/* * Copyright (c) 2013 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vp9_rtcd.h" #include "vp9/common/vp9_filter.h" #include "vp9/common/vp9_scale.h" static INLINE int scaled_x(int val, const struct scale_factors_common *sfc) { return val * sfc->x_scale_fp >> REF_SCALE_SHIFT; } static INLINE int scaled_y(int val, const struct scale_factors_common *sfc) { return val * sfc->y_scale_fp >> REF_SCALE_SHIFT; } static int unscaled_value(int val, const struct scale_factors_common *sfc) { (void) sfc; return val; } static MV32 scaled_mv(const MV *mv, const struct scale_factors *scale) { const MV32 res = { scaled_y(mv->row, scale->sfc) + scale->y_offset_q4, scaled_x(mv->col, scale->sfc) + scale->x_offset_q4 }; return res; } static MV32 unscaled_mv(const MV *mv, const struct scale_factors *scale) { const MV32 res = { mv->row, mv->col }; return res; } static void set_offsets_with_scaling(struct scale_factors *scale, int row, int col) { scale->x_offset_q4 = scaled_x(col << SUBPEL_BITS, scale->sfc) & SUBPEL_MASK; scale->y_offset_q4 = scaled_y(row << SUBPEL_BITS, scale->sfc) & SUBPEL_MASK; } static void set_offsets_without_scaling(struct scale_factors *scale, int row, int col) { scale->x_offset_q4 = 0; scale->y_offset_q4 = 0; } static int get_fixed_point_scale_factor(int other_size, int this_size) { // Calculate scaling factor once for each reference frame // and use fixed point scaling factors in decoding and encoding routines. // Hardware implementations can calculate scale factor in device driver // and use multiplication and shifting on hardware instead of division. return (other_size << REF_SCALE_SHIFT) / this_size; } static int check_scale_factors(int other_w, int other_h, int this_w, int this_h) { return 2 * this_w >= other_w && 2 * this_h >= other_h && this_w <= 16 * other_w && this_h <= 16 * other_h; } void vp9_setup_scale_factors_for_frame(struct scale_factors *scale, struct scale_factors_common *scale_comm, int other_w, int other_h, int this_w, int this_h) { if (!check_scale_factors(other_w, other_h, this_w, this_h)) { scale_comm->x_scale_fp = REF_INVALID_SCALE; scale_comm->y_scale_fp = REF_INVALID_SCALE; return; } scale_comm->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); scale_comm->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); scale_comm->x_step_q4 = scaled_x(16, scale_comm); scale_comm->y_step_q4 = scaled_y(16, scale_comm); if (vp9_is_scaled(scale_comm)) { scale_comm->scale_value_x = scaled_x; scale_comm->scale_value_y = scaled_y; scale_comm->set_scaled_offsets = set_offsets_with_scaling; scale_comm->scale_mv = scaled_mv; } else { scale_comm->scale_value_x = unscaled_value; scale_comm->scale_value_y = unscaled_value; scale_comm->set_scaled_offsets = set_offsets_without_scaling; scale_comm->scale_mv = unscaled_mv; } // TODO(agrange): Investigate the best choice of functions to use here // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what // to do at full-pel offsets. The current selection, where the filter is // applied in one direction only, and not at all for 0,0, seems to give the // best quality, but it may be worth trying an additional mode that does // do the filtering on full-pel. if (scale_comm->x_step_q4 == 16) { if (scale_comm->y_step_q4 == 16) { // No scaling in either direction. scale_comm->predict[0][0][0] = vp9_convolve_copy; scale_comm->predict[0][0][1] = vp9_convolve_avg; scale_comm->predict[0][1][0] = vp9_convolve8_vert; scale_comm->predict[0][1][1] = vp9_convolve8_avg_vert; scale_comm->predict[1][0][0] = vp9_convolve8_horiz; scale_comm->predict[1][0][1] = vp9_convolve8_avg_horiz; } else { // No scaling in x direction. Must always scale in the y direction. scale_comm->predict[0][0][0] = vp9_convolve8_vert; scale_comm->predict[0][0][1] = vp9_convolve8_avg_vert; scale_comm->predict[0][1][0] = vp9_convolve8_vert; scale_comm->predict[0][1][1] = vp9_convolve8_avg_vert; scale_comm->predict[1][0][0] = vp9_convolve8; scale_comm->predict[1][0][1] = vp9_convolve8_avg; } } else { if (scale_comm->y_step_q4 == 16) { // No scaling in the y direction. Must always scale in the x direction. scale_comm->predict[0][0][0] = vp9_convolve8_horiz; scale_comm->predict[0][0][1] = vp9_convolve8_avg_horiz; scale_comm->predict[0][1][0] = vp9_convolve8; scale_comm->predict[0][1][1] = vp9_convolve8_avg; scale_comm->predict[1][0][0] = vp9_convolve8_horiz; scale_comm->predict[1][0][1] = vp9_convolve8_avg_horiz; } else { // Must always scale in both directions. scale_comm->predict[0][0][0] = vp9_convolve8; scale_comm->predict[0][0][1] = vp9_convolve8_avg; scale_comm->predict[0][1][0] = vp9_convolve8; scale_comm->predict[0][1][1] = vp9_convolve8_avg; scale_comm->predict[1][0][0] = vp9_convolve8; scale_comm->predict[1][0][1] = vp9_convolve8_avg; } } // 2D subpel motion always gets filtered in both directions scale_comm->predict[1][1][0] = vp9_convolve8; scale_comm->predict[1][1][1] = vp9_convolve8_avg; scale->sfc = scale_comm; scale->x_offset_q4 = 0; // calculated per block scale->y_offset_q4 = 0; // calculated per block }