], res[0]); res[3] = _mm_unpackhi_epi64(res[2], res[2]); } void fdct4_sse2(__m128i *in) { const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64); const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); __m128i u[4], v[4]; u[0]=_mm_unpacklo_epi16(in[0], in[1]); u[1]=_mm_unpacklo_epi16(in[3], in[2]); v[0] = _mm_add_epi16(u[0], u[1]); v[1] = _mm_sub_epi16(u[0], u[1]); u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16); // 0 u[1] = _mm_madd_epi16(v[0], k__cospi_p16_m16); // 2 u[2] = _mm_madd_epi16(v[1], k__cospi_p08_p24); // 1 u[3] = _mm_madd_epi16(v[1], k__cospi_p24_m08); // 3 v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); in[0] = _mm_packs_epi32(u[0], u[1]); in[1] = _mm_packs_epi32(u[2], u[3]); transpose_4x4(in); } void fadst4_sse2(__m128i *in) { const __m128i k__sinpi_p01_p02 = pair_set_epi16(sinpi_1_9, sinpi_2_9); const __m128i k__sinpi_p04_m01 = pair_set_epi16(sinpi_4_9, -sinpi_1_9); const __m128i k__sinpi_p03_p04 = pair_set_epi16(sinpi_3_9, sinpi_4_9); const __m128i k__sinpi_m03_p02 = pair_set_epi16(-sinpi_3_9, sinpi_2_9); const __m128i k__sinpi_p03_p03 = _mm_set1_epi16(sinpi_3_9); const __m128i kZero = _mm_set1_epi16(0); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); __m128i u[8], v[8]; __m128i in7 = _mm_add_epi16(in[0], in[1]); u[0] = _mm_unpacklo_epi16(in[0], in[1]); u[1] = _mm_unpacklo_epi16(in[2], in[3]); u[2] = _mm_unpacklo_epi16(in7, kZero); u[3] = _mm_unpacklo_epi16(in[2], kZero); u[4] = _mm_unpacklo_epi16(in[3], kZero); v[0] = _mm_madd_epi16(u[0], k__sinpi_p01_p02); // s0 + s2 v[1] = _mm_madd_epi16(u[1], k__sinpi_p03_p04); // s4 + s5 v[2] = _mm_madd_epi16(u[2], k__sinpi_p03_p03); // x1 v[3] = _mm_madd_epi16(u[0], k__sinpi_p04_m01); // s1 - s3 v[4] = _mm_madd_epi16(u[1], k__sinpi_m03_p02); // -s4 + s6 v[5] = _mm_madd_epi16(u[3], k__sinpi_p03_p03); // s4 v[6] = _mm_madd_epi16(u[4], k__sinpi_p03_p03); u[0] = _mm_add_epi32(v[0], v[1]); u[1] = _mm_sub_epi32(v[2], v[6]); u[2] = _mm_add_epi32(v[3], v[4]); u[3] = _mm_sub_epi32(u[2], u[0]); u[4] = _mm_slli_epi32(v[5], 2); u[5] = _mm_sub_epi32(u[4], v[5]); u[6] = _mm_add_epi32(u[3], u[5]); v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); v[3] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); in[0] = _mm_packs_epi32(u[0], u[2]); in[1] = _mm_packs_epi32(u[1], u[3]); transpose_4x4(in); } void vp9_fht4x4_sse2(const int16_t *input, int16_t *output, int stride, int tx_type) { __m128i in[4]; switch (tx_type) { case DCT_DCT: vp9_fdct4x4_sse2(input, output, stride); break; case ADST_DCT: load_buffer_4x4(input, in, stride); fadst4_sse2(in); fdct4_sse2(in); write_buffer_4x4(output, in); break; case DCT_ADST: load_buffer_4x4(input, in, stride); fdct4_sse2(in); fadst4_sse2(in); write_buffer_4x4(output, in); break; case ADST_ADST: load_buffer_4x4(input, in, stride); fadst4_sse2(in); fadst4_sse2(in); write_buffer_4x4(output, in); break; default: assert(0); break; } } void vp9_fdct8x8_sse2(const int16_t *input, int16_t *output, int stride) { int pass; // Constants // When we use them, in one case, they are all the same. In all others // it's a pair of them that we need to repeat four times. This is done // by constructing the 32 bit constant corresponding to that pair. const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); // Load input __m128i in0 = _mm_load_si128((const __m128i *)(input + 0 * stride)); __m128i in1 = _mm_load_si128((const __m128i *)(input + 1 * stride)); __m128i in2 = _mm_load_si128((const __m128i *)(input + 2 * stride)); __m128i in3 = _mm_load_si128((const __m128i *)(input + 3 * stride)); __m128i in4 = _mm_load_si128((const __m128i *)(input + 4 * stride)); __m128i in5 = _mm_load_si128((const __m128i *)(input + 5 * stride)); __m128i in6 = _mm_load_si128((const __m128i *)(input + 6 * stride)); __m128i in7 = _mm_load_si128((const __m128i *)(input + 7 * stride)); // Pre-condition input (shift by two) in0 = _mm_slli_epi16(in0, 2); in1 = _mm_slli_epi16(in1, 2); in2 = _mm_slli_epi16(in2, 2); in3 = _mm_slli_epi16(in3, 2); in4 = _mm_slli_epi16(in4, 2); in5 = _mm_slli_epi16(in5, 2); in6 = _mm_slli_epi16(in6, 2); in7 = _mm_slli_epi16(in7, 2); // We do two passes, first the columns, then the rows. The results of the // first pass are transposed so that the same column code can be reused. The // results of the second pass are also transposed so that the rows (processed // as columns) are put back in row positions. for (pass = 0; pass < 2; pass++) { // To store results of each pass before the transpose. __m128i res0, res1, res2, res3, res4, res5, res6, res7; // Add/subtract const __m128i q0 = _mm_add_epi16(in0, in7); const __m128i q1 = _mm_add_epi16(in1, in6); const __m128i q2 = _mm_add_epi16(in2, in5); const __m128i q3 = _mm_add_epi16(in3, in4); const __m128i q4 = _mm_sub_epi16(in3, in4); const __m128i q5 = _mm_sub_epi16(in2, in5); const __m128i q6 = _mm_sub_epi16(in1, in6); const __m128i q7 = _mm_sub_epi16(in0, in7); // Work on first four results { // Add/subtract const __m128i r0 = _mm_add_epi16(q0, q3); const __m128i r1 = _mm_add_epi16(q1, q2); const __m128i r2 = _mm_sub_epi16(q1, q2); const __m128i r3 = _mm_sub_epi16(q0, q3); // Interleave to do the multiply by constants which gets us into 32bits const __m128i t0 = _mm_unpacklo_epi16(r0, r1); const __m128i t1 = _mm_unpackhi_epi16(r0, r1); const __m128i t2 = _mm_unpacklo_epi16(r2, r3); const __m128i t3 = _mm_unpackhi_epi16(r2, r3); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); // Combine res0 = _mm_packs_epi32(w0, w1); res4 = _mm_packs_epi32(w2, w3); res2 = _mm_packs_epi32(w4, w5); res6 = _mm_packs_epi32(w6, w7); } // Work on next four results { // Interleave to do the multiply by constants which gets us into 32bits const __m128i d0 = _mm_unpacklo_epi16(q6, q5); const __m128i d1 = _mm_unpackhi_epi16(q6, q5); const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16); const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16); const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16); const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16); // dct_const_round_shift const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING); const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING); const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING); const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING); const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS); const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS); const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS); const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS); // Combine const __m128i r0 = _mm_packs_epi32(s0, s1); const __m128i r1 = _mm_packs_epi32(s2, s3); // Add/subtract const __m128i x0 = _mm_add_epi16(q4, r0); const __m128i x1 = _mm_sub_epi16(q4, r0); const __m128i x2 = _mm_sub_epi16(q7, r1); const __m128i x3 = _mm_add_epi16(q7, r1); // Interleave to do the multiply by constants which gets us into 32bits const __m128i t0 = _mm_unpacklo_epi16(x0, x3); const __m128i t1 = _mm_unpackhi_epi16(x0, x3); const __m128i t2 = _mm_unpacklo_epi16(x1, x2); const __m128i t3 = _mm_unpackhi_epi16(x1, x2); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); // Combine res1 = _mm_packs_epi32(w0, w1); res7 = _mm_packs_epi32(w2, w3); res5 = _mm_packs_epi32(w4, w5); res3 = _mm_packs_epi32(w6, w7); } // Transpose the 8x8. { // 00 01 02 03 04 05 06 07 // 10 11 12 13 14 15 16 17 // 20 21 22 23 24 25 26 27 // 30 31 32 33 34 35 36 37 // 40 41 42 43 44 45 46 47 // 50 51 52 53 54 55 56 57 // 60 61 62 63 64 65 66 67 // 70 71 72 73 74 75 76 77 const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1); const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3); const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1); const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3); const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5); const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7); const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5); const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7); // 00 10 01 11 02 12 03 13 // 20 30 21 31 22 32 23 33 // 04 14 05 15 06 16 07 17 // 24 34 25 35 26 36 27 37 // 40 50 41 51 42 52 43 53 // 60 70 61 71 62 72 63 73 // 54 54 55 55 56 56 57 57 // 64 74 65 75 66 76 67 77 const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); // 00 10 20 30 01 11 21 31 // 40 50 60 70 41 51 61 71 // 02 12 22 32 03 13 23 33 // 42 52 62 72 43 53 63 73 // 04 14 24 34 05 15 21 36 // 44 54 64 74 45 55 61 76 // 06 16 26 36 07 17 27 37 // 46 56 66 76 47 57 67 77 in0 = _mm_unpacklo_epi64(tr1_0, tr1_4); in1 = _mm_unpackhi_epi64(tr1_0, tr1_4); in2 = _mm_unpacklo_epi64(tr1_2, tr1_6); in3 = _mm_unpackhi_epi64(tr1_2, tr1_6); in4 = _mm_unpacklo_epi64(tr1_1, tr1_5); in5 = _mm_unpackhi_epi64(tr1_1, tr1_5); in6 = _mm_unpacklo_epi64(tr1_3, tr1_7); in7 = _mm_unpackhi_epi64(tr1_3, tr1_7); // 00 10 20 30 40 50 60 70 // 01 11 21 31 41 51 61 71 // 02 12 22 32 42 52 62 72 // 03 13 23 33 43 53 63 73 // 04 14 24 34 44 54 64 74 // 05 15 25 35 45 55 65 75 // 06 16 26 36 46 56 66 76 // 07 17 27 37 47 57 67 77 } } // Post-condition output and store it { // Post-condition (division by two) // division of two 16 bits signed numbers using shifts // n / 2 = (n - (n >> 15)) >> 1 const __m128i sign_in0 = _mm_srai_epi16(in0, 15); const __m128i sign_in1 = _mm_srai_epi16(in1, 15); const __m128i sign_in2 = _mm_srai_epi16(in2, 15); const __m128i sign_in3 = _mm_srai_epi16(in3, 15); const __m128i sign_in4 = _mm_srai_epi16(in4, 15); const __m128i sign_in5 = _mm_srai_epi16(in5, 15); const __m128i sign_in6 = _mm_srai_epi16(in6, 15); const __m128i sign_in7 = _mm_srai_epi16(in7, 15); in0 = _mm_sub_epi16(in0, sign_in0); in1 = _mm_sub_epi16(in1, sign_in1); in2 = _mm_sub_epi16(in2, sign_in2); in3 = _mm_sub_epi16(in3, sign_in3); in4 = _mm_sub_epi16(in4, sign_in4); in5 = _mm_sub_epi16(in5, sign_in5); in6 = _mm_sub_epi16(in6, sign_in6); in7 = _mm_sub_epi16(in7, sign_in7); in0 = _mm_srai_epi16(in0, 1); in1 = _mm_srai_epi16(in1, 1); in2 = _mm_srai_epi16(in2, 1); in3 = _mm_srai_epi16(in3, 1); in4 = _mm_srai_epi16(in4, 1); in5 = _mm_srai_epi16(in5, 1); in6 = _mm_srai_epi16(in6, 1); in7 = _mm_srai_epi16(in7, 1); // store results _mm_store_si128((__m128i *)(output + 0 * 8), in0); _mm_store_si128((__m128i *)(output + 1 * 8), in1); _mm_store_si128((__m128i *)(output + 2 * 8), in2); _mm_store_si128((__m128i *)(output + 3 * 8), in3); _mm_store_si128((__m128i *)(output + 4 * 8), in4); _mm_store_si128((__m128i *)(output + 5 * 8), in5); _mm_store_si128((__m128i *)(output + 6 * 8), in6); _mm_store_si128((__m128i *)(output + 7 * 8), in7); } } // load 8x8 array static INLINE void load_buffer_8x8(const int16_t *input, __m128i *in, int stride) { in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride)); in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride)); in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride)); in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride)); in[4] = _mm_load_si128((const __m128i *)(input + 4 * stride)); in[5] = _mm_load_si128((const __m128i *)(input + 5 * stride)); in[6] = _mm_load_si128((const __m128i *)(input + 6 * stride)); in[7] = _mm_load_si128((const __m128i *)(input + 7 * stride)); in[0] = _mm_slli_epi16(in[0], 2); in[1] = _mm_slli_epi16(in[1], 2); in[2] = _mm_slli_epi16(in[2], 2); in[3] = _mm_slli_epi16(in[3], 2); in[4] = _mm_slli_epi16(in[4], 2); in[5] = _mm_slli_epi16(in[5], 2); in[6] = _mm_slli_epi16(in[6], 2); in[7] = _mm_slli_epi16(in[7], 2); } // right shift and rounding static INLINE void right_shift_8x8(__m128i *res, int const bit) { const __m128i kOne = _mm_set1_epi16(1); const int bit_m02 = bit - 2; __m128i sign0 = _mm_srai_epi16(res[0], 15); __m128i sign1 = _mm_srai_epi16(res[1], 15); __m128i sign2 = _mm_srai_epi16(res[2], 15); __m128i sign3 = _mm_srai_epi16(res[3], 15); __m128i sign4 = _mm_srai_epi16(res[4], 15); __m128i sign5 = _mm_srai_epi16(res[5], 15); __m128i sign6 = _mm_srai_epi16(res[6], 15); __m128i sign7 = _mm_srai_epi16(res[7], 15); if (bit_m02 >= 0) { __m128i k_const_rounding = _mm_slli_epi16(kOne, bit_m02); res[0] = _mm_add_epi16(res[0], k_const_rounding); res[1] = _mm_add_epi16(res[1], k_const_rounding); res[2] = _mm_add_epi16(res[2], k_const_rounding); res[3] = _mm_add_epi16(res[3], k_const_rounding); res[4] = _mm_add_epi16(res[4], k_const_rounding); res[5] = _mm_add_epi16(res[5], k_const_rounding); res[6] = _mm_add_epi16(res[6], k_const_rounding); res[7] = _mm_add_epi16(res[7], k_const_rounding); } res[0] = _mm_sub_epi16(res[0], sign0); res[1] = _mm_sub_epi16(res[1], sign1); res[2] = _mm_sub_epi16(res[2], sign2); res[3] = _mm_sub_epi16(res[3], sign3); res[4] = _mm_sub_epi16(res[4], sign4); res[5] = _mm_sub_epi16(res[5], sign5); res[6] = _mm_sub_epi16(res[6], sign6); res[7] = _mm_sub_epi16(res[7], sign7); res[0] = _mm_srai_epi16(res[0], bit); res[1] = _mm_srai_epi16(res[1], bit); res[2] = _mm_srai_epi16(res[2], bit); res[3] = _mm_srai_epi16(res[3], bit); res[4] = _mm_srai_epi16(res[4], bit); res[5] = _mm_srai_epi16(res[5], bit); res[6] = _mm_srai_epi16(res[6], bit); res[7] = _mm_srai_epi16(res[7], bit); } // write 8x8 array static INLINE void write_buffer_8x8(int16_t *output, __m128i *res, int stride) { _mm_store_si128((__m128i *)(output + 0 * stride), res[0]); _mm_store_si128((__m128i *)(output + 1 * stride), res[1]); _mm_store_si128((__m128i *)(output + 2 * stride), res[2]); _mm_store_si128((__m128i *)(output + 3 * stride), res[3]); _mm_store_si128((__m128i *)(output + 4 * stride), res[4]); _mm_store_si128((__m128i *)(output + 5 * stride), res[5]); _mm_store_si128((__m128i *)(output + 6 * stride), res[6]); _mm_store_si128((__m128i *)(output + 7 * stride), res[7]); } // perform in-place transpose static INLINE void array_transpose_8x8(__m128i *in, __m128i *res) { const __m128i tr0_0 = _mm_unpacklo_epi16(in[0], in[1]); const __m128i tr0_1 = _mm_unpacklo_epi16(in[2], in[3]); const __m128i tr0_2 = _mm_unpackhi_epi16(in[0], in[1]); const __m128i tr0_3 = _mm_unpackhi_epi16(in[2], in[3]); const __m128i tr0_4 = _mm_unpacklo_epi16(in[4], in[5]); const __m128i tr0_5 = _mm_unpacklo_epi16(in[6], in[7]); const __m128i tr0_6 = _mm_unpackhi_epi16(in[4], in[5]); const __m128i tr0_7 = _mm_unpackhi_epi16(in[6], in[7]); // 00 10 01 11 02 12 03 13 // 20 30 21 31 22 32 23 33 // 04 14 05 15 06 16 07 17 // 24 34 25 35 26 36 27 37 // 40 50 41 51 42 52 43 53 // 60 70 61 71 62 72 63 73 // 44 54 45 55 46 56 47 57 // 64 74 65 75 66 76 67 77 const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_4, tr0_5); const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_4, tr0_5); const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_2, tr0_3); const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_2, tr0_3); const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); // 00 10 20 30 01 11 21 31 // 40 50 60 70 41 51 61 71 // 02 12 22 32 03 13 23 33 // 42 52 62 72 43 53 63 73 // 04 14 24 34 05 15 25 35 // 44 54 64 74 45 55 65 75 // 06 16 26 36 07 17 27 37 // 46 56 66 76 47 57 67 77 res[0] = _mm_unpacklo_epi64(tr1_0, tr1_1); res[1] = _mm_unpackhi_epi64(tr1_0, tr1_1); res[2] = _mm_unpacklo_epi64(tr1_2, tr1_3); res[3] = _mm_unpackhi_epi64(tr1_2, tr1_3); res[4] = _mm_unpacklo_epi64(tr1_4, tr1_5); res[5] = _mm_unpackhi_epi64(tr1_4, tr1_5); res[6] = _mm_unpacklo_epi64(tr1_6, tr1_7); res[7] = _mm_unpackhi_epi64(tr1_6, tr1_7); // 00 10 20 30 40 50 60 70 // 01 11 21 31 41 51 61 71 // 02 12 22 32 42 52 62 72 // 03 13 23 33 43 53 63 73 // 04 14 24 34 44 54 64 74 // 05 15 25 35 45 55 65 75 // 06 16 26 36 46 56 66 76 // 07 17 27 37 47 57 67 77 } void fdct8_sse2(__m128i *in) { // constants const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); __m128i u0, u1, u2, u3, u4, u5, u6, u7; __m128i v0, v1, v2, v3, v4, v5, v6, v7; __m128i s0, s1, s2, s3, s4, s5, s6, s7; // stage 1 s0 = _mm_add_epi16(in[0], in[7]); s1 = _mm_add_epi16(in[1], in[6]); s2 = _mm_add_epi16(in[2], in[5]); s3 = _mm_add_epi16(in[3], in[4]); s4 = _mm_sub_epi16(in[3], in[4]); s5 = _mm_sub_epi16(in[2], in[5]); s6 = _mm_sub_epi16(in[1], in[6]); s7 = _mm_sub_epi16(in[0], in[7]); u0 = _mm_add_epi16(s0, s3); u1 = _mm_add_epi16(s1, s2); u2 = _mm_sub_epi16(s1, s2); u3 = _mm_sub_epi16(s0, s3); // interleave and perform butterfly multiplication/addition v0 = _mm_unpacklo_epi16(u0, u1); v1 = _mm_unpackhi_epi16(u0, u1); v2 = _mm_unpacklo_epi16(u2, u3); v3 = _mm_unpackhi_epi16(u2, u3); u0 = _mm_madd_epi16(v0, k__cospi_p16_p16); u1 = _mm_madd_epi16(v1, k__cospi_p16_p16); u2 = _mm_madd_epi16(v0, k__cospi_p16_m16); u3 = _mm_madd_epi16(v1, k__cospi_p16_m16); u4 = _mm_madd_epi16(v2, k__cospi_p24_p08); u5 = _mm_madd_epi16(v3, k__cospi_p24_p08); u6 = _mm_madd_epi16(v2, k__cospi_m08_p24); u7 = _mm_madd_epi16(v3, k__cospi_m08_p24); // shift and rounding v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); u0 = _mm_srai_epi32(v0, DCT_CONST_BITS); u1 = _mm_srai_epi32(v1, DCT_CONST_BITS); u2 = _mm_srai_epi32(v2, DCT_CONST_BITS); u3 = _mm_srai_epi32(v3, DCT_CONST_BITS); u4 = _mm_srai_epi32(v4, DCT_CONST_BITS); u5 = _mm_srai_epi32(v5, DCT_CONST_BITS); u6 = _mm_srai_epi32(v6, DCT_CONST_BITS); u7 = _mm_srai_epi32(v7, DCT_CONST_BITS); in[0] = _mm_packs_epi32(u0, u1); in[2] = _mm_packs_epi32(u4, u5); in[4] = _mm_packs_epi32(u2, u3); in[6] = _mm_packs_epi32(u6, u7); // stage 2 // interleave and perform butterfly multiplication/addition u0 = _mm_unpacklo_epi16(s6, s5); u1 = _mm_unpackhi_epi16(s6, s5); v0 = _mm_madd_epi16(u0, k__cospi_p16_m16); v1 = _mm_madd_epi16(u1, k__cospi_p16_m16); v2 = _mm_madd_epi16(u0, k__cospi_p16_p16); v3 = _mm_madd_epi16(u1, k__cospi_p16_p16); // shift and rounding u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING); u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING); u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING); u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING); v0 = _mm_srai_epi32(u0, DCT_CONST_BITS); v1 = _mm_srai_epi32(u1, DCT_CONST_BITS); v2 = _mm_srai_epi32(u2, DCT_CONST_BITS); v3 = _mm_srai_epi32(u3, DCT_CONST_BITS); u0 = _mm_packs_epi32(v0, v1); u1 = _mm_packs_epi32(v2, v3); // stage 3 s0 = _mm_add_epi16(s4, u0); s1 = _mm_sub_epi16(s4, u0); s2 = _mm_sub_epi16(s7, u1); s3 = _mm_add_epi16(s7, u1); // stage 4 u0 = _mm_unpacklo_epi16(s0, s3); u1 = _mm_unpackhi_epi16(s0, s3); u2 = _mm_unpacklo_epi16(s1, s2); u3 = _mm_unpackhi_epi16(s1, s2); v0 = _mm_madd_epi16(u0, k__cospi_p28_p04); v1 = _mm_madd_epi16(u1, k__cospi_p28_p04); v2 = _mm_madd_epi16(u2, k__cospi_p12_p20); v3 = _mm_madd_epi16(u3, k__cospi_p12_p20); v4 = _mm_madd_epi16(u2, k__cospi_m20_p12); v5 = _mm_madd_epi16(u3, k__cospi_m20_p12); v6 = _mm_madd_epi16(u0, k__cospi_m04_p28); v7 = _mm_madd_epi16(u1, k__cospi_m04_p28); // shift and rounding u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING); u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING); u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING); u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING); u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING); u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING); u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING); u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING); v0 = _mm_srai_epi32(u0, DCT_CONST_BITS); v1 = _mm_srai_epi32(u1, DCT_CONST_BITS); v2 = _mm_srai_epi32(u2, DCT_CONST_BITS); v3 = _mm_srai_epi32(u3, DCT_CONST_BITS); v4 = _mm_srai_epi32(u4, DCT_CONST_BITS); v5 = _mm_srai_epi32(u5, DCT_CONST_BITS); v6 = _mm_srai_epi32(u6, DCT_CONST_BITS); v7 = _mm_srai_epi32(u7, DCT_CONST_BITS); in[1] = _mm_packs_epi32(v0, v1); in[3] = _mm_packs_epi32(v4, v5); in[5] = _mm_packs_epi32(v2, v3); in[7] = _mm_packs_epi32(v6, v7); // transpose array_transpose_8x8(in, in); } void fadst8_sse2(__m128i *in) { // Constants const __m128i k__cospi_p02_p30 = pair_set_epi16(cospi_2_64, cospi_30_64); const __m128i k__cospi_p30_m02 = pair_set_epi16(cospi_30_64, -cospi_2_64); const __m128i k__cospi_p10_p22 = pair_set_epi16(cospi_10_64, cospi_22_64); const __m128i k__cospi_p22_m10 = pair_set_epi16(cospi_22_64, -cospi_10_64); const __m128i k__cospi_p18_p14 = pair_set_epi16(cospi_18_64, cospi_14_64); const __m128i k__cospi_p14_m18 = pair_set_epi16(cospi_14_64, -cospi_18_64); const __m128i k__cospi_p26_p06 = pair_set_epi16(cospi_26_64, cospi_6_64); const __m128i k__cospi_p06_m26 = pair_set_epi16(cospi_6_64, -cospi_26_64); const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64); const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64); const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64); const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); const __m128i k__const_0 = _mm_set1_epi16(0); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); __m128i u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u13, u14, u15; __m128i v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15; __m128i w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15; __m128i s0, s1, s2, s3, s4, s5, s6, s7; __m128i in0, in1, in2, in3, in4, in5, in6, in7; // properly aligned for butterfly input in0 = in[7]; in1 = in[0]; in2 = in[5]; in3 = in[2]; in4 = in[3]; in5 = in[4]; in6 = in[1]; in7 = in[6]; // column transformation // stage 1 // interleave and multiply/add into 32-bit integer s0 = _mm_unpacklo_epi16(in0, in1); s1 = _mm_unpackhi_epi16(in0, in1); s2 = _mm_unpacklo_epi16(in2, in3); s3 = _mm_unpackhi_epi16(in2, in3); s4 = _mm_unpacklo_epi16(in4, in5); s5 = _mm_unpackhi_epi16(in4, in5); s6 = _mm_unpacklo_epi16(in6, in7); s7 = _mm_unpackhi_epi16(in6, in7); u0 = _mm_madd_epi16(s0, k__cospi_p02_p30); u1 = _mm_madd_epi16(s1, k__cospi_p02_p30); u2 = _mm_madd_epi16(s0, k__cospi_p30_m02); u3 = _mm_madd_epi16(s1, k__cospi_p30_m02); u4 = _mm_madd_epi16(s2, k__cospi_p10_p22); u5 = _mm_madd_epi16(s3, k__cospi_p10_p22); u6 = _mm_madd_epi16(s2, k__cospi_p22_m10); u7 = _mm_madd_epi16(s3, k__cospi_p22_m10); u8 = _mm_madd_epi16(s4, k__cospi_p18_p14); u9 = _mm_madd_epi16(s5, k__cospi_p18_p14); u10 = _mm_madd_epi16(s4, k__cospi_p14_m18); u11 = _mm_madd_epi16(s5, k__cospi_p14_m18); u12 = _mm_madd_epi16(s6, k__cospi_p26_p06); u13 = _mm_madd_epi16(s7, k__cospi_p26_p06); u14 = _mm_madd_epi16(s6, k__cospi_p06_m26); u15 = _mm_madd_epi16(s7, k__cospi_p06_m26); // addition w0 = _mm_add_epi32(u0, u8); w1 = _mm_add_epi32(u1, u9); w2 = _mm_add_epi32(u2, u10); w3 = _mm_add_epi32(u3, u11); w4 = _mm_add_epi32(u4, u12); w5 = _mm_add_epi32(u5, u13); w6 = _mm_add_epi32(u6, u14); w7 = _mm_add_epi32(u7, u15); w8 = _mm_sub_epi32(u0, u8); w9 = _mm_sub_epi32(u1, u9); w10 = _mm_sub_epi32(u2, u10); w11 = _mm_sub_epi32(u3, u11); w12 = _mm_sub_epi32(u4, u12); w13 = _mm_sub_epi32(u5, u13); w14 = _mm_sub_epi32(u6, u14); w15 = _mm_sub_epi32(u7, u15); // shift and rounding v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING); v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING); v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING); v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING); v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING); v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING); v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING); v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING); v8 = _mm_add_epi32(w8, k__DCT_CONST_ROUNDING); v9 = _mm_add_epi32(w9, k__DCT_CONST_ROUNDING); v10 = _mm_add_epi32(w10, k__DCT_CONST_ROUNDING); v11 = _mm_add_epi32(w11, k__DCT_CONST_ROUNDING); v12 = _mm_add_epi32(w12, k__DCT_CONST_ROUNDING); v13 = _mm_add_epi32(w13, k__DCT_CONST_ROUNDING); v14 = _mm_add_epi32(w14, k__DCT_CONST_ROUNDING); v15 = _mm_add_epi32(w15, k__DCT_CONST_ROUNDING); u0 = _mm_srai_epi32(v0, DCT_CONST_BITS); u1 = _mm_srai_epi32(v1, DCT_CONST_BITS); u2 = _mm_srai_epi32(v2, DCT_CONST_BITS); u3 = _mm_srai_epi32(v3, DCT_CONST_BITS); u4 = _mm_srai_epi32(v4, DCT_CONST_BITS); u5 = _mm_srai_epi32(v5, DCT_CONST_BITS); u6 = _mm_srai_epi32(v6, DCT_CONST_BITS); u7 = _mm_srai_epi32(v7, DCT_CONST_BITS); u8 = _mm_srai_epi32(v8, DCT_CONST_BITS); u9 = _mm_srai_epi32(v9, DCT_CONST_BITS); u10 = _mm_srai_epi32(v10, DCT_CONST_BITS); u11 = _mm_srai_epi32(v11, DCT_CONST_BITS); u12 = _mm_srai_epi32(v12, DCT_CONST_BITS); u13 = _mm_srai_epi32(v13, DCT_CONST_BITS); u14 = _mm_srai_epi32(v14, DCT_CONST_BITS); u15 = _mm_srai_epi32(v15, DCT_CONST_BITS); // back to 16-bit and pack 8 integers into __m128i in[0] = _mm_packs_epi32(u0, u1); in[1] = _mm_packs_epi32(u2, u3); in[2] = _mm_packs_epi32(u4, u5); in[3] = _mm_packs_epi32(u6, u7); in[4] = _mm_packs_epi32(u8, u9); in[5] = _mm_packs_epi32(u10, u11); in[6] = _mm_packs_epi32(u12, u13); in[7] = _mm_packs_epi32(u14, u15); // stage 2 s0 = _mm_add_epi16(in[0], in[2]); s1 = _mm_add_epi16(in[1], in[3]); s2 = _mm_sub_epi16(in[0], in[2]); s3 = _mm_sub_epi16(in[1], in[3]); u0 = _mm_unpacklo_epi16(in[4], in[5]); u1 = _mm_unpackhi_epi16(in[4], in[5]); u2 = _mm_unpacklo_epi16(in[6], in[7]); u3 = _mm_unpackhi_epi16(in[6], in[7]); v0 = _mm_madd_epi16(u0, k__cospi_p08_p24); v1 = _mm_madd_epi16(u1, k__cospi_p08_p24); v2 = _mm_madd_epi16(u0, k__cospi_p24_m08); v3 = _mm_madd_epi16(u1, k__cospi_p24_m08); v4 = _mm_madd_epi16(u2, k__cospi_m24_p08); v5 = _mm_madd_epi16(u3, k__cospi_m24_p08); v6 = _mm_madd_epi16(u2, k__cospi_p08_p24); v7 = _mm_madd_epi16(u3, k__cospi_p08_p24); w0 = _mm_add_epi32(v0, v4); w1 = _mm_add_epi32(v1, v5); w2 = _mm_add_epi32(v2, v6); w3 = _mm_add_epi32(v3, v7); w4 = _mm_sub_epi32(v0, v4); w5 = _mm_sub_epi32(v1, v5); w6 = _mm_sub_epi32(v2, v6); w7 = _mm_sub_epi32(v3, v7); v0 = _mm_add_epi32(w0, k__DCT_CONST_ROUNDING); v1 = _mm_add_epi32(w1, k__DCT_CONST_ROUNDING); v2 = _mm_add_epi32(w2, k__DCT_CONST_ROUNDING); v3 = _mm_add_epi32(w3, k__DCT_CONST_ROUNDING); v4 = _mm_add_epi32(w4, k__DCT_CONST_ROUNDING); v5 = _mm_add_epi32(w5, k__DCT_CONST_ROUNDING); v6 = _mm_add_epi32(w6, k__DCT_CONST_ROUNDING); v7 = _mm_add_epi32(w7, k__DCT_CONST_ROUNDING); u0 = _mm_srai_epi32(v0, DCT_CONST_BITS); u1 = _mm_srai_epi32(v1, DCT_CONST_BITS); u2 = _mm_srai_epi32(v2, DCT_CONST_BITS); u3 = _mm_srai_epi32(v3, DCT_CONST_BITS); u4 = _mm_srai_epi32(v4, DCT_CONST_BITS); u5 = _mm_srai_epi32(v5, DCT_CONST_BITS); u6 = _mm_srai_epi32(v6, DCT_CONST_BITS); u7 = _mm_srai_epi32(v7, DCT_CONST_BITS); // back to 16-bit intergers s4 = _mm_packs_epi32(u0, u1); s5 = _mm_packs_epi32(u2, u3); s6 = _mm_packs_epi32(u4, u5); s7 = _mm_packs_epi32(u6, u7); // stage 3 u0 = _mm_unpacklo_epi16(s2, s3); u1 = _mm_unpackhi_epi16(s2, s3); u2 = _mm_unpacklo_epi16(s6, s7); u3 = _mm_unpackhi_epi16(s6, s7); v0 = _mm_madd_epi16(u0, k__cospi_p16_p16); v1 = _mm_madd_epi16(u1, k__cospi_p16_p16); v2 = _mm_madd_epi16(u0, k__cospi_p16_m16); v3 = _mm_madd_epi16(u1, k__cospi_p16_m16); v4 = _mm_madd_epi16(u2, k__cospi_p16_p16); v5 = _mm_madd_epi16(u3, k__cospi_p16_p16); v6 = _mm_madd_epi16(u2, k__cospi_p16_m16); v7 = _mm_madd_epi16(u3, k__cospi_p16_m16); u0 = _mm_add_epi32(v0, k__DCT_CONST_ROUNDING); u1 = _mm_add_epi32(v1, k__DCT_CONST_ROUNDING); u2 = _mm_add_epi32(v2, k__DCT_CONST_ROUNDING); u3 = _mm_add_epi32(v3, k__DCT_CONST_ROUNDING); u4 = _mm_add_epi32(v4, k__DCT_CONST_ROUNDING); u5 = _mm_add_epi32(v5, k__DCT_CONST_ROUNDING); u6 = _mm_add_epi32(v6, k__DCT_CONST_ROUNDING); u7 = _mm_add_epi32(v7, k__DCT_CONST_ROUNDING); v0 = _mm_srai_epi32(u0, DCT_CONST_BITS); v1 = _mm_srai_epi32(u1, DCT_CONST_BITS); v2 = _mm_srai_epi32(u2, DCT_CONST_BITS); v3 = _mm_srai_epi32(u3, DCT_CONST_BITS); v4 = _mm_srai_epi32(u4, DCT_CONST_BITS); v5 = _mm_srai_epi32(u5, DCT_CONST_BITS); v6 = _mm_srai_epi32(u6, DCT_CONST_BITS); v7 = _mm_srai_epi32(u7, DCT_CONST_BITS); s2 = _mm_packs_epi32(v0, v1); s3 = _mm_packs_epi32(v2, v3); s6 = _mm_packs_epi32(v4, v5); s7 = _mm_packs_epi32(v6, v7); // FIXME(jingning): do subtract using bit inversion? in[0] = s0; in[1] = _mm_sub_epi16(k__const_0, s4); in[2] = s6; in[3] = _mm_sub_epi16(k__const_0, s2); in[4] = s3; in[5] = _mm_sub_epi16(k__const_0, s7); in[6] = s5; in[7] = _mm_sub_epi16(k__const_0, s1); // transpose array_transpose_8x8(in, in); } void vp9_fht8x8_sse2(const int16_t *input, int16_t *output, int stride, int tx_type) { __m128i in[8]; switch (tx_type) { case DCT_DCT: vp9_fdct8x8_sse2(input, output, stride); break; case ADST_DCT: load_buffer_8x8(input, in, stride); fadst8_sse2(in); fdct8_sse2(in); right_shift_8x8(in, 1); write_buffer_8x8(output, in, 8); break; case DCT_ADST: load_buffer_8x8(input, in, stride); fdct8_sse2(in); fadst8_sse2(in); right_shift_8x8(in, 1); write_buffer_8x8(output, in, 8); break; case ADST_ADST: load_buffer_8x8(input, in, stride); fadst8_sse2(in); fadst8_sse2(in); right_shift_8x8(in, 1); write_buffer_8x8(output, in, 8); break; default: assert(0); break; } } void vp9_fdct16x16_sse2(const int16_t *input, int16_t *output, int stride) { // The 2D transform is done with two passes which are actually pretty // similar. In the first one, we transform the columns and transpose // the results. In the second one, we transform the rows. To achieve that, // as the first pass results are transposed, we transpose the columns (that // is the transposed rows) and transpose the results (so that it goes back // in normal/row positions). int pass; // We need an intermediate buffer between passes. DECLARE_ALIGNED_ARRAY(16, int16_t, intermediate, 256); const int16_t *in = input; int16_t *out = intermediate; // Constants // When we use them, in one case, they are all the same. In all others // it's a pair of them that we need to repeat four times. This is done // by constructing the 32 bit constant corresponding to that pair. const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); const __m128i k__cospi_m24_m08 = pair_set_epi16(-cospi_24_64, -cospi_8_64); const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64); const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64); const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64); const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64); const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64); const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64); const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64); const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); const __m128i kOne = _mm_set1_epi16(1); // Do the two transform/transpose passes for (pass = 0; pass < 2; ++pass) { // We process eight columns (transposed rows in second pass) at a time. int column_start; for (column_start = 0; column_start < 16; column_start += 8) { __m128i in00, in01, in02, in03, in04, in05, in06, in07; __m128i in08, in09, in10, in11, in12, in13, in14, in15; __m128i input0, input1, input2, input3, input4, input5, input6, input7; __m128i step1_0, step1_1, step1_2, step1_3; __m128i step1_4, step1_5, step1_6, step1_7; __m128i