/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "math.h" #include "limits.h" #include "vp9/encoder/vp9_block.h" #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/encoder/vp9_variance.h" #include "vp9/encoder/vp9_encodeintra.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_firstpass.h" #include "vpx_scale/vpx_scale.h" #include "vp9/encoder/vp9_encodeframe.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/common/vp9_extend.h" #include "vp9/common/vp9_systemdependent.h" #include "vpx_mem/vpx_mem.h" #include "vpx_scale/yv12config.h" #include #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/encoder/vp9_encodemv.h" #include "./vpx_scale_rtcd.h" // TODO(jkoleszar): for setup_dst_planes #include "vp9/common/vp9_reconinter.h" #define OUTPUT_FPF 0 #define IIFACTOR 12.5 #define IIKFACTOR1 12.5 #define IIKFACTOR2 15.0 #define RMAX 512.0 #define GF_RMAX 96.0 #define ERR_DIVISOR 150.0 #define MIN_DECAY_FACTOR 0.1 #define KF_MB_INTRA_MIN 150 #define GF_MB_INTRA_MIN 100 #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001) #define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 #define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) { YV12_BUFFER_CONFIG temp = *a; *a = *b; *b = temp; } static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame); static int select_cq_level(int qindex) { int ret_val = QINDEX_RANGE - 1; int i; double target_q = (vp9_convert_qindex_to_q(qindex) * 0.5847) + 1.0; for (i = 0; i < QINDEX_RANGE; i++) { if (target_q <= vp9_convert_qindex_to_q(i)) { ret_val = i; break; } } return ret_val; } // Resets the first pass file to the given position using a relative seek from the current position static void reset_fpf_position(VP9_COMP *cpi, FIRSTPASS_STATS *position) { cpi->twopass.stats_in = position; } static int lookup_next_frame_stats(VP9_COMP *cpi, FIRSTPASS_STATS *next_frame) { if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; *next_frame = *cpi->twopass.stats_in; return 1; } // Read frame stats at an offset from the current position static int read_frame_stats(VP9_COMP *cpi, FIRSTPASS_STATS *frame_stats, int offset) { FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in; // Check legality of offset if (offset >= 0) { if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) return EOF; } else if (offset < 0) { if (&fps_ptr[offset] < cpi->twopass.stats_in_start) return EOF; } *frame_stats = fps_ptr[offset]; return 1; } static int input_stats(VP9_COMP *cpi, FIRSTPASS_STATS *fps) { if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; *fps = *cpi->twopass.stats_in; cpi->twopass.stats_in = (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); return 1; } static void output_stats(const VP9_COMP *cpi, struct vpx_codec_pkt_list *pktlist, FIRSTPASS_STATS *stats) { struct vpx_codec_cx_pkt pkt; pkt.kind = VPX_CODEC_STATS_PKT; pkt.data.twopass_stats.buf = stats; pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); vpx_codec_pkt_list_add(pktlist, &pkt); // TEMP debug code #if OUTPUT_FPF { FILE *fpfile; fpfile = fopen("firstpass.stt", "a"); fprintf(stdout, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f" "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n", stats->frame, stats->intra_error, stats->coded_error, stats->sr_coded_error, stats->ssim_weighted_pred_err, stats->pcnt_inter, stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, stats->count, stats->duration); fclose(fpfile); } #endif } static void zero_stats(FIRSTPASS_STATS *section) { section->frame = 0.0; section->intra_error = 0.0; section->coded_error = 0.0; section->sr_coded_error = 0.0; section->ssim_weighted_pred_err = 0.0; section->pcnt_inter = 0.0; section->pcnt_motion = 0.0; section->pcnt_second_ref = 0.0; section->pcnt_neutral = 0.0; section->MVr = 0.0; section->mvr_abs = 0.0; section->MVc = 0.0; section->mvc_abs = 0.0; section->MVrv = 0.0; section->MVcv = 0.0; section->mv_in_out_count = 0.0; section->new_mv_count = 0.0; section->count = 0.0; section->duration = 1.0; } static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { section->frame += frame->frame; section->intra_error += frame->intra_error; section->coded_error += frame->coded_error; section->sr_coded_error += frame->sr_coded_error; section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; section->pcnt_inter += frame->pcnt_inter; section->pcnt_motion += frame->pcnt_motion; section->pcnt_second_ref += frame->pcnt_second_ref; section->pcnt_neutral += frame->pcnt_neutral; section->MVr += frame->MVr; section->mvr_abs += frame->mvr_abs; section->MVc += frame->MVc; section->mvc_abs += frame->mvc_abs; section->MVrv += frame->MVrv; section->MVcv += frame->MVcv; section->mv_in_out_count += frame->mv_in_out_count; section->new_mv_count += frame->new_mv_count; section->count += frame->count; section->duration += frame->duration; } static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { section->frame -= frame->frame; section->intra_error -= frame->intra_error; section->coded_error -= frame->coded_error; section->sr_coded_error -= frame->sr_coded_error; section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; section->pcnt_inter -= frame->pcnt_inter; section->pcnt_motion -= frame->pcnt_motion; section->pcnt_second_ref -= frame->pcnt_second_ref; section->pcnt_neutral -= frame->pcnt_neutral; section->MVr -= frame->MVr; section->mvr_abs -= frame->mvr_abs; section->MVc -= frame->MVc; section->mvc_abs -= frame->mvc_abs; section->MVrv -= frame->MVrv; section->MVcv -= frame->MVcv; section->mv_in_out_count -= frame->mv_in_out_count; section->new_mv_count -= frame->new_mv_count; section->count -= frame->count; section->duration -= frame->duration; } static void avg_stats(FIRSTPASS_STATS *section) { if (section->count < 1.0) return; section->intra_error /= section->count; section->coded_error /= section->count; section->sr_coded_error /= section->count; section->ssim_weighted_pred_err /= section->count; section->pcnt_inter /= section->count; section->pcnt_second_ref /= section->count; section->pcnt_neutral /= section->count; section->pcnt_motion /= section->count; section->MVr /= section->count; section->mvr_abs /= section->count; section->MVc /= section->count; section->mvc_abs /= section->count; section->MVrv /= section->count; section->MVcv /= section->count; section->mv_in_out_count /= section->count; section->duration /= section->count; } // Calculate a modified Error used in distributing bits between easier and harder frames static double calculate_modified_err(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { const FIRSTPASS_STATS *const stats = &cpi->twopass.total_stats; const double av_err = stats->ssim_weighted_pred_err / stats->count; const double this_err = this_frame->ssim_weighted_pred_err; return av_err * pow(this_err / DOUBLE_DIVIDE_CHECK(av_err), this_err > av_err ? POW1 : POW2); } static const double weight_table[256] = { 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 }; static double simple_weight(YV12_BUFFER_CONFIG *source) { int i, j; uint8_t *src = source->y_buffer; double sum_weights = 0.0; // Loop throught the Y plane raw examining levels and creating a weight for the image i = source->y_height; do { j = source->y_width; do { sum_weights += weight_table[ *src]; src++; } while (--j); src -= source->y_width; src += source->y_stride; } while (--i); sum_weights /= (source->y_height * source->y_width); return sum_weights; } // This function returns the current per frame maximum bitrate target. static int frame_max_bits(VP9_COMP *cpi) { // Max allocation for a single frame based on the max section guidelines // passed in and how many bits are left. // For VBR base this on the bits and frames left plus the // two_pass_vbrmax_section rate passed in by the user. const double max_bits = (1.0 * cpi->twopass.bits_left / (cpi->twopass.total_stats.count - cpi->common.current_video_frame)) * (cpi->oxcf.two_pass_vbrmax_section / 100.0); // Trap case where we are out of bits. return MAX((int)max_bits, 0); } void vp9_init_first_pass(VP9_COMP *cpi) { zero_stats(&cpi->twopass.total_stats); } void vp9_end_first_pass(VP9_COMP *cpi) { output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); } static void zz_motion_search(VP9_COMP *cpi, MACROBLOCK *x, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset) { MACROBLOCKD *const xd = &x->e_mbd; // Set up pointers for this macro block recon buffer xd->plane[0].pre[0].buf = recon_buffer->y_buffer + recon_yoffset; switch (xd->mode_info_context->mbmi.sb_type) { case BLOCK_8X8: vp9_mse8x8(x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride, (unsigned int *)(best_motion_err)); break; case BLOCK_16X8: vp9_mse16x8(x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride, (unsigned int *)(best_motion_err)); break; case BLOCK_8X16: vp9_mse8x16(x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride, (unsigned int *)(best_motion_err)); break; default: vp9_mse16x16(x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride, (unsigned int *)(best_motion_err)); break; } } static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x, int_mv *ref_mv, MV *best_mv, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset) { MACROBLOCKD *const xd = &x->e_mbd; int num00; int_mv tmp_mv; int_mv ref_mv_full; int tmp_err; int step_param = 3; int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; int n; vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[xd->mode_info_context->mbmi.sb_type]; int new_mv_mode_penalty = 256; int sr = 0; int quart_frm = MIN(cpi->common.width, cpi->common.height); // refine the motion search range accroding to the frame dimension // for first pass test while ((quart_frm << sr) < MAX_FULL_PEL_VAL) sr++; if (sr) sr--; step_param += sr; further_steps -= sr; // override the default variance function to use MSE switch (xd->mode_info_context->mbmi.sb_type) { case BLOCK_8X8: v_fn_ptr.vf = vp9_mse8x8; break; case BLOCK_16X8: v_fn_ptr.vf = vp9_mse16x8; break; case BLOCK_8X16: v_fn_ptr.vf = vp9_mse8x16; break; default: v_fn_ptr.vf = vp9_mse16x16; break; } // Set up pointers for this macro block recon buffer xd->plane[0].pre[0].buf = recon_buffer->y_buffer + recon_yoffset; // Initial step/diamond search centred on best mv tmp_mv.as_int = 0; ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3; ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3; tmp_err = cpi->diamond_search_sad(x, &ref_mv_full, &tmp_mv, step_param, x->sadperbit16, &num00, &v_fn_ptr, x->nmvjointcost, x->mvcost, ref_mv); if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; best_mv->row = tmp_mv.as_mv.row; best_mv->col = tmp_mv.as_mv.col; } // Further step/diamond searches as necessary n = num00; num00 = 0; while (n < further_steps) { n++; if (num00) num00--; else { tmp_err = cpi->diamond_search_sad(x, &ref_mv_full, &tmp_mv, step_param + n, x->sadperbit16, &num00, &v_fn_ptr, x->nmvjointcost, x->mvcost, ref_mv); if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; best_mv->row = tmp_mv.as_mv.row; best_mv->col = tmp_mv.as_mv.col; } } } } void vp9_first_pass(VP9_COMP *cpi) { int mb_row, mb_col; MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; int recon_yoffset, recon_uvoffset; const int lst_yv12_idx = cm->ref_frame_map[cpi->lst_fb_idx]; const int gld_yv12_idx = cm->ref_frame_map[cpi->gld_fb_idx]; YV12_BUFFER_CONFIG *const lst_yv12 = &cm->yv12_fb[lst_yv12_idx]; YV12_BUFFER_CONFIG *const new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; YV12_BUFFER_CONFIG *const gld_yv12 = &cm->yv12_fb[gld_yv12_idx]; const int recon_y_stride = lst_yv12->y_stride; const int recon_uv_stride = lst_yv12->uv_stride; int64_t intra_error = 0; int64_t coded_error = 0; int64_t sr_coded_error = 0; int sum_mvr = 0, sum_mvc = 0; int sum_mvr_abs = 0, sum_mvc_abs = 0; int sum_mvrs = 0, sum_mvcs = 0; int mvcount = 0; int intercount = 0; int second_ref_count = 0; int intrapenalty = 256; int neutral_count = 0; int new_mv_count = 0; int sum_in_vectors = 0; uint32_t lastmv_as_int = 0; int_mv zero_ref_mv; zero_ref_mv.as_int = 0; vp9_clear_system_state(); // __asm emms; vp9_setup_src_planes(x, cpi->Source, 0, 0); setup_pre_planes(xd, 0, lst_yv12, 0, 0, NULL); setup_dst_planes(xd, new_yv12, 0, 0); x->partition_info = x->pi; xd->mode_info_context = cm->mi; setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); vp9_frame_init_quantizer(cpi); // Initialise the MV cost table to the defaults // if( cm->current_video_frame == 0) // if ( 0 ) { vp9_init_mv_probs(cm); vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y_dc_delta_q); } // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { int_mv best_ref_mv; best_ref_mv.as_int = 0; // reset above block coeffs xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); // Set up limit values for motion vectors to prevent them extending outside the UMV borders x->mv_row_min = -((mb_row * 16) + (VP9BORDERINPIXELS - 8)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP9BORDERINPIXELS - 8); // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { int this_error; int gf_motion_error = INT_MAX; int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); if (mb_col * 2 + 1 < cm->mi_cols) { if (mb_row * 2 + 1 < cm->mi_rows) { xd->mode_info_context->mbmi.sb_type = BLOCK_16X16; } else { xd->mode_info_context->mbmi.sb_type = BLOCK_16X8; } } else { if (mb_row * 2 + 1 < cm->mi_rows) { xd->mode_info_context->mbmi.sb_type = BLOCK_8X16; } else { xd->mode_info_context->mbmi.sb_type = BLOCK_8X8; } } xd->mode_info_context->mbmi.ref_frame[0] = INTRA_FRAME; set_mi_row_col(cm, xd, mb_row << 1, 1 << mi_height_log2(xd->mode_info_context->mbmi.sb_type), mb_col << 1, 1 << mi_height_log2(xd->mode_info_context->mbmi.sb_type)); // do intra 16x16 prediction this_error = vp9_encode_intra(cpi, x, use_dc_pred); // "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame) // We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv. // When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames. // This penalty adds a cost matching that of a 0,0 mv to the intra case. this_error += intrapenalty; // Cumulative intra error total intra_error += (int64_t)this_error; // Set up limit values for motion vectors to prevent them extending outside the UMV borders x->mv_col_min = -((mb_col * 16) + (VP9BORDERINPIXELS - 8)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP9BORDERINPIXELS - 8); // Other than for the first frame do a motion search if (cm->current_video_frame > 0) { int tmp_err; int motion_error = INT_MAX; int_mv mv, tmp_mv; // Simple 0,0 motion with no mv overhead zz_motion_search(cpi, x, lst_yv12, &motion_error, recon_yoffset); mv.as_int = tmp_mv.as_int = 0; // Test last reference frame using the previous best mv as the // starting point (best reference) for the search first_pass_motion_search(cpi, x, &best_ref_mv, &mv.as_mv, lst_yv12, &motion_error, recon_yoffset); // If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well if (best_ref_mv.as_int) { tmp_err = INT_MAX; first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv, lst_yv12, &tmp_err, recon_yoffset); if (tmp_err < motion_error) { motion_error = tmp_err; mv.as_int = tmp_mv.as_int; } } // Experimental search in an older reference frame if (cm->current_video_frame > 1) { // Simple 0,0 motion with no mv overhead zz_motion_search(cpi, x, gld_yv12, &gf_motion_error, recon_yoffset); first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv, gld_yv12, &gf_motion_error, recon_yoffset); if ((gf_motion_error < motion_error) && (gf_motion_error < this_error)) { second_ref_count++; } // Reset to last frame as reference buffer xd->plane[0].pre[0].buf = lst_yv12->y_buffer + recon_yoffset; xd->plane[1].pre[0].buf = lst_yv12->u_buffer + recon_uvoffset; xd->plane[2].pre[0].buf = lst_yv12->v_buffer + recon_uvoffset; // In accumulating a score for the older reference frame // take the best of the motion predicted score and // the intra coded error (just as will be done for) // accumulation of "coded_error" for the last frame. if (gf_motion_error < this_error) sr_coded_error += gf_motion_error; else sr_coded_error += this_error; } else sr_coded_error += motion_error; /* Intra assumed best */ best_ref_mv.as_int = 0; if (motion_error <= this_error) { // Keep a count of cases where the inter and intra were // very close and very low. This helps with scene cut // detection for example in cropped clips with black bars // at the sides or top and bottom. if ((((this_error - intrapenalty) * 9) <= (motion_error * 10)) && (this_error < (2 * intrapenalty))) { neutral_count++; } mv.as_mv.row <<= 3; mv.as_mv.col <<= 3; this_error = motion_error; vp9_set_mbmode_and_mvs(x, NEWMV, &mv); xd->mode_info_context->mbmi.txfm_size = TX_4X4; xd->mode_info_context->mbmi.ref_frame[0] = LAST_FRAME; xd->mode_info_context->mbmi.ref_frame[1] = NONE; vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, xd->mode_info_context->mbmi.sb_type); vp9_encode_sby(cm, x, xd->mode_info_context->mbmi.sb_type); sum_mvr += mv.as_mv.row; sum_mvr_abs += abs(mv.as_mv.row); sum_mvc += mv.as_mv.col; sum_mvc_abs += abs(mv.as_mv.col); sum_mvrs += mv.as_mv.row * mv.as_mv.row; sum_mvcs += mv.as_mv.col * mv.as_mv.col; intercount++; best_ref_mv.as_int = mv.as_int; // Was the vector non-zero if (mv.as_int) { mvcount++; // Was it different from the last non zero vector if (mv.as_int != lastmv_as_int) new_mv_count++; lastmv_as_int = mv.as_int; // Does the Row vector point inwards or outwards if (mb_row < cm->mb_rows / 2) { if (mv.as_mv.row > 0) sum_in_vectors--; else if (mv.as_mv.row < 0) sum_in_vectors++; } else if (mb_row > cm->mb_rows / 2) { if (mv.as_mv.row > 0) sum_in_vectors++; else if (mv.as_mv.row < 0) sum_in_vectors--; } // Does the Row vector point inwards or outwards if (mb_col < cm->mb_cols / 2) { if (mv.as_mv.col > 0) sum_in_vectors--; else if (mv.as_mv.col < 0) sum_in_vectors++; } else if (mb_col > cm->mb_cols / 2) { if (mv.as_mv.col > 0) sum_in_vectors++; else if (mv.as_mv.col < 0) sum_in_vectors--; } } } } else sr_coded_error += (int64_t)this_error; coded_error += (int64_t)this_error; // adjust to the next column of macroblocks x->plane[0].src.buf += 16; x->plane[1].src.buf += 8; x->plane[2].src.buf += 8; recon_yoffset += 16; recon_uvoffset += 8; } // adjust to the next row of mbs x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; x->plane[1].src.buf += 8 * x->plane[1].src.stride - 8 * cm->mb_cols; x->plane[2].src.buf += 8 * x->plane[1].src.stride - 8 * cm->mb_cols; vp9_clear_system_state(); // __asm emms; } vp9_clear_system_state(); // __asm emms; { double weight = 0.0; FIRSTPASS_STATS fps; fps.frame = cm->current_video_frame; fps.intra_error = (double)(intra_error >> 8); fps.coded_error = (double)(coded_error >> 8); fps.sr_coded_error = (double)(sr_coded_error >> 8); weight = simple_weight(cpi->Source); if (weight < 0.1) weight = 0.1; fps.ssim_weighted_pred_err = fps.coded_error * weight; fps.pcnt_inter = 0.0; fps.pcnt_motion = 0.0; fps.MVr = 0.0; fps.mvr_abs = 0.0; fps.MVc = 0.0; fps.mvc_abs = 0.0; fps.MVrv = 0.0; fps.MVcv = 0.0; fps.mv_in_out_count = 0.0; fps.new_mv_count = 0.0; fps.count = 1.0; fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; if (mvcount > 0) { fps.MVr = (double)sum_mvr / (double)mvcount; fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; fps.MVc = (double)sum_mvc / (double)mvcount; fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); fps.new_mv_count = new_mv_count; fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; } // TODO: handle the case when duration is set to 0, or something less // than the full time between subsequent values of cpi->source_time_stamp. fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start); // don't want to do output stats with a stack variable! cpi->twopass.this_frame_stats = fps; output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); accumulate_stats(&cpi->twopass.total_stats, &fps); } // Copy the previous Last Frame back into gf and and arf buffers if // the prediction is good enough... but also dont allow it to lag too far if ((cpi->twopass.sr_update_lag > 3) || ((cm->current_video_frame > 0) && (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && ((cpi->twopass.this_frame_stats.intra_error / DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > 2.0))) { vp8_yv12_copy_frame(lst_yv12, gld_yv12); cpi->twopass.sr_update_lag = 1; } else cpi->twopass.sr_update_lag++; // swap frame pointers so last frame refers to the frame we just compressed swap_yv12(lst_yv12, new_yv12); vp9_extend_frame_borders(lst_yv12, cm->subsampling_x, cm->subsampling_y); // Special case for the first frame. Copy into the GF buffer as a second reference. if (cm->current_video_frame == 0) vp8_yv12_copy_frame(lst_yv12, gld_yv12); // use this to see what the first pass reconstruction looks like if (0) { char filename[512]; FILE *recon_file; sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); if (cm->current_video_frame == 0) recon_file = fopen(filename, "wb"); else recon_file = fopen(filename, "ab"); (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); fclose(recon_file); } cm->current_video_frame++; } // Estimate a cost per mb attributable to overheads such as the coding of // modes and motion vectors. // Currently simplistic in its assumptions for testing. // static double bitcost(double prob) { return -(log(prob) / log(2.0)); } static int64_t estimate_modemvcost(VP9_COMP *cpi, FIRSTPASS_STATS *fpstats) { #if 0 int mv_cost; int mode_cost; double av_pct_inter = fpstats->pcnt_inter / fpstats->count; double av_pct_motion = fpstats->pcnt_motion / fpstats->count; double av_intra = (1.0 - av_pct_inter); double zz_cost; double motion_cost; double intra_cost; zz_cost = bitcost(av_pct_inter - av_pct_motion); motion_cost = bitcost(av_pct_motion); intra_cost = bitcost(av_intra); // Estimate of extra bits per mv overhead for mbs // << 9 is the normalization to the (bits * 512) used in vp9_bits_per_mb mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; // Crude estimate of overhead cost from modes // << 9 is the normalization to (bits * 512) used in vp9_bits_per_mb mode_cost = (int)((((av_pct_inter - av_pct_motion) * zz_cost) + (av_pct_motion * motion_cost) + (av_intra * intra_cost)) * cpi->common.MBs) << 9; // return mv_cost + mode_cost; // TODO PGW Fix overhead costs for extended Q range #endif return 0; } static double calc_correction_factor(double err_per_mb, double err_divisor, double pt_low, double pt_high, int q) { const double error_term = err_per_mb / err_divisor; // Adjustment based on actual quantizer to power term. const double power_term = MIN(vp9_convert_qindex_to_q(q) * 0.01 + pt_low, pt_high); // Calculate correction factor if (power_term < 1.0) assert(error_term >= 0.0); return fclamp(pow(error_term, power_term), 0.05, 5.0); } // Given a current maxQ value sets a range for future values. // PGW TODO.. // This code removes direct dependency on QIndex to determine the range // (now uses the actual quantizer) but has not been tuned. static void adjust_maxq_qrange(VP9_COMP *cpi) { int i; // Set the max corresponding to cpi->avg_q * 2.0 double q = cpi->avg_q * 2.0; cpi->twopass.maxq_max_limit = cpi->worst_quality; for (i = cpi->best_quality; i <= cpi->worst_quality; i++) { cpi->twopass.maxq_max_limit = i; if (vp9_convert_qindex_to_q(i) >= q) break; } // Set the min corresponding to cpi->avg_q * 0.5 q = cpi->avg_q * 0.5; cpi->twopass.maxq_min_limit = cpi->best_quality; for (i = cpi->worst_quality; i >= cpi->best_quality; i--) { cpi->twopass.maxq_min_limit = i; if (vp9_convert_qindex_to_q(i) <= q) break; } } static int estimate_max_q(VP9_COMP *cpi, FIRSTPASS_STATS *fpstats, int section_target_bandwitdh) { int q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double section_err = fpstats->coded_error / fpstats->count; double sr_correction; double err_per_mb = section_err / num_mbs; double err_correction_factor; double speed_correction = 1.0; if (section_target_bandwitdh <= 0) return cpi->twopass.maxq_max_limit; // Highest value allowed target_norm_bits_per_mb = section_target_bandwitdh < (1 << 20) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); // Look at the drop in prediction quality between the last frame // and the GF buffer (which contained an older frame). if (fpstats->sr_coded_error > fpstats->coded_error) { double sr_err_diff = (fpstats->sr_coded_error - fpstats->coded_error) / (fpstats->count * cpi->common.MBs); sr_correction = fclamp(pow(sr_err_diff / 32.0, 0.25), 0.75, 1.25); } else { sr_correction = 0.75; } // Calculate a corrective factor based on a rolling ratio of bits spent // vs target bits if (cpi->rolling_target_bits > 0 && cpi->active_worst_quality < cpi->worst_quality) { double rolling_ratio = (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits; if (rolling_ratio < 0.95) cpi->twopass.est_max_qcorrection_factor -= 0.005; else if (rolling_ratio > 1.05) cpi->twopass.est_max_qcorrection_factor += 0.005; cpi->twopass.est_max_qcorrection_factor = fclamp( cpi->twopass.est_max_qcorrection_factor, 0.1, 10.0); } // Corrections for higher compression speed settings // (reduced compression expected) // FIXME(jimbankoski): Once we settle on vp9 speed features we need to // change this code. if (cpi->compressor_speed == 1) speed_correction = cpi->oxcf.cpu_used <= 5 ? 1.04 + (/*cpi->oxcf.cpu_used*/0 * 0.04) : 1.25; // Try and pick a max Q that will be high enough to encode the // content at the given rate. for (q = cpi->twopass.maxq_min_limit; q < cpi->twopass.maxq_max_limit; q++) { int bits_per_mb_at_this_q; err_correction_factor = calc_correction_factor(err_per_mb, ERR_DIVISOR, 0.4, 0.90, q) * sr_correction * speed_correction * cpi->twopass.est_max_qcorrection_factor; bits_per_mb_at_this_q = vp9_bits_per_mb(INTER_FRAME, q, err_correction_factor); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } // Restriction on active max q for constrained quality mode. if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && q < cpi->cq_target_quality) q = cpi->cq_target_quality; // Adjust maxq_min_limit and maxq_max_limit limits based on // average q observed in clip for non kf/gf/arf frames // Give average a chance to settle though. // PGW TODO.. This code is broken for the extended Q range if (cpi->ni_frames > ((int)cpi->twopass.total_stats.count >> 8) && cpi->ni_frames > 25) adjust_maxq_qrange(cpi); return q; } // For cq mode estimate a cq level that matches the observed // complexity and data rate. static int estimate_cq(VP9_COMP *cpi, FIRSTPASS_STATS *fpstats, int section_target_bandwitdh) { int q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double section_err = (fpstats->coded_error / fpstats->count); double err_per_mb = section_err / num_mbs; double err_correction_factor; double sr_err_diff; double sr_correction; double speed_correction = 1.0; double clip_iiratio; double clip_iifactor; target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); // Corrections for higher compression speed settings // (reduced compression expected) if (cpi->compressor_speed == 1) { if (cpi->oxcf.cpu_used <= 5) speed_correction = 1.04 + (/*cpi->oxcf.cpu_used*/ 0 * 0.04); else speed_correction = 1.25; } // Look at the drop in prediction quality between the last frame // and the GF buffer (which contained an older frame). if (fpstats->sr_coded_error > fpstats->coded_error) { sr_err_diff = (fpstats->sr_coded_error - fpstats->coded_error) / (fpstats->count * cpi->common.MBs); sr_correction = (sr_err_diff / 32.0); sr_correction = pow(sr_correction, 0.25); if (sr_correction < 0.75) sr_correction = 0.75; else if (sr_correction > 1.25) sr_correction = 1.25; } else { sr_correction = 0.75; } // II ratio correction factor for clip as a whole clip_iiratio = cpi->twopass.total_stats.intra_error / DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); if (clip_iifactor < 0.80) clip_iifactor = 0.80; // Try and pick a Q that can encode the content at the given rate. for (q = 0; q < MAXQ; q++) { int bits_per_mb_at_this_q; // Error per MB based correction factor err_correction_factor = calc_correction_factor(err_per_mb, 100.0, 0.4, 0.90, q) * sr_correction * speed_correction * clip_iifactor; bits_per_mb_at_this_q = vp9_bits_per_mb(INTER_FRAME, q, err_correction_factor); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } // Clip value to range "best allowed to (worst allowed - 1)" q = select_cq_level(q); if (q >= cpi->worst_quality) q = cpi->worst_quality - 1; if (q < cpi->best_quality) q = cpi->best_quality; return q; } extern void vp9_new_framerate(VP9_COMP *cpi, double framerate); void vp9_init_second_pass(VP9_COMP *cpi) { FIRSTPASS_STATS this_frame; FIRSTPASS_STATS *start_pos; double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.framerate; double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); if (two_pass_min_rate < lower_bounds_min_rate) two_pass_min_rate = lower_bounds_min_rate; zero_stats(&cpi->twopass.total_stats); zero_stats(&cpi->twopass.total_left_stats); if (!cpi->twopass.stats_in_end) return; cpi->twopass.total_stats = *cpi->twopass.stats_in_end; cpi->twopass.total_left_stats = cpi->twopass.total_stats; // each frame can have a different duration, as the frame rate in the source // isn't guaranteed to be constant. The frame rate prior to the first frame // encoded in the second pass is a guess. However the sum duration is not. // Its calculated based on the actual durations of all frames from the first // pass. vp9_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count / cpi->twopass.total_stats.duration); cpi->output_framerate = cpi->oxcf.framerate; cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0); cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * two_pass_min_rate / 10000000.0); // Calculate a minimum intra value to be used in determining the IIratio // scores used in the second pass. We have this minimum to make sure // that clips that are static but "low complexity" in the intra domain // are still boosted appropriately for KF/GF/ARF cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; // This variable monitors how far behind the second ref update is lagging cpi->twopass.sr_update_lag = 1; // Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence { double sum_iiratio = 0.0; double IIRatio; start_pos = cpi->twopass.stats_in; // Note starting "file" position while (input_stats(cpi, &this_frame) != EOF) { IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; sum_iiratio += IIRatio; } cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); // Reset file position reset_fpf_position(cpi, start_pos); } // Scan the first pass file and calculate a modified total error based upon the bias/power function // used to allocate bits { start_pos = cpi->twopass.stats_in; // Note starting "file" position cpi->twopass.modified_error_total = 0.0; cpi->twopass.modified_error_used = 0.0; while (input_stats(cpi, &this_frame) != EOF) { cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); } cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; reset_fpf_position(cpi, start_pos); // Reset file position } } void vp9_end_second_pass(VP9_COMP *cpi) { } // This function gives and estimate of how badly we believe // the prediction quality is decaying from frame to frame. static double get_prediction_decay_rate(VP9_COMP *cpi, FIRSTPASS_STATS *next_frame) { double prediction_decay_rate; double second_ref_decay; double mb_sr_err_diff; // Initial basis is the % mbs inter coded prediction_decay_rate = next_frame->pcnt_inter; // Look at the observed drop in prediction quality between the last frame // and the GF buffer (which contains an older frame). mb_sr_err_diff = (next_frame->sr_coded_error - next_frame->coded_error) / cpi->common.MBs; if (mb_sr_err_diff <= 512.0) { second_ref_decay = 1.0 - (mb_sr_err_diff / 512.0); second_ref_decay = pow(second_ref_decay, 0.5); if (second_ref_decay < 0.85) second_ref_decay = 0.85; else if (second_ref_decay > 1.0) second_ref_decay = 1.0; } else { second_ref_decay = 0.85; } if (second_ref_decay < prediction_decay_rate) prediction_decay_rate = second_ref_decay; return prediction_decay_rate; } // Function to test for a condition where a complex transition is followed // by a static section. For example in slide shows where there is a fade // between slides. This is to help with more optimal kf and gf positioning. static int detect_transition_to_still( VP9_COMP *cpi, int frame_interval, int still_interval, double loop_decay_rate, double last_decay_rate) { int trans_to_still = 0; // Break clause to detect very still sections after motion // For example a static image after a fade or other transition // instead of a clean scene cut. if (frame_interval > MIN_GF_INTERVAL && loop_decay_rate >= 0.999 && last_decay_rate < 0.9) { int j; FIRSTPASS_STATS *position = cpi->twopass.stats_in; FIRSTPASS_STATS tmp_next_frame; double zz_inter; // Look ahead a few frames to see if static condition // persists... for (j = 0; j < still_interval; j++) { if (EOF == input_stats(cpi, &tmp_next_frame)) break; zz_inter = (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion); if (zz_inter < 0.999) break; } // Reset file position reset_fpf_position(cpi, position); // Only if it does do we signal a transition to still if (j == still_interval) trans_to_still = 1; } return trans_to_still; } // This function detects a flash through the high relative pcnt_second_ref // score in the frame following a flash frame. The offset passed in should // reflect this static int detect_flash(VP9_COMP *cpi, int offset) { FIRSTPASS_STATS next_frame; int flash_detected = 0; // Read the frame data. // The return is FALSE (no flash detected) if not a valid frame if (read_frame_stats(cpi, &next_frame, offset) != EOF) { // What we are looking for here is a situation where there is a // brief break in prediction (such as a flash) but subsequent frames // are reasonably well predicted by an earlier (pre flash) frame. // The recovery after a flash is indicated by a high pcnt_second_ref // comapred to pcnt_inter. if (next_frame.pcnt_second_ref > next_frame.pcnt_inter && next_frame.pcnt_second_ref >= 0.5) flash_detected = 1; } return flash_detected; } // Update the motion related elements to the GF arf boost calculation static void accumulate_frame_motion_stats( FIRSTPASS_STATS *this_frame, double *this_frame_mv_in_out, double *mv_in_out_accumulator, double *abs_mv_in_out_accumulator, double *mv_ratio_accumulator) { // double this_frame_mv_in_out; double this_frame_mvr_ratio; double this_frame_mvc_ratio; double motion_pct; // Accumulate motion stats. motion_pct = this_frame->pcnt_motion; // Accumulate Motion In/Out of frame stats *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct); // Accumulate a measure of how uniform (or conversely how random) // the motion field is. (A ratio of absmv / mv) if (motion_pct > 0.05) { this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs) ? (this_frame_mvr_ratio * motion_pct) : this_frame->mvr_abs * motion_pct; *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs) ? (this_frame_mvc_ratio * motion_pct) : this_frame->mvc_abs * motion_pct; } } // Calculate a baseline boost number for the current frame. static double calc_frame_boost( VP9_COMP *cpi, FIRSTPASS_STATS *this_frame, double this_frame_mv_in_out) { double frame_boost; // Underlying boost factor is based on inter intra error ratio if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) frame_boost = (IIFACTOR * this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); else frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); // Increase boost for frames where new data coming into frame // (eg zoom out). Slightly reduce boost if there is a net balance // of motion out of the frame (zoom in). // The range for this_frame_mv_in_out is -1.0 to +1.0 if (this_frame_mv_in_out > 0.0) frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); // In extreme case boost is halved else frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); // Clip to maximum if (frame_boost > GF_RMAX) frame_boost = GF_RMAX; return frame_boost; } static int calc_arf_boost(VP9_COMP *cpi, int offset, int f_frames, int b_frames, int *f_boost, int *b_boost) { FIRSTPASS_STATS this_frame; int i; double boost_score = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; int arf_boost; int flash_detected = 0; // Search forward from