/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "vp9/common/vp9_onyxc_int.h" #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/encoder/vp9_picklpf.h" #include "vp9/encoder/vp9_quantize.h" #include "vpx_mem/vpx_mem.h" #include "vpx_scale/vpx_scale.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_loopfilter.h" #include "./vpx_scale_rtcd.h" void vp9_yv12_copy_partial_frame_c(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc, int fraction) { const int height = src_ybc->y_height; const int stride = src_ybc->y_stride; const int offset = stride * ((height >> 5) * 16 - 8); const int lines_to_copy = MAX(height >> (fraction + 4), 1) << 4; assert(src_ybc->y_stride == dst_ybc->y_stride); vpx_memcpy(dst_ybc->y_buffer + offset, src_ybc->y_buffer + offset, stride * (lines_to_copy + 16)); } static int calc_partial_ssl_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, int Fraction) { int i, j; int Total = 0; int srcoffset, dstoffset; uint8_t *src = source->y_buffer; uint8_t *dst = dest->y_buffer; int linestocopy = (source->y_height >> (Fraction + 4)); if (linestocopy < 1) linestocopy = 1; linestocopy <<= 4; srcoffset = source->y_stride * (dest->y_height >> 5) * 16; dstoffset = dest->y_stride * (dest->y_height >> 5) * 16; src += srcoffset; dst += dstoffset; // Loop through the raw Y plane and reconstruction data summing the square // differences. for (i = 0; i < linestocopy; i += 16) { for (j = 0; j < source->y_width; j += 16) { unsigned int sse; Total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, &sse); } src += 16 * source->y_stride; dst += 16 * dest->y_stride; } return Total; } // Enforce a minimum filter level based upon baseline Q static int get_min_filter_level(VP9_COMP *cpi, int base_qindex) { int min_filter_level; min_filter_level = 0; return min_filter_level; } // Enforce a maximum filter level based upon baseline Q static int get_max_filter_level(VP9_COMP *cpi, int base_qindex) { int max_filter_level = MAX_LOOP_FILTER; (void)base_qindex; if (cpi->twopass.section_intra_rating > 8) max_filter_level = MAX_LOOP_FILTER * 3 / 4; return max_filter_level; } // Stub function for now Alt LF not used void vp9_set_alt_lf_level(VP9_COMP *cpi, int filt_val) { } void vp9_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP9_COMP *cpi, int partial) { VP9_COMMON *const cm = &cpi->common; struct loopfilter *const lf = &cm->lf; int best_err = 0; int filt_err = 0; const int min_filter_level = get_min_filter_level(cpi, cm->base_qindex); const int max_filter_level = get_max_filter_level(cpi, cm->base_qindex); int filter_step; int filt_high = 0; // Start search at previous frame filter level int filt_mid = lf->filter_level; int filt_low = 0; int filt_best; int filt_direction = 0; int Bias = 0; // Bias against raising loop filter in favor of lowering it. // Make a copy of the unfiltered / processed recon buffer vpx_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf); lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.Sharpness; // Start the search at the previous frame filter level unless it is now out of // range. filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level); // Define the initial step size filter_step = filt_mid < 16 ? 4 : filt_mid / 4; // Get baseline error score vp9_set_alt_lf_level(cpi, filt_mid); vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, filt_mid, 1, partial); best_err = vp9_calc_ss_err(sd, cm->frame_to_show); filt_best = filt_mid; // Re-instate the unfiltered frame vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show); while (filter_step > 0) { Bias = (best_err >> (15 - (filt_mid / 8))) * filter_step; if (cpi->twopass.section_intra_rating < 20) Bias = Bias * cpi->twopass.section_intra_rating / 20; // yx, bias less for large block size if (cpi->common.tx_mode != ONLY_4X4) Bias >>= 1; filt_high = ((filt_mid + filter_step) > max_filter_level) ? max_filter_level : (filt_mid + filter_step); filt_low = ((filt_mid - filter_step) < min_filter_level) ? min_filter_level : (filt_mid - filter_step); if ((filt_direction <= 0) && (filt_low != filt_mid)) { // Get Low filter error score vp9_set_alt_lf_level(cpi, filt_low); vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, filt_low, 1, partial); filt_err = vp9_calc_ss_err(sd, cm->frame_to_show); // Re-instate the unfiltered frame vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show); // If value is close to the best so far then bias towards a lower loop // filter value. if ((filt_err - Bias) < best_err) { // Was it actually better than the previous best? if (filt_err < best_err) best_err = filt_err; filt_best = filt_low; } } // Now look at filt_high if ((filt_direction >= 0) && (filt_high != filt_mid)) { vp9_set_alt_lf_level(cpi, filt_high); vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, filt_high, 1, partial); filt_err = vp9_calc_ss_err(sd, cm->frame_to_show); // Re-instate the unfiltered frame vpx_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show); // Was it better than the previous best? if (filt_err < (best_err - Bias)) { best_err = filt_err; filt_best = filt_high; } } // Half the step distance if the best filter value was the same as last time if (filt_best == filt_mid) { filter_step = filter_step / 2; filt_direction = 0; } else { filt_direction = (filt_best < filt_mid) ? -1 : 1; filt_mid = filt_best; } } lf->filter_level = filt_best; }