step2_1, step2_2, step2_3, step2_4, step2_5, step2_6; __m128i step3_0, step3_1, step3_2, step3_3; __m128i step3_4, step3_5, step3_6, step3_7; __m128i res00, res01, res02, res03, res04, res05, res06, res07; __m128i res08, res09, res10, res11, res12, res13, res14, res15; // Load and pre-condition input. if (0 == pass) { in00 = _mm_load_si128((const __m128i *)(in + 0 * stride)); in01 = _mm_load_si128((const __m128i *)(in + 1 * stride)); in02 = _mm_load_si128((const __m128i *)(in + 2 * stride)); in03 = _mm_load_si128((const __m128i *)(in + 3 * stride)); in04 = _mm_load_si128((const __m128i *)(in + 4 * stride)); in05 = _mm_load_si128((const __m128i *)(in + 5 * stride)); in06 = _mm_load_si128((const __m128i *)(in + 6 * stride)); in07 = _mm_load_si128((const __m128i *)(in + 7 * stride)); in08 = _mm_load_si128((const __m128i *)(in + 8 * stride)); in09 = _mm_load_si128((const __m128i *)(in + 9 * stride)); in10 = _mm_load_si128((const __m128i *)(in + 10 * stride)); in11 = _mm_load_si128((const __m128i *)(in + 11 * stride)); in12 = _mm_load_si128((const __m128i *)(in + 12 * stride)); in13 = _mm_load_si128((const __m128i *)(in + 13 * stride)); in14 = _mm_load_si128((const __m128i *)(in + 14 * stride)); in15 = _mm_load_si128((const __m128i *)(in + 15 * stride)); // x = x << 2 in00 = _mm_slli_epi16(in00, 2); in01 = _mm_slli_epi16(in01, 2); in02 = _mm_slli_epi16(in02, 2); in03 = _mm_slli_epi16(in03, 2); in04 = _mm_slli_epi16(in04, 2); in05 = _mm_slli_epi16(in05, 2); in06 = _mm_slli_epi16(in06, 2); in07 = _mm_slli_epi16(in07, 2); in08 = _mm_slli_epi16(in08, 2); in09 = _mm_slli_epi16(in09, 2); in10 = _mm_slli_epi16(in10, 2); in11 = _mm_slli_epi16(in11, 2); in12 = _mm_slli_epi16(in12, 2); in13 = _mm_slli_epi16(in13, 2); in14 = _mm_slli_epi16(in14, 2); in15 = _mm_slli_epi16(in15, 2); } else { in00 = _mm_load_si128((const __m128i *)(in + 0 * 16)); in01 = _mm_load_si128((const __m128i *)(in + 1 * 16)); in02 = _mm_load_si128((const __m128i *)(in + 2 * 16)); in03 = _mm_load_si128((const __m128i *)(in + 3 * 16)); in04 = _mm_load_si128((const __m128i *)(in + 4 * 16)); in05 = _mm_load_si128((const __m128i *)(in + 5 * 16)); in06 = _mm_load_si128((const __m128i *)(in + 6 * 16)); in07 = _mm_load_si128((const __m128i *)(in + 7 * 16)); in08 = _mm_load_si128((const __m128i *)(in + 8 * 16)); in09 = _mm_load_si128((const __m128i *)(in + 9 * 16)); in10 = _mm_load_si128((const __m128i *)(in + 10 * 16)); in11 = _mm_load_si128((const __m128i *)(in + 11 * 16)); in12 = _mm_load_si128((const __m128i *)(in + 12 * 16)); in13 = _mm_load_si128((const __m128i *)(in + 13 * 16)); in14 = _mm_load_si128((const __m128i *)(in + 14 * 16)); in15 = _mm_load_si128((const __m128i *)(in + 15 * 16)); // x = (x + 1) >> 2 in00 = _mm_add_epi16(in00, kOne); in01 = _mm_add_epi16(in01, kOne); in02 = _mm_add_epi16(in02, kOne); in03 = _mm_add_epi16(in03, kOne); in04 = _mm_add_epi16(in04, kOne); in05 = _mm_add_epi16(in05, kOne); in06 = _mm_add_epi16(in06, kOne); in07 = _mm_add_epi16(in07, kOne); in08 = _mm_add_epi16(in08, kOne); in09 = _mm_add_epi16(in09, kOne); in10 = _mm_add_epi16(in10, kOne); in11 = _mm_add_epi16(in11, kOne); in12 = _mm_add_epi16(in12, kOne); in13 = _mm_add_epi16(in13, kOne); in14 = _mm_add_epi16(in14, kOne); in15 = _mm_add_epi16(in15, kOne); in00 = _mm_srai_epi16(in00, 2); in01 = _mm_srai_epi16(in01, 2); in02 = _mm_srai_epi16(in02, 2); in03 = _mm_srai_epi16(in03, 2); in04 = _mm_srai_epi16(in04, 2); in05 = _mm_srai_epi16(in05, 2); in06 = _mm_srai_epi16(in06, 2); in07 = _mm_srai_epi16(in07, 2); in08 = _mm_srai_epi16(in08, 2); in09 = _mm_srai_epi16(in09, 2); in10 = _mm_srai_epi16(in10, 2); in11 = _mm_srai_epi16(in11, 2); in12 = _mm_srai_epi16(in12, 2); in13 = _mm_srai_epi16(in13, 2); in14 = _mm_srai_epi16(in14, 2); in15 = _mm_srai_epi16(in15, 2); } in += 8; // Calculate input for the first 8 results. { input0 = _mm_add_epi16(in00, in15); input1 = _mm_add_epi16(in01, in14); input2 = _mm_add_epi16(in02, in13); input3 = _mm_add_epi16(in03, in12); input4 = _mm_add_epi16(in04, in11); input5 = _mm_add_epi16(in05, in10); input6 = _mm_add_epi16(in06, in09); input7 = _mm_add_epi16(in07, in08); } // Calculate input for the next 8 results. { step1_0 = _mm_sub_epi16(in07, in08); step1_1 = _mm_sub_epi16(in06, in09); step1_2 = _mm_sub_epi16(in05, in10); step1_3 = _mm_sub_epi16(in04, in11); step1_4 = _mm_sub_epi16(in03, in12); step1_5 = _mm_sub_epi16(in02, in13); step1_6 = _mm_sub_epi16(in01, in14); step1_7 = _mm_sub_epi16(in00, in15); } // Work on the first eight values; fdct8(input, even_results); { // Add/subtract const __m128i q0 = _mm_add_epi16(input0, input7); const __m128i q1 = _mm_add_epi16(input1, input6); const __m128i q2 = _mm_add_epi16(input2, input5); const __m128i q3 = _mm_add_epi16(input3, input4); const __m128i q4 = _mm_sub_epi16(input3, input4); const __m128i q5 = _mm_sub_epi16(input2, input5); const __m128i q6 = _mm_sub_epi16(input1, input6); const __m128i q7 = _mm_sub_epi16(input0, input7); // Work on first four results { // Add/subtract const __m128i r0 = _mm_add_epi16(q0, q3); const __m128i r1 = _mm_add_epi16(q1, q2); const __m128i r2 = _mm_sub_epi16(q1, q2); const __m128i r3 = _mm_sub_epi16(q0, q3); // Interleave to do the multiply by constants which gets us // into 32 bits. const __m128i t0 = _mm_unpacklo_epi16(r0, r1); const __m128i t1 = _mm_unpackhi_epi16(r0, r1); const __m128i t2 = _mm_unpacklo_epi16(r2, r3); const __m128i t3 = _mm_unpackhi_epi16(r2, r3); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16); const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08); const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08); const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24); const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); // Combine res00 = _mm_packs_epi32(w0, w1); res08 = _mm_packs_epi32(w2, w3); res04 = _mm_packs_epi32(w4, w5); res12 = _mm_packs_epi32(w6, w7); } // Work on next four results { // Interleave to do the multiply by constants which gets us // into 32 bits. const __m128i d0 = _mm_unpacklo_epi16(q6, q5); const __m128i d1 = _mm_unpackhi_epi16(q6, q5); const __m128i e0 = _mm_madd_epi16(d0, k__cospi_p16_m16); const __m128i e1 = _mm_madd_epi16(d1, k__cospi_p16_m16); const __m128i e2 = _mm_madd_epi16(d0, k__cospi_p16_p16); const __m128i e3 = _mm_madd_epi16(d1, k__cospi_p16_p16); // dct_const_round_shift const __m128i f0 = _mm_add_epi32(e0, k__DCT_CONST_ROUNDING); const __m128i f1 = _mm_add_epi32(e1, k__DCT_CONST_ROUNDING); const __m128i f2 = _mm_add_epi32(e2, k__DCT_CONST_ROUNDING); const __m128i f3 = _mm_add_epi32(e3, k__DCT_CONST_ROUNDING); const __m128i s0 = _mm_srai_epi32(f0, DCT_CONST_BITS); const __m128i s1 = _mm_srai_epi32(f1, DCT_CONST_BITS); const __m128i s2 = _mm_srai_epi32(f2, DCT_CONST_BITS); const __m128i s3 = _mm_srai_epi32(f3, DCT_CONST_BITS); // Combine const __m128i r0 = _mm_packs_epi32(s0, s1); const __m128i r1 = _mm_packs_epi32(s2, s3); // Add/subtract const __m128i x0 = _mm_add_epi16(q4, r0); const __m128i x1 = _mm_sub_epi16(q4, r0); const __m128i x2 = _mm_sub_epi16(q7, r1); const __m128i x3 = _mm_add_epi16(q7, r1); // Interleave to do the multiply by constants which gets us // into 32 bits. const __m128i t0 = _mm_unpacklo_epi16(x0, x3); const __m128i t1 = _mm_unpackhi_epi16(x0, x3); const __m128i t2 = _mm_unpacklo_epi16(x1, x2); const __m128i t3 = _mm_unpackhi_epi16(x1, x2); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04); const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28); const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28); const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20); const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20); const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12); const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING); const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING); const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING); const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS); const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS); const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS); const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS); // Combine res02 = _mm_packs_epi32(w0, w1); res14 = _mm_packs_epi32(w2, w3); res10 = _mm_packs_epi32(w4, w5); res06 = _mm_packs_epi32(w6, w7); } } // Work on the next eight values; step1 -> odd_results { // step 2 { const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2); const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2); const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3); const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_m16); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_m16); const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p16_m16); const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p16_m16); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); // Combine step2_2 = _mm_packs_epi32(w0, w1); step2_3 = _mm_packs_epi32(w2, w3); } { const __m128i t0 = _mm_unpacklo_epi16(step1_5, step1_2); const __m128i t1 = _mm_unpackhi_epi16(step1_5, step1_2); const __m128i t2 = _mm_unpacklo_epi16(step1_4, step1_3); const __m128i t3 = _mm_unpackhi_epi16(step1_4, step1_3); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16); const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p16_p16); const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p16_p16); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); // Combine step2_5 = _mm_packs_epi32(w0, w1); step2_4 = _mm_packs_epi32(w2, w3); } // step 3 { step3_0 = _mm_add_epi16(step1_0, step2_3); step3_1 = _mm_add_epi16(step1_1, step2_2); step3_2 = _mm_sub_epi16(step1_1, step2_2); step3_3 = _mm_sub_epi16(step1_0, step2_3); step3_4 = _mm_sub_epi16(step1_7, step2_4); step3_5 = _mm_sub_epi16(step1_6, step2_5); step3_6 = _mm_add_epi16(step1_6, step2_5); step3_7 = _mm_add_epi16(step1_7, step2_4); } // step 4 { const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6); const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6); const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5); const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m08_p24); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m08_p24); const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m24_m08); const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m24_m08); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); // Combine