the proposed arf/next gf position for (i = 0; i < f_frames; i++) { if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; // Update the motion related elements to the boost calculation accumulate_frame_motion_stats(&this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); // We want to discount the flash frame itself and the recovery // frame that follows as both will have poor scores. flash_detected = detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); // Cumulative effect of prediction quality decay if (!flash_detected) { decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame); decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR ? MIN_DECAY_FACTOR : decay_accumulator; } boost_score += (decay_accumulator * calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out)); } *f_boost = (int)boost_score; // Reset for backward looking loop boost_score = 0.0; mv_ratio_accumulator = 0.0; decay_accumulator = 1.0; this_frame_mv_in_out = 0.0; mv_in_out_accumulator = 0.0; abs_mv_in_out_accumulator = 0.0; // Search backward towards last gf position for (i = -1; i >= -b_frames; i--) { if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; // Update the motion related elements to the boost calculation accumulate_frame_motion_stats(&this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); // We want to discount the the flash frame itself and the recovery // frame that follows as both will have poor scores. flash_detected = detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); // Cumulative effect of prediction quality decay if (!flash_detected) { decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame); decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR ? MIN_DECAY_FACTOR : decay_accumulator; } boost_score += (decay_accumulator * calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out)); } *b_boost = (int)boost_score; arf_boost = (*f_boost + *b_boost); if (arf_boost < ((b_frames + f_frames) * 20)) arf_boost = ((b_frames + f_frames) * 20); return arf_boost; } #if CONFIG_MULTIPLE_ARF // Work out the frame coding order for a GF or an ARF group. // The current implementation codes frames in their natural order for a // GF group, and inserts additional ARFs into an ARF group using a // binary split approach. // NOTE: this function is currently implemented recursively. static void schedule_frames(VP9_COMP *cpi, const int start, const int end, const int arf_idx, const int gf_or_arf_group, const int level) { int i, abs_end, half_range; int *cfo = cpi->frame_coding_order; int idx = cpi->new_frame_coding_order_period; // If (end < 0) an ARF should be coded at position (-end). assert(start >= 0); // printf("start:%d end:%d\n", start, end); // GF Group: code frames in logical order. if (gf_or_arf_group == 0) { assert(end >= start); for (i = start; i <= end; ++i) { cfo[idx] = i; cpi->arf_buffer_idx[idx] = arf_idx; cpi->arf_weight[idx] = -1; ++idx; } cpi->new_frame_coding_order_period = idx; return; } // ARF Group: work out the ARF schedule. // Mark ARF frames as negative. if (end < 0) { // printf("start:%d end:%d\n", -end, -end); // ARF frame is at the end of the range. cfo[idx] = end; // What ARF buffer does this ARF use as predictor. cpi->arf_buffer_idx[idx] = (arf_idx > 2) ? (arf_idx - 1) : 2; cpi->arf_weight[idx] = level; ++idx; abs_end = -end; } else { abs_end = end; } half_range = (abs_end - start) >> 1; // ARFs may not be adjacent, they must be separated by at least // MIN_GF_INTERVAL non-ARF frames. if ((start + MIN_GF_INTERVAL) >= (abs_end - MIN_GF_INTERVAL)) { // printf("start:%d end:%d\n", start, abs_end); // Update the coding order and active ARF. for (i = start; i <= abs_end; ++i) { cfo[idx] = i; cpi->arf_buffer_idx[idx] = arf_idx; cpi->arf_weight[idx] = -1; ++idx; } cpi->new_frame_coding_order_period = idx; } else { // Place a new ARF at the mid-point of the range. cpi->new_frame_coding_order_period = idx; schedule_frames(cpi, start, -(start + half_range), arf_idx + 1, gf_or_arf_group, level + 1); schedule_frames(cpi, start + half_range + 1, abs_end, arf_idx, gf_or_arf_group, level + 1); } } #define FIXED_ARF_GROUP_SIZE 16 void define_fixed_arf_period(VP9_COMP *cpi) { int i; int max_level = INT_MIN; assert(cpi->multi_arf_enabled); assert(cpi->oxcf.lag_in_frames >= FIXED_ARF_GROUP_SIZE); // Save the weight of the last frame in the sequence before next // sequence pattern overwrites it. cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number]; assert(cpi->this_frame_weight >= 0); // Initialize frame coding order variables. cpi->new_frame_coding_order_period = 0; cpi->next_frame_in_order = 0; cpi->arf_buffered = 0; vp9_zero(cpi->frame_coding_order); vp9_zero(cpi->arf_buffer_idx); vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight)); if (cpi->twopass.frames_to_key <= (FIXED_ARF_GROUP_SIZE + 8)) { // Setup a GF group close to the keyframe. cpi->source_alt_ref_pending = 0; cpi->baseline_gf_interval = cpi->twopass.frames_to_key; schedule_frames(cpi, 0, (cpi->baseline_gf_interval - 1), 2, 0, 0); } else { // Setup a fixed period ARF group. cpi->source_alt_ref_pending = 1; cpi->baseline_gf_interval = FIXED_ARF_GROUP_SIZE; schedule_frames(cpi, 0, -(cpi->baseline_gf_interval - 1), 2, 1, 0); } // Replace level indicator of -1 with correct level. for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { if (cpi->arf_weight[i] > max_level) { max_level = cpi->arf_weight[i]; } } ++max_level; for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { if (cpi->arf_weight[i] == -1) { cpi->arf_weight[i] = max_level; } } cpi->max_arf_level = max_level; #if 0 printf("\nSchedule: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->frame_coding_order[i]); } printf("\n"); printf("ARFref: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->arf_buffer_idx[i]); } printf("\n"); printf("Weight: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->arf_weight[i]); } printf("\n"); #endif } #endif // Analyse and define a gf/arf group. static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { FIRSTPASS_STATS next_frame; FIRSTPASS_STATS *start_pos; int i; double boost_score = 0.0; double old_boost_score = 0.0; double gf_group_err = 0.0; double gf_first_frame_err = 0.0; double mod_frame_err = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double zero_motion_accumulator = 1.0; double loop_decay_rate = 1.00; // Starting decay rate double last_loop_decay_rate = 1.00; double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; double mv_ratio_accumulator_thresh; int max_bits = frame_max_bits(cpi); // Max for a single frame unsigned int allow_alt_ref = cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; int f_boost = 0; int b_boost = 0; int flash_detected; int active_max_gf_interval; cpi->twopass.gf_group_bits = 0; vp9_clear_system_state(); // __asm emms; start_pos = cpi->twopass.stats_in; vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean // Load stats for the current frame. mod_frame_err = calculate_modified_err(cpi, this_frame); // Note the error of the frame at the start of the group (this will be // the GF frame error if we code a normal gf gf_first_frame_err = mod_frame_err; // Special treatment if the current frame is a key frame (which is also // a gf). If it is then its error score (and hence bit allocation) need // to be subtracted out from the calculation for the GF group if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err; // Motion breakout threshold for loop below depends on image size. mv_ratio_accumulator_thresh = (cpi->common.width + cpi->common.height) / 10.0; // Work out a maximum interval for the GF. // If the image appears completely static we can extend beyond this. // The value chosen depends on the active Q range. At low Q we have // bits to spare and are better with a smaller interval and smaller boost. // At high Q when there are few bits to spare we are better with a longer // interval to spread the cost of the GF. active_max_gf_interval = 12 + ((int)vp9_convert_qindex_to_q(cpi->active_worst_quality) >> 5); if (active_max_gf_interval > cpi->max_gf_interval) active_max_gf_interval = cpi->max_gf_interval; i = 0; while (((i < cpi->twopass.static_scene_max_gf_interval) || ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && (i < cpi->twopass.frames_to_key)) { i++; // Increment the loop counter // Accumulate error score of frames in this gf group mod_frame_err = calculate_modified_err(cpi, this_frame); gf_group_err += mod_frame_err; if (EOF == input_stats(cpi, &next_frame)) break; // Test for the case where there is a brief flash but the prediction // quality back to an earlier frame is then restored. flash_detected = detect_flash(cpi, 0); // Update the motion related elements to the boost calculation accumulate_frame_motion_stats(&next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); // Cumulative effect of prediction quality decay if (!flash_detected) { last_loop_decay_rate = loop_decay_rate; loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); decay_accumulator = decay_accumulator * loop_decay_rate; // Monitor for