step2_1 = _mm_packs_epi32(w0, w1); step2_2 = _mm_packs_epi32(w2, w3); } { const __m128i t0 = _mm_unpacklo_epi16(step3_1, step3_6); const __m128i t1 = _mm_unpackhi_epi16(step3_1, step3_6); const __m128i t2 = _mm_unpacklo_epi16(step3_2, step3_5); const __m128i t3 = _mm_unpackhi_epi16(step3_2, step3_5); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p24_p08); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p24_p08); const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m08_p24); const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m08_p24); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); // Combine step2_6 = _mm_packs_epi32(w0, w1); step2_5 = _mm_packs_epi32(w2, w3); } // step 5 { step1_0 = _mm_add_epi16(step3_0, step2_1); step1_1 = _mm_sub_epi16(step3_0, step2_1); step1_2 = _mm_sub_epi16(step3_3, step2_2); step1_3 = _mm_add_epi16(step3_3, step2_2); step1_4 = _mm_add_epi16(step3_4, step2_5); step1_5 = _mm_sub_epi16(step3_4, step2_5); step1_6 = _mm_sub_epi16(step3_7, step2_6); step1_7 = _mm_add_epi16(step3_7, step2_6); } // step 6 { const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7); const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7); const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6); const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p30_p02); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p30_p02); const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p14_p18); const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p14_p18); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); // Combine res01 = _mm_packs_epi32(w0, w1); res09 = _mm_packs_epi32(w2, w3); } { const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5); const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5); const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4); const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p22_p10); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p22_p10); const __m128i u2 = _mm_madd_epi16(t2, k__cospi_p06_p26); const __m128i u3 = _mm_madd_epi16(t3, k__cospi_p06_p26); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); // Combine res05 = _mm_packs_epi32(w0, w1); res13 = _mm_packs_epi32(w2, w3); } { const __m128i t0 = _mm_unpacklo_epi16(step1_2, step1_5); const __m128i t1 = _mm_unpackhi_epi16(step1_2, step1_5); const __m128i t2 = _mm_unpacklo_epi16(step1_3, step1_4); const __m128i t3 = _mm_unpackhi_epi16(step1_3, step1_4); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m10_p22); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m10_p22); const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m26_p06); const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m26_p06); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); // Combine res11 = _mm_packs_epi32(w0, w1); res03 = _mm_packs_epi32(w2, w3); } { const __m128i t0 = _mm_unpacklo_epi16(step1_0, step1_7); const __m128i t1 = _mm_unpackhi_epi16(step1_0, step1_7); const __m128i t2 = _mm_unpacklo_epi16(step1_1, step1_6); const __m128i t3 = _mm_unpackhi_epi16(step1_1, step1_6); const __m128i u0 = _mm_madd_epi16(t0, k__cospi_m02_p30); const __m128i u1 = _mm_madd_epi16(t1, k__cospi_m02_p30); const __m128i u2 = _mm_madd_epi16(t2, k__cospi_m18_p14); const __m128i u3 = _mm_madd_epi16(t3, k__cospi_m18_p14); // dct_const_round_shift const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING); const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING); const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING); const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING); const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS); const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS); const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS); const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS); // Combine res15 = _mm_packs_epi32(w0, w1); res07 = _mm_packs_epi32(w2, w3); } } // Transpose the results, do it as two 8x8 transposes. { // 00 01 02 03 04 05 06 07 // 10 11 12 13 14 15 16 17 // 20 21 22 23 24 25 26 27 // 30 31 32 33 34 35 36 37 // 40 41 42 43 44 45 46 47 // 50 51 52 53 54 55 56 57 // 60 61 62 63 64 65 66 67 // 70 71 72 73 74 75 76 77 const __m128i tr0_0 = _mm_unpacklo_epi16(res00, res01); const __m128i tr0_1 = _mm_unpacklo_epi16(res02, res03); const __m128i tr0_2 = _mm_unpackhi_epi16(res00, res01); const __m128i tr0_3 = _mm_unpackhi_epi16(res02, res03); const __m128i tr0_4 = _mm_unpacklo_epi16(res04, res05); const __m128i tr0_5 = _mm_unpacklo_epi16(res06, res07); const __m128i tr0_6 = _mm_unpackhi_epi16(res04, res05); const __m128i tr0_7 = _mm_unpackhi_epi16(res06, res07); // 00 10 01 11 02 12 03 13 // 20 30 21 31 22 32 23 33 // 04 14 05 15 06 16 07 17 // 24 34 25 35 26 36 27 37 // 40 50 41 51 42 52 43 53 // 60 70 61 71 62 72 63 73 // 54 54 55 55 56 56 57 57 // 64 74 65 75 66 76 67 77 const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); // 00 10 20 30 01 11 21 31 // 40 50 60 70 41 51 61 71 // 02 12 22 32 03 13 23 33 // 42 52 62 72 43 53 63 73 // 04 14 24 34 05 15 21 36 // 44 54 64 74 45 55 61 76 // 06 16 26 36 07 17 27 37 // 46 56 66 76 47 57 67 77 const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4); const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4); const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6); const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6); const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5); const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5); const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7); const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7); // 00 10 20 30 40 50 60 70 // 01 11 21 31 41 51 61 71 // 02 12 22 32 42 52 62 72 // 03 13 23 33 43 53 63 73 // 04 14 24 34 44 54 64 74 // 05 15 25 35 45 55 65 75 // 06 16 26 36 46 56 66 76 // 07 17 27 37 47 57 67 77 _mm_storeu_si128((__m128i *)(out + 0 * 16), tr2_0); _mm_storeu_si128((__m128i *)(out + 1 * 16), tr2_1); _mm_storeu_si128((__m128i *)(out + 2 * 16), tr2_2); _mm_storeu_si128((__m128i *)(out + 3 * 16), tr2_3); _mm_storeu_si128((__m128i *)(out + 4 * 16), tr2_4); _mm_storeu_si128((__m128i *)(out + 5 * 16), tr2_5); _mm_storeu_si128((__m128i *)(out + 6 * 16), tr2_6); _mm_storeu_si128((__m128i *)(out + 7 * 16), tr2_7); } { // 00 01 02 03 04 05 06 07 // 10 11 12 13 14 15 16 17 // 20 21 22 23 24 25 26 27 // 30 31 32 33 34 35 36 37 // 40 41 42 43 44 45 46 47 // 50 51 52 53 54 55 56 57 // 60 61 62 63 64 65 66 67 // 70 71 72 73 74 75 76 77 const __m128i tr0_0 = _mm_unpacklo_epi16(res08, res09); const __m128i tr0_1 = _mm_unpacklo_epi16(res10, res11); const __m128i tr0_2 = _mm_unpackhi_epi16(res08, res09); const __m128i tr0_3 = _mm_unpackhi_epi16(res10, res11); const __m128i tr0_4 = _mm_unpacklo_epi16(res12, res13); const __m128i tr0_5 = _mm_unpacklo_epi16(res14, res15); const __m128i tr0_6 = _mm_unpackhi_epi16(res12, res13); const __m128i tr0_7 = _mm_unpackhi_epi16(res14, res15); // 00 10 01 11 02 12 03 13 // 20 30 21 31 22 32 23 33 // 04 14 05 15 06 16 07 17 // 24 34 25 35 26 36 27 37 // 40 50 41 51 42 52 43 53 // 60 70 61 71 62 72 63 73 // 54 54 55 55 56 56 57 57 // 64 74 65 75 66 76 67 77 const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1); const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3); const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1); const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3); const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5); const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7); const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5); const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7); // 00 10 20 30 01 11 21 31 // 40 50 60 70 41 51 61 71 // 02 12 22 32 03 13 23 33 // 42 52 62 72 43 53 63 73 // 04 14 24 34 05 15 21 36 // 44 54 64 74 45 55 61 76 // 06 16 26 36 07 17 27 37 // 46 56 66 76 47 57 67 77 const __m128i tr2_0 = _mm_unpacklo_epi64(tr1_0, tr1_4); const __m128i tr2_1 = _mm_unpackhi_epi64(tr1_0, tr1_4); const __m128i tr2_2 = _mm_unpacklo_epi64(tr1_2, tr1_6); const __m128i tr2_3 = _mm_unpackhi_epi64(tr1_2, tr1_6); const __m128i tr2_4 = _mm_unpacklo_epi64(tr1_1, tr1_5); const __m128i tr2_5 = _mm_unpackhi_epi64(tr1_1, tr1_5); const __m128i tr2_6 = _mm_unpacklo_epi64(tr1_3, tr1_7); const __m128i tr2_7 = _mm_unpackhi_epi64(tr1_3, tr1_7); // 00 10 20 30 40 50 60 70 // 01 11 21 31 41 51 61 71 // 02 12 22 32 42 52 62 72 // 03 13 23 33 43 53 63 73 // 04 14 24 34 44 54 64 74 // 05 15 25 35 45 55 65 75 // 06 16 26 36 46 56 66 76 // 07 17 27 37 47 57 67 77 // Store results _mm_store_si128((__m128i *)(out + 8 + 0 * 16), tr2_0); _mm_store_si128((__m128i *)(out + 8 + 1 * 16), tr2_1); _mm_store_si128((__m128i *)(out + 8 + 2 * 16), tr2_2); _mm_store_si128((__m128i *)(out + 8 + 3 * 16), tr2_3); _mm_store_si128((__m128i *)(out + 8 + 4 * 16), tr2_4); _mm_store_si128((__m128i *)(out + 8 + 5 * 16), tr2_5); _mm_store_si128((__m128i *)(out + 8 + 6 * 16), tr2_6); _mm_store_si128((__m128i *)(out + 8 + 7 * 16), tr2_7); } out += 8*16; } // Setup in/out for next pass. in = intermediate; out = output; } } static INLINE void load_buffer_16x16(const int16_t* input, __m128i *in0, __m128i *in1, int stride) { // load first 8 columns load_buffer_8x8(input, in0, stride); load_buffer_8x8(input + 8 * stride, in0 + 8, stride); input += 8; // load second 8 columns load_buffer_8x8(input, in1, stride); load_buffer_8x8(input + 8 * stride, in1 + 8, stride); } static INLINE void write_buffer_16x16(int16_t *output, __m128i *in0, __m128i *in1, int stride) { // write first 8 columns write_buffer_8x8(output, in0, stride); write_buffer_8x8(output + 8 * stride, in0 + 8, stride); // write second 8 columns output += 8; write_buffer_8x8(output, in1, stride); write_buffer_8x8(output + 8 * stride, in1 + 8, stride); } static INLINE void array_transpose_16x16(__m128i *res0, __m128i *res1) { __m128i tbuf[8]; array_transpose_8x8(res0, res0); array_transpose_8x8(res1, tbuf); array_transpose_8x8(res0 + 8, res1); array_transpose_8x8(res1 + 8, res1 + 8); res0[8] = tbuf[0]; res0[9] = tbuf[1]; res0[10] = tbuf[2]; res0[11] = tbuf[3]; res0[12] = tbuf[4]; res0[13] = tbuf[5]; res0[14] = tbuf[6]; res0[15] = tbuf[7]; } static INLINE void right_shift_16x16(__m128i *res0, __m128i *res1) { // perform rounding operations right_shift_8x8(res0, 2); right_shift_8x8(res0 + 8, 2); right_shift_8x8(res1, 2); right_shift_8x8(res1 + 8, 2); } void fdct16_8col(__m128i *in) { // perform 16x16 1-D DCT for 8 columns __m128i i[8], s[8], p[8], t[8], u[16], v[16]; const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64); const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64); const __m128i k__cospi_m24_m08 = pair_set_epi16(-cospi_24_64, -cospi_8_64); const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64); const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64); const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64); const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64); const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64); const __m128i k__cospi_p30_p02 = pair_set_epi16(cospi_30_64, cospi_2_64); const __m128i k__cospi_p14_p18 = pair_set_epi16(cospi_14_64, cospi_18_64); const __m128i k__cospi_m02_p30 = pair_set_epi16(-cospi_2_64, cospi_30_64); const __m128i k__cospi_m18_p14 = pair_set_epi16(-cospi_18_64, cospi_14_64); const __m128i k__cospi_p22_p10 = pair_set_epi16(cospi_22_64, cospi_10_64); const __m128i k__cospi_p06_p26 = pair_set_epi16(cospi_6_64, cospi_26_64); const __m128i k__cospi_m10_p22 = pair_set_epi16(-cospi_10_64, cospi_22_64); const __m128i k__cospi_m26_p06 = pair_set_epi16(-cospi_26_64, cospi_6_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); // stage 1 i[0] = _mm_add_epi16(in[0], in[15]); i[1] = _mm_add_epi16(in[1], in[14]); i[2] = _mm_add_epi16(in[2], in[13]); i[3] = _mm_add_epi16(in[3], in[12]); i[4] = _mm_add_epi16(in[4], in[11]); i[5] = _mm_add_epi16(in[5], in[10]); i[6] = _mm_add_epi16(in[6], in[9]); i[7] = _mm_add_epi16(in[7], in[8]); s[0] = _mm_sub_epi16(in[7], in[8]); s[1] = _mm_sub_epi16(in[6], in[9]); s[2] = _mm_sub_epi16(in[5], in[10]); s[3] = _mm_sub_epi16(in[4], in[11]); s[4] = _mm_sub_epi16(in[3], in[12]); s[5] = _mm_sub_epi16(in[2], in[13]); s[6] = _mm_sub_epi16(in[1], in[14]); s[7] = _mm_sub_epi16(in[0], in[15]); p[0] = _mm_add_epi16(i[0], i[7]); p[1] = _mm_add_epi16(i[1], i[6]); p[2] = _mm_add_epi16(i[2], i[5]); p[3] = _mm_add_epi16(i[3], i[4]); p[4] = _mm_sub_epi16(i[3], i[4]); p[5] = _mm_sub_epi16(i[2], i[5]); p[6] = _mm_sub_epi16(i[1], i[6]); p[7] = _mm_sub_epi16(i[0], i[7]); u[0] = _mm_add_epi16(p[0], p[3]); u[1] = _mm_add_epi16(p[1], p[2]); u[2] = _mm_sub_epi16(p[1], p[2]); u[3] = _mm_sub_epi16(p[0], p[3]); v[0] = _mm_unpacklo_epi16(u[0], u[1]); v[1] = _mm_unpackhi_epi16(u[0], u[1]); v[2] = _mm_unpacklo_epi16(u[2], u[3]); v[3] = _mm_unpackhi_epi16(u[2], u[3]); u[0] = _mm_madd_epi16(v[0], k__cospi_p16_p16); u[1] = _mm_madd_epi16(v[1], k__cospi_p16_p16); u[2] = _mm_madd_epi16(v[0], k__cospi_p16_m16); u[3] = _mm_madd_epi16(v[1], k__cospi_p16_m16); u[4] = _mm_madd_epi16(v[2], k__cospi_p24_p08); u[5] = _mm_madd_epi16(v[3], k__cospi_p24_p08); u[6] = _mm_madd_epi16(v[2], k__cospi_m08_p24); u[7] = _mm_madd_epi16(v[3], k__cospi_m08_p24); v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); in[0] = _mm_packs_epi32(u[0], u[1]); in[4] = _mm_packs_epi32(u[4], u[5]); in[8] = _mm_packs_epi32(u[2], u[3]); in[12] = _mm_packs_epi32(u[6], u[7]); u[0] = _mm_unpacklo_epi16(p[5], p[6]); u[1] = _mm_unpackhi_epi16(p[5], p[6]); v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16); v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16); v[2] = _mm_madd_epi16(u[0], k__cospi_p16_p16); v[3] = _mm_madd_epi16(u[1], k__cospi_p16_p16); u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); u[0] = _mm_packs_epi32(v[0], v[1]); u[1] = _mm_packs_epi32(v[2], v[3]); t[0] = _mm_add_epi16(p[4], u[0]); t[1] = _mm_sub_epi16(p[4], u[0]); t[2] = _mm_sub_epi16(p[7], u[1]); t[3] = _mm_add_epi16(p[7], u[1]); u[0] = _mm_unpacklo_epi16(t[0], t[3]); u[1] = _mm_unpackhi_epi16(t[0], t[3]); u[2] = _mm_unpacklo_epi16(t[1], t[2]); u[3] = _mm_unpackhi_epi16(t[1], t[2]); v[0] = _mm_madd_epi16(u[0], k__cospi_p28_p04); v[1] = _mm_madd_epi16(u[1], k__cospi_p28_p04); v[2] = _mm_madd_epi16(u[2], k__cospi_p12_p20); v[3] = _mm_madd_epi16(u[3], k__cospi_p12_p20); v[4] = _mm_madd_epi16(u[2], k__cospi_m20_p12); v[5] = _mm_madd_epi16(u[3], k__cospi_m20_p12); v[6] = _mm_madd_epi16(u[0], k__cospi_m04_p28); v[7] = _mm_madd_epi16(u[1], k__cospi_m04_p28); u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING); u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING); u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING); u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING); v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); in[2] = _mm_packs_epi32(v[0], v[1]); in[6] = _mm_packs_epi32(v[4], v[5]); in[10] = _mm_packs_epi32(v[2], v[3]); in[14] = _mm_packs_epi32(v[6], v[7]); // stage 2 u[0] = _mm_unpacklo_epi16(s[2], s[5]); u[1] = _mm_unpackhi_epi16(s[2], s[5]); u[2] = _mm_unpacklo_epi16(s[3], s[4]); u[3] = _mm_unpackhi_epi16(s[3], s[4]); v[0] = _mm_madd_epi16(u[0], k__cospi_m16_p16); v[1] = _mm_madd_epi16(u[1], k__cospi_m16_p16); v[2] = _mm_madd_epi16(u[2], k__cospi_m16_p16); v[3] = _mm_madd_epi16(u[3], k__cospi_m16_p16); v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16); v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16); v[6] = _mm_madd_epi16(u[0], k__cospi_p16_p16); v[7] = _mm_madd_epi16(u[1], k__cospi_p16_p16); u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING); u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING); u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING); u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING); v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); t[2] = _mm_packs_epi32(v[0], v[1]); t[3] = _mm_packs_epi32(v[2], v[3]); t[4] = _mm_packs_epi32(v[4], v[5]); t[5] = _mm_packs_epi32(v[6], v[7]); // stage 3 p[0] = _mm_add_epi16(s[0], t[3]); p[1] = _mm_add_epi16(s[1], t[2]); p[2] = _mm_sub_epi16(s[1], t[2]); p[3] = _mm_sub_epi16(s[0], t[3]); p[4] = _mm_sub_epi16(s[7], t[4]); p[5] = _mm_sub_epi16(s[6], t[5]); p[6] = _mm_add_epi16(s[6], t[5]); p[7] = _mm_add_epi16(s[7], t[4]); // stage 4 u[0] = _mm_unpacklo_epi16(p[1], p[6]); u[1] = _mm_unpackhi_epi16(p[1], p[6]); u[2] = _mm_unpacklo_epi16(p[2], p[5]); u[3] = _mm_unpackhi_epi16(p[2], p[5]); v[0] = _mm_madd_epi16(u[0], k__cospi_m08_p24); v[1] = _mm_madd_epi16(u[1], k__cospi_m08_p24); v[2] = _mm_madd_epi16(u[2], k__cospi_m24_m08); v[3] = _mm_madd_epi16(u[3], k__cospi_m24_m08); v[4] = _mm_madd_epi16(u[2], k__cospi_m08_p24); v[5] = _mm_madd_epi16(u[3], k__cospi_m08_p24); v[6] = _mm_madd_epi16(u[0], k__cospi_p24_p08); v[7] = _mm_madd_epi16(u[1], k__cospi_p24_p08); u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING); u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING); u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING); u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING); v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); t[1] = _mm_packs_epi32(v[0], v[1]); t[2] = _mm_packs_epi32(v[2], v[3]); t[5] = _mm_packs_epi32(v[4], v[5]); t[6] = _mm_packs_epi32(v[6], v[7]); // stage 5 s[0] = _mm_add_epi16(p[0], t[1]); s[1] = _mm_sub_epi16(p[0], t[1]); s[2] = _mm_sub_epi16(p[3], t[2]); s[3] = _mm_add_epi16(p[3], t[2]); s[4] = _mm_add_epi16(p[4], t[5]); s[5] = _mm_sub_epi16(p[4], t[5]); s[6] = _mm_sub_epi16(p[7], t[6]); s[7] = _mm_add_epi16(p[7], t[6]); // stage 6 u[0] = _mm_unpacklo_epi16(s[0], s[7]); u[1] = _mm_unpackhi_epi16(s[0], s[7]); u[2] = _mm_unpacklo_epi16(s[1], s[6]); u[3] = _mm_unpackhi_epi16(s[1], s[6]); u[4] = _mm_unpacklo_epi16(s[2], s[5]); u[5] = _mm_unpackhi_epi16(s[2], s[5]); u[6] = _mm_unpacklo_epi16(s[3], s[4]); u[7] = _mm_unpackhi_epi16(s[3], s[4]); v[0] = _mm_madd_epi16(u[0], k__cospi_p30_p02); v[1] = _mm_madd_epi16(u[1], k__cospi_p30_p02); v[2] = _mm_madd_epi16(u[2], k__cospi_p14_p18); v[3] = _mm_madd_epi16(u[3], k__cospi_p14_p18); v[4] = _mm_madd_epi16(u[4], k__cospi_p22_p10); v[5] = _mm_madd_epi16(u[5], k__cospi_p22_p10); v[6] = _mm_madd_epi16(u[6], k__cospi_p06_p26); v[7] = _mm_madd_epi16(u[7], k__cospi_p06_p26); v[8] = _mm_madd_epi16(u[6], k__cospi_m26_p06); v[9] = _mm_madd_epi16(u[7], k__cospi_m26_p06); v[10] = _mm_madd_epi16(u[4], k__cospi_m10_p22); v[11] = _mm_madd_epi16(u[5], k__cospi_m10_p22); v[12] = _mm_madd_epi16(u[2], k__cospi_m18_p14); v[13] = _mm_madd_epi16(u[3], k__cospi_m18_p14); v[14] = _mm_madd_epi16(u[0], k__cospi_m02_p30); v[15] = _mm_madd_epi16(u[1], k__cospi_m02_p30); u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING); u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING); u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING); u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING); u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING); u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING); u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING); u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING); u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING); u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING); u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING); u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING); v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS); v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS); v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS); v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS); v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS); v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS); v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS); v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS); in[1] = _mm_packs_epi32(v[0], v[1]); in[9] = _mm_packs_epi32(v[2], v[3]); in[5] = _mm_packs_epi32(v[4], v[5]); in[13] = _mm_packs_epi32(v[6], v[7]); in[3] = _mm_packs_epi32(v[8], v[9]); in[11] = _mm_packs_epi32(v[10], v[11]); in[7] = _mm_packs_epi32(v[12], v[13]); in[15] = _mm_packs_epi32(v[14], v[15]); } void fadst16_8col(__m128i *in) { // perform 