static sections. if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < zero_motion_accumulator) { zero_motion_accumulator = (next_frame.pcnt_inter - next_frame.pcnt_motion); } // Break clause to detect very still sections after motion // (for example a static image after a fade or other transition). if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, last_loop_decay_rate)) { allow_alt_ref = 0; break; } } // Calculate a boost number for this frame boost_score += (decay_accumulator * calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out)); // Break out conditions. if ( // Break at cpi->max_gf_interval unless almost totally static (i >= active_max_gf_interval && (zero_motion_accumulator < 0.995)) || ( // Don't break out with a very short interval (i > MIN_GF_INTERVAL) && // Don't break out very close to a key frame ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) && (!flash_detected) && ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0) || ((boost_score - old_boost_score) < IIFACTOR)) )) { boost_score = old_boost_score; break; } *this_frame = next_frame; old_boost_score = boost_score; } // Don't allow a gf too near the next kf if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) { while (i < cpi->twopass.frames_to_key) { i++; if (EOF == input_stats(cpi, this_frame)) break; if (i < cpi->twopass.frames_to_key) { mod_frame_err = calculate_modified_err(cpi, this_frame); gf_group_err += mod_frame_err; } } } // Set the interval until the next gf or arf. cpi->baseline_gf_interval = i; #if CONFIG_MULTIPLE_ARF if (cpi->multi_arf_enabled) { // Initialize frame coding order variables. cpi->new_frame_coding_order_period = 0; cpi->next_frame_in_order = 0; cpi->arf_buffered = 0; vp9_zero(cpi->frame_coding_order); vp9_zero(cpi->arf_buffer_idx); vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight)); } #endif // Should we use the alternate reference frame if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) && (i >= MIN_GF_INTERVAL) && // dont use ARF very near next kf (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && ((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) && ((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) && (boost_score > 100)) { // Alternative boost calculation for alt ref cpi->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost); cpi->source_alt_ref_pending = 1; #if CONFIG_MULTIPLE_ARF // Set the ARF schedule. if (cpi->multi_arf_enabled) { schedule_frames(cpi, 0, -(cpi->baseline_gf_interval - 1), 2, 1, 0); } #endif } else { cpi->gfu_boost = (int)boost_score; cpi->source_alt_ref_pending = 0; #if CONFIG_MULTIPLE_ARF // Set the GF schedule. if (cpi->multi_arf_enabled) { schedule_frames(cpi, 0, cpi->baseline_gf_interval - 1, 2, 0, 0); assert(cpi->new_frame_coding_order_period == cpi->baseline_gf_interval); } #endif } #if CONFIG_MULTIPLE_ARF if (cpi->multi_arf_enabled && (cpi->common.frame_type != KEY_FRAME)) { int max_level = INT_MIN; // Replace level indicator of -1 with correct level. for (i = 0; i < cpi->frame_coding_order_period; ++i) { if (cpi->arf_weight[i] > max_level) { max_level = cpi->arf_weight[i]; } } ++max_level; for (i = 0; i < cpi->frame_coding_order_period; ++i) { if (cpi->arf_weight[i] == -1) { cpi->arf_weight[i] = max_level; } } cpi->max_arf_level = max_level; } #if 0 if (cpi->multi_arf_enabled) { printf("\nSchedule: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->frame_coding_order[i]); } printf("\n"); printf("ARFref: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->arf_buffer_idx[i]); } printf("\n"); printf("Weight: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->arf_weight[i]); } printf("\n"); } #endif #endif // Now decide how many bits should be allocated to the GF group as a // proportion of those remaining in the kf group. // The final key frame group in the clip is treated as a special case // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. // This is also important for short clips where there may only be one // key frame. if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame)) { cpi->twopass.kf_group_bits = (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; } // Calculate the bits to be allocated to the group as a whole if ((cpi->twopass.kf_group_bits > 0) && (cpi->twopass.kf_group_error_left > 0)) { cpi->twopass.gf_group_bits = (int64_t)(cpi->twopass.kf_group_bits * (gf_group_err / cpi->twopass.kf_group_error_left)); } else cpi->twopass.gf_group_bits = 0; cpi->twopass.gf_group_bits = (cpi->twopass.gf_group_bits < 0) ? 0 : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; // Clip cpi->twopass.gf_group_bits based on user supplied data rate // variability limit (cpi->oxcf.two_pass_vbrmax_section) if (cpi->twopass.gf_group_bits > (int64_t)max_bits * cpi->baseline_gf_interval) cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval; // Reset the file position reset_fpf_position(cpi, start_pos); // Update the record of error used so far (only done once per gf group) cpi->twopass.modified_error_used += gf_group_err; // Assign bits to the arf or gf. for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); ++i) { int allocation_chunks; int q = cpi->oxcf.fixed_q < 0 ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; int gf_bits; int boost = (cpi->gfu_boost * vp9_gfboost_qadjust(q)) / 100; // Set max and minimum boost and hence minimum allocation boost = clamp(boost, 125, (cpi->baseline_gf_interval + 1) * 200); if (cpi->source_alt_ref_pending && i == 0) allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + boost; else allocation_chunks = (cpi->baseline_gf_interval * 100) + (boost - 100); // Prevent overflow if (boost > 1023) { int divisor = boost >> 10; boost /= divisor; allocation_chunks /= divisor; } // Calculate the number of bits to be spent on the gf or arf based on // the boost number gf_bits = (int)((double)boost * (cpi->twopass.gf_group_bits / (double)allocation_chunks)); // If the frame that is to be boosted is simpler than the average for // the gf/arf group then use an alternative calculation // based on the error score of the frame itself if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) { double alt_gf_grp_bits = (double)cpi->twopass.kf_group_bits * (mod_frame_err * (double)cpi->baseline_gf_interval) / DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left); int alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits / (double)allocation_chunks)); if (gf_bits > alt_gf_bits) gf_bits = alt_gf_bits; } // Else if it is harder than other frames in the group make sure it at // least receives an allocation in keeping with its relative error // score, otherwise it may be worse off than an "un-boosted" frame else { int alt_gf_bits = (int)((double)cpi->twopass.kf_group_bits * mod_frame_err / DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left)); if (alt_gf_bits > gf_bits) gf_bits = alt_gf_bits; } // Dont allow a negative value for gf_bits if (gf_bits < 0) gf_bits = 0; // Add in minimum for a frame gf_bits += cpi->min_frame_bandwidth; if (i == 0) { cpi->twopass.gf_bits = gf_bits; } if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) { // Per frame bit target for this frame cpi->per_frame_bandwidth = gf_bits; } } { // Adjust KF group bits and error remaining cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; // Note the error score left in the remaining frames of the group. // For normal GFs we want to remove the error score for the first frame // of the group (except in Key frame case where this has already // happened) if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) cpi->twopass.gf_group_error_left = (int64_t)(gf_group_err - gf_first_frame_err); else cpi->twopass.gf_group_error_left = (int64_t)gf_group_err; cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; // This condition could fail if there are two kfs very close together // despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the // calculation of alt_extra_bits. if (cpi->baseline_gf_interval >= 3) { const int boost = cpi->source_alt_ref_pending ? b_boost : cpi->gfu_boost; if (boost >= 150) { int alt_extra_bits; int pct_extra = (boost - 100) / 50; pct_extra = (pct_extra > 20) ? 