16x16 1-D ADST for 8 columns __m128i s[16], x[16], u[32], v[32]; const __m128i k__cospi_p01_p31 = pair_set_epi16(cospi_1_64, cospi_31_64); const __m128i k__cospi_p31_m01 = pair_set_epi16(cospi_31_64, -cospi_1_64); const __m128i k__cospi_p05_p27 = pair_set_epi16(cospi_5_64, cospi_27_64); const __m128i k__cospi_p27_m05 = pair_set_epi16(cospi_27_64, -cospi_5_64); const __m128i k__cospi_p09_p23 = pair_set_epi16(cospi_9_64, cospi_23_64); const __m128i k__cospi_p23_m09 = pair_set_epi16(cospi_23_64, -cospi_9_64); const __m128i k__cospi_p13_p19 = pair_set_epi16(cospi_13_64, cospi_19_64); const __m128i k__cospi_p19_m13 = pair_set_epi16(cospi_19_64, -cospi_13_64); const __m128i k__cospi_p17_p15 = pair_set_epi16(cospi_17_64, cospi_15_64); const __m128i k__cospi_p15_m17 = pair_set_epi16(cospi_15_64, -cospi_17_64); const __m128i k__cospi_p21_p11 = pair_set_epi16(cospi_21_64, cospi_11_64); const __m128i k__cospi_p11_m21 = pair_set_epi16(cospi_11_64, -cospi_21_64); const __m128i k__cospi_p25_p07 = pair_set_epi16(cospi_25_64, cospi_7_64); const __m128i k__cospi_p07_m25 = pair_set_epi16(cospi_7_64, -cospi_25_64); const __m128i k__cospi_p29_p03 = pair_set_epi16(cospi_29_64, cospi_3_64); const __m128i k__cospi_p03_m29 = pair_set_epi16(cospi_3_64, -cospi_29_64); const __m128i k__cospi_p04_p28 = pair_set_epi16(cospi_4_64, cospi_28_64); const __m128i k__cospi_p28_m04 = pair_set_epi16(cospi_28_64, -cospi_4_64); const __m128i k__cospi_p20_p12 = pair_set_epi16(cospi_20_64, cospi_12_64); const __m128i k__cospi_p12_m20 = pair_set_epi16(cospi_12_64, -cospi_20_64); const __m128i k__cospi_m28_p04 = pair_set_epi16(-cospi_28_64, cospi_4_64); const __m128i k__cospi_m12_p20 = pair_set_epi16(-cospi_12_64, cospi_20_64); const __m128i k__cospi_p08_p24 = pair_set_epi16(cospi_8_64, cospi_24_64); const __m128i k__cospi_p24_m08 = pair_set_epi16(cospi_24_64, -cospi_8_64); const __m128i k__cospi_m24_p08 = pair_set_epi16(-cospi_24_64, cospi_8_64); const __m128i k__cospi_m16_m16 = _mm_set1_epi16(-cospi_16_64); const __m128i k__cospi_p16_p16 = _mm_set1_epi16(cospi_16_64); const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64); const __m128i k__cospi_m16_p16 = pair_set_epi16(-cospi_16_64, cospi_16_64); const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING); const __m128i kZero = _mm_set1_epi16(0); u[0] = _mm_unpacklo_epi16(in[15], in[0]); u[1] = _mm_unpackhi_epi16(in[15], in[0]); u[2] = _mm_unpacklo_epi16(in[13], in[2]); u[3] = _mm_unpackhi_epi16(in[13], in[2]); u[4] = _mm_unpacklo_epi16(in[11], in[4]); u[5] = _mm_unpackhi_epi16(in[11], in[4]); u[6] = _mm_unpacklo_epi16(in[9], in[6]); u[7] = _mm_unpackhi_epi16(in[9], in[6]); u[8] = _mm_unpacklo_epi16(in[7], in[8]); u[9] = _mm_unpackhi_epi16(in[7], in[8]); u[10] = _mm_unpacklo_epi16(in[5], in[10]); u[11] = _mm_unpackhi_epi16(in[5], in[10]); u[12] = _mm_unpacklo_epi16(in[3], in[12]); u[13] = _mm_unpackhi_epi16(in[3], in[12]); u[14] = _mm_unpacklo_epi16(in[1], in[14]); u[15] = _mm_unpackhi_epi16(in[1], in[14]); v[0] = _mm_madd_epi16(u[0], k__cospi_p01_p31); v[1] = _mm_madd_epi16(u[1], k__cospi_p01_p31); v[2] = _mm_madd_epi16(u[0], k__cospi_p31_m01); v[3] = _mm_madd_epi16(u[1], k__cospi_p31_m01); v[4] = _mm_madd_epi16(u[2], k__cospi_p05_p27); v[5] = _mm_madd_epi16(u[3], k__cospi_p05_p27); v[6] = _mm_madd_epi16(u[2], k__cospi_p27_m05); v[7] = _mm_madd_epi16(u[3], k__cospi_p27_m05); v[8] = _mm_madd_epi16(u[4], k__cospi_p09_p23); v[9] = _mm_madd_epi16(u[5], k__cospi_p09_p23); v[10] = _mm_madd_epi16(u[4], k__cospi_p23_m09); v[11] = _mm_madd_epi16(u[5], k__cospi_p23_m09); v[12] = _mm_madd_epi16(u[6], k__cospi_p13_p19); v[13] = _mm_madd_epi16(u[7], k__cospi_p13_p19); v[14] = _mm_madd_epi16(u[6], k__cospi_p19_m13); v[15] = _mm_madd_epi16(u[7], k__cospi_p19_m13); v[16] = _mm_madd_epi16(u[8], k__cospi_p17_p15); v[17] = _mm_madd_epi16(u[9], k__cospi_p17_p15); v[18] = _mm_madd_epi16(u[8], k__cospi_p15_m17); v[19] = _mm_madd_epi16(u[9], k__cospi_p15_m17); v[20] = _mm_madd_epi16(u[10], k__cospi_p21_p11); v[21] = _mm_madd_epi16(u[11], k__cospi_p21_p11); v[22] = _mm_madd_epi16(u[10], k__cospi_p11_m21); v[23] = _mm_madd_epi16(u[11], k__cospi_p11_m21); v[24] = _mm_madd_epi16(u[12], k__cospi_p25_p07); v[25] = _mm_madd_epi16(u[13], k__cospi_p25_p07); v[26] = _mm_madd_epi16(u[12], k__cospi_p07_m25); v[27] = _mm_madd_epi16(u[13], k__cospi_p07_m25); v[28] = _mm_madd_epi16(u[14], k__cospi_p29_p03); v[29] = _mm_madd_epi16(u[15], k__cospi_p29_p03); v[30] = _mm_madd_epi16(u[14], k__cospi_p03_m29); v[31] = _mm_madd_epi16(u[15], k__cospi_p03_m29); u[0] = _mm_add_epi32(v[0], v[16]); u[1] = _mm_add_epi32(v[1], v[17]); u[2] = _mm_add_epi32(v[2], v[18]); u[3] = _mm_add_epi32(v[3], v[19]); u[4] = _mm_add_epi32(v[4], v[20]); u[5] = _mm_add_epi32(v[5], v[21]); u[6] = _mm_add_epi32(v[6], v[22]); u[7] = _mm_add_epi32(v[7], v[23]); u[8] = _mm_add_epi32(v[8], v[24]); u[9] = _mm_add_epi32(v[9], v[25]); u[10] = _mm_add_epi32(v[10], v[26]); u[11] = _mm_add_epi32(v[11], v[27]); u[12] = _mm_add_epi32(v[12], v[28]); u[13] = _mm_add_epi32(v[13], v[29]); u[14] = _mm_add_epi32(v[14], v[30]); u[15] = _mm_add_epi32(v[15], v[31]); u[16] = _mm_sub_epi32(v[0], v[16]); u[17] = _mm_sub_epi32(v[1], v[17]); u[18] = _mm_sub_epi32(v[2], v[18]); u[19] = _mm_sub_epi32(v[3], v[19]); u[20] = _mm_sub_epi32(v[4], v[20]); u[21] = _mm_sub_epi32(v[5], v[21]); u[22] = _mm_sub_epi32(v[6], v[22]); u[23] = _mm_sub_epi32(v[7], v[23]); u[24] = _mm_sub_epi32(v[8], v[24]); u[25] = _mm_sub_epi32(v[9], v[25]); u[26] = _mm_sub_epi32(v[10], v[26]); u[27] = _mm_sub_epi32(v[11], v[27]); u[28] = _mm_sub_epi32(v[12], v[28]); u[29] = _mm_sub_epi32(v[13], v[29]); u[30] = _mm_sub_epi32(v[14], v[30]); u[31] = _mm_sub_epi32(v[15], v[31]); v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); v[16] = _mm_add_epi32(u[16], k__DCT_CONST_ROUNDING); v[17] = _mm_add_epi32(u[17], k__DCT_CONST_ROUNDING); v[18] = _mm_add_epi32(u[18], k__DCT_CONST_ROUNDING); v[19] = _mm_add_epi32(u[19], k__DCT_CONST_ROUNDING); v[20] = _mm_add_epi32(u[20], k__DCT_CONST_ROUNDING); v[21] = _mm_add_epi32(u[21], k__DCT_CONST_ROUNDING); v[22] = _mm_add_epi32(u[22], k__DCT_CONST_ROUNDING); v[23] = _mm_add_epi32(u[23], k__DCT_CONST_ROUNDING); v[24] = _mm_add_epi32(u[24], k__DCT_CONST_ROUNDING); v[25] = _mm_add_epi32(u[25], k__DCT_CONST_ROUNDING); v[26] = _mm_add_epi32(u[26], k__DCT_CONST_ROUNDING); v[27] = _mm_add_epi32(u[27], k__DCT_CONST_ROUNDING); v[28] = _mm_add_epi32(u[28], k__DCT_CONST_ROUNDING); v[29] = _mm_add_epi32(u[29], k__DCT_CONST_ROUNDING); v[30] = _mm_add_epi32(u[30], k__DCT_CONST_ROUNDING); v[31] = _mm_add_epi32(u[31], k__DCT_CONST_ROUNDING); u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS); u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS); u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS); u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS); u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS); u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS); u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS); u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS); u[16] = _mm_srai_epi32(v[16], DCT_CONST_BITS); u[17] = _mm_srai_epi32(v[17], DCT_CONST_BITS); u[18] = _mm_srai_epi32(v[18], DCT_CONST_BITS); u[19] = _mm_srai_epi32(v[19], DCT_CONST_BITS); u[20] = _mm_srai_epi32(v[20], DCT_CONST_BITS); u[21] = _mm_srai_epi32(v[21], DCT_CONST_BITS); u[22] = _mm_srai_epi32(v[22], DCT_CONST_BITS); u[23] = _mm_srai_epi32(v[23], DCT_CONST_BITS); u[24] = _mm_srai_epi32(v[24], DCT_CONST_BITS); u[25] = _mm_srai_epi32(v[25], DCT_CONST_BITS); u[26] = _mm_srai_epi32(v[26], DCT_CONST_BITS); u[27] = _mm_srai_epi32(v[27], DCT_CONST_BITS); u[28] = _mm_srai_epi32(v[28], DCT_CONST_BITS); u[29] = _mm_srai_epi32(v[29], DCT_CONST_BITS); u[30] = _mm_srai_epi32(v[30], DCT_CONST_BITS); u[31] = _mm_srai_epi32(v[31], DCT_CONST_BITS); s[0] = _mm_packs_epi32(u[0], u[1]); s[1] = _mm_packs_epi32(u[2], u[3]); s[2] = _mm_packs_epi32(u[4], u[5]); s[3] = _mm_packs_epi32(u[6], u[7]); s[4] = _mm_packs_epi32(u[8], u[9]); s[5] = _mm_packs_epi32(u[10], u[11]); s[6] = _mm_packs_epi32(u[12], u[13]); s[7] = _mm_packs_epi32(u[14], u[15]); s[8] = _mm_packs_epi32(u[16], u[17]); s[9] = _mm_packs_epi32(u[18], u[19]); s[10] = _mm_packs_epi32(u[20], u[21]); s[11] = _mm_packs_epi32(u[22], u[23]); s[12] = _mm_packs_epi32(u[24], u[25]); s[13] = _mm_packs_epi32(u[26], u[27]); s[14] = _mm_packs_epi32(u[28], u[29]); s[15] = _mm_packs_epi32(u[30], u[31]); // stage 2 u[0] = _mm_unpacklo_epi16(s[8], s[9]); u[1] = _mm_unpackhi_epi16(s[8], s[9]); u[2] = _mm_unpacklo_epi16(s[10], s[11]); u[3] = _mm_unpackhi_epi16(s[10], s[11]); u[4] = _mm_unpacklo_epi16(s[12], s[13]); u[5] = _mm_unpackhi_epi16(s[12], s[13]); u[6] = _mm_unpacklo_epi16(s[14], s[15]); u[7] = _mm_unpackhi_epi16(s[14], s[15]); v[0] = _mm_madd_epi16(u[0], k__cospi_p04_p28); v[1] = _mm_madd_epi16(u[1], k__cospi_p04_p28); v[2] = _mm_madd_epi16(u[0], k__cospi_p28_m04); v[3] = _mm_madd_epi16(u[1], k__cospi_p28_m04); v[4] = _mm_madd_epi16(u[2], k__cospi_p20_p12); v[5] = _mm_madd_epi16(u[3], k__cospi_p20_p12); v[6] = _mm_madd_epi16(u[2], k__cospi_p12_m20); v[7] = _mm_madd_epi16(u[3], k__cospi_p12_m20); v[8] = _mm_madd_epi16(u[4], k__cospi_m28_p04); v[9] = _mm_madd_epi16(u[5], k__cospi_m28_p04); v[10] = _mm_madd_epi16(u[4], k__cospi_p04_p28); v[11] = _mm_madd_epi16(u[5], k__cospi_p04_p28); v[12] = _mm_madd_epi16(u[6], k__cospi_m12_p20); v[13] = _mm_madd_epi16(u[7], k__cospi_m12_p20); v[14] = _mm_madd_epi16(u[6], k__cospi_p20_p12); v[15] = _mm_madd_epi16(u[7], k__cospi_p20_p12); u[0] = _mm_add_epi32(v[0], v[8]); u[1] = _mm_add_epi32(v[1], v[9]); u[2] = _mm_add_epi32(v[2], v[10]); u[3] = _mm_add_epi32(v[3], v[11]); u[4] = _mm_add_epi32(v[4], v[12]); u[5] = _mm_add_epi32(v[5], v[13]); u[6] = _mm_add_epi32(v[6], v[14]); u[7] = _mm_add_epi32(v[7], v[15]); u[8] = _mm_sub_epi32(v[0], v[8]); u[9] = _mm_sub_epi32(v[1], v[9]); u[10] = _mm_sub_epi32(v[2], v[10]); u[11] = _mm_sub_epi32(v[3], v[11]); u[12] = _mm_sub_epi32(v[4], v[12]); u[13] = _mm_sub_epi32(v[5], v[13]); u[14] = _mm_sub_epi32(v[6], v[14]); u[15] = _mm_sub_epi32(v[7], v[15]); v[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); v[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); v[