20 : pct_extra; alt_extra_bits = (int)((cpi->twopass.gf_group_bits * pct_extra) / 100); cpi->twopass.gf_group_bits -= alt_extra_bits; } } } if (cpi->common.frame_type != KEY_FRAME) { FIRSTPASS_STATS sectionstats; zero_stats(§ionstats); reset_fpf_position(cpi, start_pos); for (i = 0; i < cpi->baseline_gf_interval; i++) { input_stats(cpi, &next_frame); accumulate_stats(§ionstats, &next_frame); } avg_stats(§ionstats); cpi->twopass.section_intra_rating = (int) (sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); reset_fpf_position(cpi, start_pos); } } // Allocate bits to a normal frame that is neither a gf an arf or a key frame. static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { int target_frame_size; double modified_err; double err_fraction; // Max for a single frame. int max_bits = frame_max_bits(cpi); // Calculate modified prediction error used in bit allocation. modified_err = calculate_modified_err(cpi, this_frame); if (cpi->twopass.gf_group_error_left > 0) // What portion of the remaining GF group error is used by this frame. err_fraction = modified_err / cpi->twopass.gf_group_error_left; else err_fraction = 0.0; // How many of those bits available for allocation should we give it? target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); // Clip target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at // the top end. if (target_frame_size < 0) target_frame_size = 0; else { if (target_frame_size > max_bits) target_frame_size = max_bits; if (target_frame_size > cpi->twopass.gf_group_bits) target_frame_size = (int)cpi->twopass.gf_group_bits; } // Adjust error and bits remaining. cpi->twopass.gf_group_error_left -= (int64_t)modified_err; cpi->twopass.gf_group_bits -= target_frame_size; if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; // Add in the minimum number of bits that is set aside for every frame. target_frame_size += cpi->min_frame_bandwidth; // Per frame bit target for this frame. cpi->per_frame_bandwidth = target_frame_size; } // Make a damped adjustment to the active max q. static int adjust_active_maxq(int old_maxqi, int new_maxqi) { int i; const double old_q = vp9_convert_qindex_to_q(old_maxqi); const double new_q = vp9_convert_qindex_to_q(new_maxqi); const double target_q = ((old_q * 7.0) + new_q) / 8.0; if (target_q > old_q) { for (i = old_maxqi; i <= new_maxqi; i++) if (vp9_convert_qindex_to_q(i) >= target_q) return i; } else { for (i = old_maxqi; i >= new_maxqi; i--) if (vp9_convert_qindex_to_q(i) <= target_q) return i; } return new_maxqi; } void vp9_second_pass(VP9_COMP *cpi) { int tmp_q; int frames_left = (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); FIRSTPASS_STATS this_frame; FIRSTPASS_STATS this_frame_copy; double this_frame_intra_error; double this_frame_coded_error; if (!cpi->twopass.stats_in) return; vp9_clear_system_state(); // Special case code for first frame. if (cpi->common.current_video_frame == 0) { cpi->twopass.est_max_qcorrection_factor = 1.0; // Set a cq_level in constrained quality mode. if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { int est_cq = estimate_cq(cpi, &cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left)); cpi->cq_target_quality = cpi->oxcf.cq_level; if (est_cq > cpi->cq_target_quality) cpi->cq_target_quality = est_cq; } // guess at maxq needed in 2nd pass cpi->twopass.maxq_max_limit = cpi->worst_quality; cpi->twopass.maxq_min_limit = cpi->best_quality; tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left)); cpi->active_worst_quality = tmp_q; cpi->ni_av_qi = tmp_q; cpi->avg_q = vp9_convert_qindex_to_q(tmp_q); #ifndef ONE_SHOT_Q_ESTIMATE // Limit the maxq value returned subsequently. // This increases the risk of overspend or underspend if the initial // estimate for the clip is bad, but helps prevent excessive // variation in Q, especially near the end of a clip // where for example a small overspend may cause Q to crash adjust_maxq_qrange(cpi); #endif } #ifndef ONE_SHOT_Q_ESTIMATE // The last few frames of a clip almost always have to few or too many // bits and for the sake of over exact rate control we dont want to make // radical adjustments to the allowed quantizer range just to use up a // few surplus bits or get beneath the target rate. else if ((cpi->common.current_video_frame < (((unsigned int)cpi->twopass.total_stats.count * 255) >> 8)) && ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < (unsigned int)cpi->twopass.total_stats.count)) { if (frames_left < 1) frames_left = 1; tmp_q = estimate_max_q( cpi, &cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left)); // Make a damped adjustment to active max Q cpi->active_worst_quality = adjust_active_maxq(cpi->active_worst_quality, tmp_q); } #endif vp9_zero(this_frame); if (EOF == input_stats(cpi, &this_frame)) return; this_frame_intra_error = this_frame.intra_error; this_frame_coded_error = this_frame.coded_error; // keyframe and section processing ! if (cpi->twopass.frames_to_key == 0) { // Define next KF group and assign bits to it this_frame_copy = this_frame; find_next_key_frame(cpi, &this_frame_copy); } // Is this a GF / ARF (Note that a KF is always also a GF) if (cpi->frames_till_gf_update_due == 0) { // Define next gf group and assign bits to it this_frame_copy = this_frame; #if CONFIG_MULTIPLE_ARF if (cpi->multi_arf_enabled) { define_fixed_arf_period(cpi); } else { #endif define_gf_group(cpi, &this_frame_copy); #if CONFIG_MULTIPLE_ARF } #endif // If we are going to code an altref frame at the end of the group // and the current frame is not a key frame.... // If the previous group used an arf this frame has already benefited // from that arf boost and it should not be given extra bits // If the previous group was NOT coded using arf we may want to apply // some boost to this GF as well if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) { // Assign a standard frames worth of bits from those allocated // to the GF group int bak = cpi->per_frame_bandwidth; this_frame_copy = this_frame; assign_std_frame_bits(cpi, &this_frame_copy); cpi->per_frame_bandwidth = bak; } } else { // Otherwise this is an ordinary frame // Assign bits from those allocated to the GF group this_frame_copy = this_frame; assign_std_frame_bits(cpi, &this_frame_copy); } // Keep a globally available copy of this and the next frame's iiratio. cpi->twopass.this_iiratio = (int)(this_frame_intra_error / DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); { FIRSTPASS_STATS next_frame; if (lookup_next_frame_stats(cpi, &next_frame) != EOF) { cpi->twopass.next_iiratio = (int)(next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); } } // Set nominal per second bandwidth for this frame cpi->target_bandwidth = (int)(cpi->per_frame_bandwidth * cpi->output_framerate); if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0; cpi->twopass.frames_to_key--; // Update the total stats remaining structure subtract_stats(&cpi->twopass.total_left_stats, &this_frame); } static int test_candidate_kf(VP9_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) { int is_viable_kf = 0; // Does the frame satisfy the primary criteria of a key frame // If so, then examine how well it predicts subsequent frames if ((this_frame->pcnt_second_ref < 0.10) && (next_frame->pcnt_second_ref < 0.10) && ((this_frame->pcnt_inter < 0.05) || ( ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) && ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) ) ) ) ) { int i; FIRSTPASS_STATS *start_pos; FIRSTPASS_STATS local_next_frame; double boost_score = 0.0; double old_boost_score = 0.0; double decay_accumulator = 1.0; double next_iiratio; local_next_frame = *next_frame; // Note the starting file position so we can reset to it start_pos = cpi->twopass.stats_in; // Examine how well the key frame predicts subsequent frames for (i = 0; i < 16; i++) { next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); if (next_iiratio > RMAX) next_iiratio = RMAX; // Cumulative effect of decay in prediction quality if (local_next_frame.pcnt_inter > 0.85) decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; else decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); // decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; // Keep a running total boost_score += (decay_accumulator * next_iiratio); // Test various breakout clauses if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < 0.20) && (next_iiratio < 3.0)) || ((boost_score - old_boost_score) < 3.0) || (local_next_frame.intra_error < 200) ) { break; } old_boost_score = boost_score; // Get the next frame details if (EOF == input_stats(cpi, &local_next_frame)) break; } // If there is tolerable prediction for at least the next 3 frames then // break out else discard this potential key frame and move on if (boost_score > 30.0 && (i > 3)) is_viable_kf = 1; else { // Reset the file position reset_fpf_position(cpi, start_pos); is_viable_kf = 0; } } return is_viable_kf; } static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { int i, j; FIRSTPASS_STATS last_frame; FIRSTPASS_STATS first_frame; FIRSTPASS_STATS next_frame; FIRSTPASS_STATS *start_position; double decay_accumulator = 1.0; double zero_motion_accumulator = 1.0; double boost_score = 0; double loop_decay_rate; double kf_mod_err = 0.0; double kf_group_err = 0.0; double kf_group_intra_err = 0.0; double kf_group_coded_err = 0.0; double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; vp9_zero(next_frame); vp9_clear_system_state(); // __asm emms; start_position = cpi->twopass.stats_in; cpi->common.frame_type = KEY_FRAME; // is this a forced key frame by interval cpi->this_key_frame_forced = cpi->next_key_frame_forced; // Clear the alt ref active flag as this can never be active on a key frame cpi->source_alt_ref_active = 0; // Kf is always a gf so clear frames till next gf counter cpi->frames_till_gf_update_due = 0; cpi->twopass.frames_to_key = 1; // Take a copy of the initial frame details first_frame = *this_frame; cpi->twopass.kf_group_bits = 0; // Total bits available to kf group cpi->twopass.kf_group_error_left = 0; // Group modified error score. kf_mod_err = calculate_modified_err(cpi, this_frame); // find the next keyframe i = 0; while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { // Accumulate kf group error kf_group_err += calculate_modified_err(cpi, this_frame); // These figures keep intra and coded error counts for all frames including key frames in the group. // The effect of the key frame itself can be subtracted out using the first_frame data collected above kf_group_intra_err += this_frame->intra_error; kf_group_coded_err += this_frame->coded_error; // load a the next frame's stats last_frame = *this_frame; input_stats(cpi, this_frame); // Provided that we are not at the end of the file... if (cpi->oxcf.auto_key && lookup_next_frame_stats(cpi, &next_frame) != EOF) { // Normal scene cut check if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) break; // How fast is prediction quality decaying loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); // We want to know something about the recent past... rather than // as used elsewhere where we are concened with decay in prediction // quality since the last GF or KF. recent_loop_decay[i % 8] = loop_decay_rate; decay_accumulator = 1.0; for (j = 0; j < 8; j++) decay_accumulator *= recent_loop_decay[j]; // Special check for transition or high motion followed by a // to a static scene. if (detect_transition_to_still(cpi, i, cpi->key_frame_frequency - i, loop_decay_rate, decay_accumulator)) break; // Step on to the next frame cpi->twopass.frames_to_key++; // If we don't have a real key frame within the next two // forcekeyframeevery intervals then break out of the loop. if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) break; } else cpi->twopass.frames_to_key++; i++; } // If there is a max kf interval set by the user we must obey it. // We already breakout of the loop above at 2x max. // This code centers the extra kf if the actual natural // interval is between 1x and 2x if (cpi->oxcf.auto_key && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) { FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; FIRSTPASS_STATS tmp_frame; cpi->twopass.frames_to_key /= 2; // Copy first frame details tmp_frame = first_frame; // Reset to the start of the group reset_fpf_position(cpi, start_position); kf_group_err = 0; kf_group_intra_err = 0; kf_group_coded_err = 0; // Rescan to get the correct error data for the forced kf group for (i = 0; i < cpi->twopass.frames_to_key; i++) { // Accumulate kf group errors kf_group_err += calculate_modified_err(cpi, &tmp_frame); kf_group_intra_err += tmp_frame.intra_error; kf_group_coded_err += tmp_frame.coded_error; // Load a the next frame's stats input_stats(cpi, &tmp_frame); } // Reset to the start of the group reset_fpf_position(cpi, current_pos); cpi->next_key_frame_forced = 1; } else cpi->next_key_frame_forced = 0; // Special case for the last frame of the file if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { // Accumulate kf group error kf_group_err += calculate_modified_err(cpi, this_frame); // These figures keep intra and coded error counts for all frames including key frames in the group. // The effect of the key frame itself can be subtracted out using the first_frame data collected above kf_group_intra_err += this_frame->intra_error; kf_group_coded_err += this_frame->coded_error; } // Calculate the number of bits that should be assigned to the kf group. if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) { // Max for a single normal frame (not key frame) int max_bits = frame_max_bits(cpi); // Maximum bits for the kf group int64_t max_grp_bits; // Default allocation based on bits left and relative // complexity of the section cpi->twopass.kf_group_bits = (int64_t)(cpi->twopass.bits_left * (kf_group_err / cpi->twopass.modified_error_left)); // Clip based on maximum per frame rate defined by the user. max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; if (cpi->twopass.kf_group_bits > max_grp_bits) cpi->twopass.kf_group_bits = max_grp_bits; } else cpi->twopass.kf_group_bits = 0; // Reset the first pass file position reset_fpf_position(cpi, start_position); // determine how big to make this keyframe based on how well the subsequent frames use inter blocks decay_accumulator = 1.0; boost_score = 0.0; loop_decay_rate = 1.00; // Starting decay rate // Scan through the kf group collating various stats. for (i = 0; i < cpi->twopass.frames_to_key; i++) { double r; if (EOF == input_stats(cpi, &next_frame)) break; // Monitor for static sections. if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < zero_motion_accumulator) { zero_motion_accumulator = (next_frame.pcnt_inter - next_frame.pcnt_motion); } // For the first few frames collect data to decide kf boost. if (i <= (cpi->max_gf_interval * 2)) { if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) r = (IIKFACTOR2 * next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); else r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); if (r > RMAX) r = RMAX; // How fast is prediction quality decaying if (!detect_flash(cpi, 0)) { loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); decay_accumulator = decay_accumulator * loop_decay_rate; decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR ? MIN_DECAY_FACTOR : decay_accumulator; } boost_score += (decay_accumulator * r); } } { FIRSTPASS_STATS sectionstats; zero_stats(§ionstats); reset_fpf_position(cpi, start_position); for (i = 0; i < cpi->twopass.frames_to_key; i++) { input_stats(cpi, &next_frame); accumulate_stats(§ionstats, &next_frame); } avg_stats(§ionstats); cpi->twopass.section_intra_rating = (int) (sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); } // Reset the first pass file position reset_fpf_position(cpi, start_position); // Work out how many bits to allocate for the key frame itself if (1) { int kf_boost = (int)boost_score; int allocation_chunks; int alt_kf_bits; if (kf_boost < (cpi->twopass.frames_to_key * 3)) kf_boost = (cpi->twopass.frames_to_key * 3); if (kf_boost < 300) // Min KF boost kf_boost = 300; // Make a note of baseline boost and the zero motion // accumulator value for use elsewhere. cpi->kf_boost = kf_boost; cpi->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); // We do three calculations for kf size. // The first is based on the error score for the whole kf group. // The second (optionaly) on the key frames own error if this is // smaller than the average for the group. // The final one insures that the frame receives at least the // allocation it would have received based on its own error score vs // the error score remaining // Special case if the sequence appears almost totaly static // In this case we want to spend almost all of the bits on the // key frame. // cpi->twopass.frames_to_key-1 because key frame itself is taken // care of by kf_boost. if (zero_motion_accumulator >= 0.99) { allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; } else { allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; } // Prevent overflow if (kf_boost > 1028) { int divisor = kf_boost >> 10; kf_boost /= divisor; allocation_chunks /= divisor; } cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; // Calculate the number of bits to be spent on the key frame cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); // If the key frame is actually easier than the average for the // kf group (which does sometimes happen... eg a blank intro frame) // Then use an alternate calculation based on the kf error score // which should give a smaller key frame. if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) { double alt_kf_grp_bits = ((double)cpi->twopass.bits_left * (kf_mod_err * (double)cpi->twopass.frames_to_key) / DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); alt_kf_bits = (int)((double)kf_boost * (alt_kf_grp_bits / (double)allocation_chunks)); if (cpi->twopass.kf_bits > alt_kf_bits) { cpi->twopass.kf_bits = alt_kf_bits; } } // Else if it is much harder than other frames in the group make sure // it at least receives an allocation in keeping with its relative // error score else { alt_kf_bits = (int)((double)cpi->twopass.bits_left * (kf_mod_err / DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); if (alt_kf_bits > cpi->twopass.kf_bits) { cpi->twopass.kf_bits = alt_kf_bits; } } cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; // Add in the minimum frame allowance cpi->twopass.kf_bits += cpi->min_frame_bandwidth; // Peer frame bit target for this frame cpi->per_frame_bandwidth = cpi->twopass.kf_bits; // Convert to a per second bitrate cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * cpi->output_framerate); } // Note the total error score of the kf group minus the key frame itself cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); // Adjust the count of total modified error left. // The count of bits left is adjusted elsewhere based on real coded frame sizes cpi->twopass.modified_error_left -= kf_group_err; }