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); v[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); v[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); v[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); v[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); v[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); v[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); v[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); v[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); v[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); v[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); v[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); v[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); v[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); u[0] = _mm_srai_epi32(v[0], DCT_CONST_BITS); u[1] = _mm_srai_epi32(v[1], DCT_CONST_BITS); u[2] = _mm_srai_epi32(v[2], DCT_CONST_BITS); u[3] = _mm_srai_epi32(v[3], DCT_CONST_BITS); u[4] = _mm_srai_epi32(v[4], DCT_CONST_BITS); u[5] = _mm_srai_epi32(v[5], DCT_CONST_BITS); u[6] = _mm_srai_epi32(v[6], DCT_CONST_BITS); u[7] = _mm_srai_epi32(v[7], DCT_CONST_BITS); u[8] = _mm_srai_epi32(v[8], DCT_CONST_BITS); u[9] = _mm_srai_epi32(v[9], DCT_CONST_BITS); u[10] = _mm_srai_epi32(v[10], DCT_CONST_BITS); u[11] = _mm_srai_epi32(v[11], DCT_CONST_BITS); u[12] = _mm_srai_epi32(v[12], DCT_CONST_BITS); u[13] = _mm_srai_epi32(v[13], DCT_CONST_BITS); u[14] = _mm_srai_epi32(v[14], DCT_CONST_BITS); u[15] = _mm_srai_epi32(v[15], DCT_CONST_BITS); x[0] = _mm_add_epi16(s[0], s[4]); x[1] = _mm_add_epi16(s[1], s[5]); x[2] = _mm_add_epi16(s[2], s[6]); x[3] = _mm_add_epi16(s[3], s[7]); x[4] = _mm_sub_epi16(s[0], s[4]); x[5] = _mm_sub_epi16(s[1], s[5]); x[6] = _mm_sub_epi16(s[2], s[6]); x[7] = _mm_sub_epi16(s[3], s[7]); x[8] = _mm_packs_epi32(u[0], u[1]); x[9] = _mm_packs_epi32(u[2], u[3]); x[10] = _mm_packs_epi32(u[4], u[5]); x[11] = _mm_packs_epi32(u[6], u[7]); x[12] = _mm_packs_epi32(u[8], u[9]); x[13] = _mm_packs_epi32(u[10], u[11]); x[14] = _mm_packs_epi32(u[12], u[13]); x[15] = _mm_packs_epi32(u[14], u[15]); // stage 3 u[0] = _mm_unpacklo_epi16(x[4], x[5]); u[1] = _mm_unpackhi_epi16(x[4], x[5]); u[2] = _mm_unpacklo_epi16(x[6], x[7]); u[3] = _mm_unpackhi_epi16(x[6], x[7]); u[4] = _mm_unpacklo_epi16(x[12], x[13]); u[5] = _mm_unpackhi_epi16(x[12], x[13]); u[6] = _mm_unpacklo_epi16(x[14], x[15]); u[7] = _mm_unpackhi_epi16(x[14], x[15]); v[0] = _mm_madd_epi16(u[0], k__cospi_p08_p24); v[1] = _mm_madd_epi16(u[1], k__cospi_p08_p24); v[2] = _mm_madd_epi16(u[0], k__cospi_p24_m08); v[3] = _mm_madd_epi16(u[1], k__cospi_p24_m08); v[4] = _mm_madd_epi16(u[2], k__cospi_m24_p08); v[5] = _mm_madd_epi16(u[3], k__cospi_m24_p08); v[6] = _mm_madd_epi16(u[2], k__cospi_p08_p24); v[7] = _mm_madd_epi16(u[3], k__cospi_p08_p24); v[8] = _mm_madd_epi16(u[4], k__cospi_p08_p24); v[9] = _mm_madd_epi16(u[5], k__cospi_p08_p24); v[10] = _mm_madd_epi16(u[4], k__cospi_p24_m08); v[11] = _mm_madd_epi16(u[5], k__cospi_p24_m08); v[12] = _mm_madd_epi16(u[6], k__cospi_m24_p08); v[13] = _mm_madd_epi16(u[7], k__cospi_m24_p08); v[14] = _mm_madd_epi16(u[6], k__cospi_p08_p24); v[15] = _mm_madd_epi16(u[7], k__cospi_p08_p24); u[0] = _mm_add_epi32(v[0], v[4]); u[1] = _mm_add_epi32(v[1], v[5]); u[2] = _mm_add_epi32(v[2], v[6]); u[3] = _mm_add_epi32(v[3], v[7]); u[4] = _mm_sub_epi32(v[0], v[4]); u[5] = _mm_sub_epi32(v[1], v[5]); u[6] = _mm_sub_epi32(v[2], v[6]); u[7] = _mm_sub_epi32(v[3], v[7]); u[8] = _mm_add_epi32(v[8], v[12]); u[9] = _mm_add_epi32(v[9], v[13]); u[10] = _mm_add_epi32(v[10], v[14]); u[11] = _mm_add_epi32(v[11], v[15]); u[12] = _mm_sub_epi32(v[8], v[12]); u[13] = _mm_sub_epi32(v[9], v[13]); u[14] = _mm_sub_epi32(v[10], v[14]); u[15] = _mm_sub_epi32(v[11], v[15]); u[0] = _mm_add_epi32(u[0], k__DCT_CONST_ROUNDING); u[1] = _mm_add_epi32(u[1], k__DCT_CONST_ROUNDING); u[2] = _mm_add_epi32(u[2], k__DCT_CONST_ROUNDING); u[3] = _mm_add_epi32(u[3], k__DCT_CONST_ROUNDING); u[4] = _mm_add_epi32(u[4], k__DCT_CONST_ROUNDING); u[5] = _mm_add_epi32(u[5], k__DCT_CONST_ROUNDING); u[6] = _mm_add_epi32(u[6], k__DCT_CONST_ROUNDING); u[7] = _mm_add_epi32(u[7], k__DCT_CONST_ROUNDING); u[8] = _mm_add_epi32(u[8], k__DCT_CONST_ROUNDING); u[9] = _mm_add_epi32(u[9], k__DCT_CONST_ROUNDING); u[10] = _mm_add_epi32(u[10], k__DCT_CONST_ROUNDING); u[11] = _mm_add_epi32(u[11], k__DCT_CONST_ROUNDING); u[12] = _mm_add_epi32(u[12], k__DCT_CONST_ROUNDING); u[13] = _mm_add_epi32(u[13], k__DCT_CONST_ROUNDING); u[14] = _mm_add_epi32(u[14], k__DCT_CONST_ROUNDING); u[15] = _mm_add_epi32(u[15], k__DCT_CONST_ROUNDING); v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS); v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS); v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS); v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS); v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS); v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS); v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS); v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS); s[0] = _mm_add_epi16(x[0], x[2]); s[1] = _mm_add_epi16(x[1], x[3]); s[2] = _mm_sub_epi16(x[0], x[2]); s[3] = _mm_sub_epi16(x[1], x[3]); s[4] = _mm_packs_epi32(v[0], v[1]); s[5] = _mm_packs_epi32(v[2], v[3]); s[6] = _mm_packs_epi32(v[4], v[5]); s[7] = _mm_packs_epi32(v[6], v[7]); s[8] = _mm_add_epi16(x[8], x[10]); s[9] = _mm_add_epi16(x[9], x[11]); s[10] = _mm_sub_epi16(x[8], x[10]); s[11] = _mm_sub_epi16(x[9], x[11]); s[12] = _mm_packs_epi32(v[8], v[9]); s[13] = _mm_packs_epi32(v[10], v[11]); s[14] = _mm_packs_epi32(v[12], v[13]); s[15] = _mm_packs_epi32(v[14], v[15]); // stage 4 u[0] = _mm_unpacklo_epi16(s[2], s[3]); u[1] = _mm_unpackhi_epi16(s[2], s[3]); u[2] = _mm_unpacklo_epi16(s[6], s[7]); u[3] = _mm_unpackhi_epi16(s[6], s[7]); u[4] = _mm_unpacklo_epi16(s[10], s[11]); u[5] = _mm_unpackhi_epi16(s[10], s[11]); u[6] = _mm_unpacklo_epi16(s[14], s[15]); u[7] = _mm_unpackhi_epi16(s[14], s[15]); v[0] = _mm_madd_epi16(u[0], k__cospi_m16_m16); v[1] = _mm_madd_epi16(u[1], k__cospi_m16_m16); v[2] = _mm_madd_epi16(u[0], k__cospi_p16_m16); v[3] = _mm_madd_epi16(u[1], k__cospi_p16_m16); v[4] = _mm_madd_epi16(u[2], k__cospi_p16_p16); v[5] = _mm_madd_epi16(u[3], k__cospi_p16_p16); v[6] = _mm_madd_epi16(u[2], k__cospi_m16_p16); v[7] = _mm_madd_epi16(u[3], k__cospi_m16_p16); v[8] = _mm_madd_epi16(u[4], k__cospi_p16_p16); v[9] = _mm_madd_epi16(u[5], k__cospi_p16_p16); v[10] = _mm_madd_epi16(u[4], k__cospi_m16_p16); v[11] = _mm_madd_epi16(u[5], k__cospi_m16_p16); v[12] = _mm_madd_epi16(u[6], k__cospi_m16_m16); v[13] = _mm_madd_epi16(u[7], k__cospi_m16_m16); v[14] = _mm_madd_epi16(u[6], k__cospi_p16_m16); v[15] = _mm_madd_epi16(u[7], k__cospi_p16_m16); u[0] = _mm_add_epi32(v[0], k__DCT_CONST_ROUNDING); u[1] = _mm_add_epi32(v[1], k__DCT_CONST_ROUNDING); u[2] = _mm_add_epi32(v[2], k__DCT_CONST_ROUNDING); u[3] = _mm_add_epi32(v[3], k__DCT_CONST_ROUNDING); u[4] = _mm_add_epi32(v[4], k__DCT_CONST_ROUNDING); u[5] = _mm_add_epi32(v[5], k__DCT_CONST_ROUNDING); u[6] = _mm_add_epi32(v[6], k__DCT_CONST_ROUNDING); u[7] = _mm_add_epi32(v[7], k__DCT_CONST_ROUNDING); u[8] = _mm_add_epi32(v[8], k__DCT_CONST_ROUNDING); u[9] = _mm_add_epi32(v[9], k__DCT_CONST_ROUNDING); u[10] = _mm_add_epi32(v[10], k__DCT_CONST_ROUNDING); u[11] = _mm_add_epi32(v[11], k__DCT_CONST_ROUNDING); u[12] = _mm_add_epi32(v[12], k__DCT_CONST_ROUNDING); u[13] = _mm_add_epi32(v[13], k__DCT_CONST_ROUNDING); u[14] = _mm_add_epi32(v[14], k__DCT_CONST_ROUNDING); u[15] = _mm_add_epi32(v[15], k__DCT_CONST_ROUNDING); v[0] = _mm_srai_epi32(u[0], DCT_CONST_BITS); v[1] = _mm_srai_epi32(u[1], DCT_CONST_BITS); v[2] = _mm_srai_epi32(u[2], DCT_CONST_BITS); v[3] = _mm_srai_epi32(u[3], DCT_CONST_BITS); v[4] = _mm_srai_epi32(u[4], DCT_CONST_BITS); v[5] = _mm_srai_epi32(u[5], DCT_CONST_BITS); v[6] = _mm_srai_epi32(u[6], DCT_CONST_BITS); v[7] = _mm_srai_epi32(u[7], DCT_CONST_BITS); v[8] = _mm_srai_epi32(u[8], DCT_CONST_BITS); v[9] = _mm_srai_epi32(u[9], DCT_CONST_BITS); v[10] = _mm_srai_epi32(u[10], DCT_CONST_BITS); v[11] = _mm_srai_epi32(u[11], DCT_CONST_BITS); v[12] = _mm_srai_epi32(u[12], DCT_CONST_BITS); v[13] = _mm_srai_epi32(u[13], DCT_CONST_BITS); v[14] = _mm_srai_epi32(u[14], DCT_CONST_BITS); v[15] = _mm_srai_epi32(u[15], DCT_CONST_BITS); in[0] = s[0]; in[1] = _mm_sub_epi16(kZero, s[8]); in[2] = s[12]; in[3] = _mm_sub_epi16(kZero, s[4]); in[4] = _mm_packs_epi32(v[4], v[5]); in[5] = _mm_packs_epi32(v[12], v[13]); in[6] = _mm_packs_epi32(v[8], v[9]); in[7] = _mm_packs_epi32(v[0], v[1]); in[8] = _mm_packs_epi32(v[2], v[3]); in[9] = _mm_packs_epi32(v[10], v[11]); in[10] = _mm_packs_epi32(v[14], v[15]); in[11] = _mm_packs_epi32(v[6], v[7]); in[12] = s[5]; in[13] = _mm_sub_epi16(kZero, s[13]); in[14] = s[9]; in[15] = _mm_sub_epi16(kZero, s[1]); } void fdct16_sse2(__m128i *in0, __m128i *in1) { fdct16_8col(in0); fdct16_8col(in1); array_transpose_16x16(in0, in1); } void fadst16_sse2(__m128i *in0, __m128i *in1) { fadst16_8col(in0); fadst16_8col(in1); array_transpose_16x16(in0, in1); } void vp9_fht16x16_sse2(const int16_t *input, int16_t *output, int stride, int tx_type) { __m128i in0[16], in1[16]; switch (tx_type) { case DCT_DCT: vp9_fdct16x16_sse2(input, output, stride); break; case ADST_DCT: load_buffer_16x16(input, in0, in1, stride); fadst16_sse2(in0, in1); right_shift_16x16(in0, in1); fdct16_sse2(in0, in1); write_buffer_16x16(output, in0, in1, 16); break; case DCT_ADST: load_buffer_16x16(input, in0, in1, stride); fdct16_sse2(in0, in1); right_shift_16x16(in0, in1); fadst16_sse2(in0, in1); write_buffer_16x16(output, in0, in1, 16); break; case ADST_ADST: load_buffer_16x16(input, in0, in1, stride); fadst16_sse2(in0, in1); right_shift_16x16(in0, in1); fadst16_sse2(in0, in1); write_buffer_16x16(output, in0, in1, 16); break; default: assert(0); break; } } #define FDCT32x32_2D vp9_fdct32x32_rd_sse2 #define FDCT32x32_HIGH_PRECISION 0 #include "vp9/encoder/x86/vp9_dct32x32_sse2.c" #undef FDCT32x32_2D #undef FDCT32x32_HIGH_PRECISION #define FDCT32x32_2D vp9_fdct32x32_sse2 #define FDCT32x32_HIGH_PRECISION 1 #include "vp9/encoder/x86/vp9_dct32x32_sse2.c" // NOLINT #undef FDCT32x32_2D #undef FDCT32x32_HIGH_PRECISION