/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/vpx_once.h" #include "./vp9_rtcd.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_onyxc_int.h" const TX_TYPE intra_mode_to_tx_type_lookup[INTRA_MODES] = { DCT_DCT, // DC ADST_DCT, // V DCT_ADST, // H DCT_DCT, // D45 ADST_ADST, // D135 ADST_DCT, // D117 DCT_ADST, // D153 DCT_ADST, // D207 ADST_DCT, // D63 ADST_ADST, // TM }; #define intra_pred_sized(type, size) \ void vp9_##type##_predictor_##size##x##size##_c(uint8_t *dst, \ ptrdiff_t stride, \ const uint8_t *above, \ const uint8_t *left) { \ type##_predictor(dst, stride, size, above, left); \ } #define intra_pred_allsizes(type) \ intra_pred_sized(type, 4) \ intra_pred_sized(type, 8) \ intra_pred_sized(type, 16) \ intra_pred_sized(type, 32) static INLINE void d207_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; // first column for (r = 0; r < bs - 1; ++r) dst[r * stride] = ROUND_POWER_OF_TWO(left[r] + left[r + 1], 1); dst[(bs - 1) * stride] = left[bs - 1]; dst++; // second column for (r = 0; r < bs - 2; ++r) dst[r * stride] = ROUND_POWER_OF_TWO(left[r] + left[r + 1] * 2 + left[r + 2], 2); dst[(bs - 2) * stride] = ROUND_POWER_OF_TWO(left[bs - 2] + left[bs - 1] * 3, 2); dst[(bs - 1) * stride] = left[bs - 1]; dst++; // rest of last row for (c = 0; c < bs - 2; ++c) dst[(bs - 1) * stride + c] = left[bs - 1]; for (r = bs - 2; r >= 0; --r) for (c = 0; c < bs - 2; ++c) dst[r * stride + c] = dst[(r + 1) * stride + c - 2]; } intra_pred_allsizes(d207) static INLINE void d63_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) dst[c] = r & 1 ? ROUND_POWER_OF_TWO(above[r/2 + c] + above[r/2 + c + 1] * 2 + above[r/2 + c + 2], 2) : ROUND_POWER_OF_TWO(above[r/2 + c] + above[r/2 + c + 1], 1); dst += stride; } } intra_pred_allsizes(d63) static INLINE void d45_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) dst[c] = r + c + 2 < bs * 2 ? ROUND_POWER_OF_TWO(above[r + c] + above[r + c + 1] * 2 + above[r + c + 2], 2) : above[bs * 2 - 1]; dst += stride; } } intra_pred_allsizes(d45) static INLINE void d117_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; // first row for (c = 0; c < bs; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 1] + above[c], 1); dst += stride; // second row dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2); for (c = 1; c < bs; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 2] + above[c - 1] * 2 + above[c], 2); dst += stride; // the rest of first col dst[0] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2); for (r = 3; r < bs; ++r) dst[(r - 2) * stride] = ROUND_POWER_OF_TWO(left[r - 3] + left[r - 2] * 2 + left[r - 1], 2); // the rest of the block for (r = 2; r < bs; ++r) { for (c = 1; c < bs; c++) dst[c] = dst[-2 * stride + c - 1]; dst += stride; } } intra_pred_allsizes(d117) static INLINE void d135_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2); for (c = 1; c < bs; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 2] + above[c - 1] * 2 + above[c], 2); dst[stride] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2); for (r = 2; r < bs; ++r) dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 2] + left[r - 1] * 2 + left[r], 2); dst += stride; for (r = 1; r < bs; ++r) { for (c = 1; c < bs; c++) dst[c] = dst[-stride + c - 1]; dst += stride; } } intra_pred_allsizes(d135) static INLINE void d153_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; dst[0] = ROUND_POWER_OF_TWO(above[-1] + left[0], 1); for (r = 1; r < bs; r++) dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 1] + left[r], 1); dst++; dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2); dst[stride] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2); for (r = 2; r < bs; r++) dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 2] + left[r - 1] * 2 + left[r], 2); dst++; for (c = 0; c < bs - 2; c++) dst[c] = ROUND_POWER_OF_TWO(above[c - 1] + above[c] * 2 + above[c + 1], 2); dst += stride; for (r = 1; r < bs; ++r) { for (c = 0; c < bs - 2; c++) dst[c] = dst[-stride + c - 2]; dst += stride; } } intra_pred_allsizes(d153) static INLINE void v_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r; for (r = 0; r < bs; r++) { vpx_memcpy(dst, above, bs); dst += stride; } } intra_pred_allsizes(v) static INLINE void h_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r; for (r = 0; r < bs; r++) { vpx_memset(dst, left[r], bs); dst += stride; } } intra_pred_allsizes(h) static INLINE void tm_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r, c; int ytop_left = above[-1]; for (r = 0; r < bs; r++) { for (c = 0; c < bs; c++) dst[c] = clip_pixel(left[r] + above[c] - ytop_left); dst += stride; } } intra_pred_allsizes(tm) static INLINE void dc_128_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int r; for (r = 0; r < bs; r++) { vpx_memset(dst, 128, bs); dst += stride; } } intra_pred_allsizes(dc_128) static INLINE void dc_left_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int i, r, expected_dc, sum = 0; for (i = 0; i < bs; i++) sum += left[i]; expected_dc = (sum + (bs >> 1)) / bs; for (r = 0; r < bs; r++) { vpx_memset(dst, expected_dc, bs); dst += stride; } } intra_pred_allsizes(dc_left) static INLINE void dc_top_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int i, r, expected_dc, sum = 0; for (i = 0; i < bs; i++) sum += above[i]; expected_dc = (sum + (bs >> 1)) / bs; for (r = 0; r < bs; r++) { vpx_memset(dst, expected_dc, bs); dst += stride; } } intra_pred_allsizes(dc_top) static INLINE void dc_predictor(uint8_t *dst, ptrdiff_t stride, int bs, const uint8_t *above, const uint8_t *left) { int i, r, expected_dc, sum = 0; const int count = 2 * bs; for (i = 0; i < bs; i++) { sum += above[i]; sum += left[i]; } expected_dc = (sum + (count >> 1)) / count; for (r = 0; r < bs; r++) { vpx_memset(dst, expected_dc, bs); dst += stride; } } intra_pred_allsizes(dc) #undef intra_pred_allsizes typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, const uint8_t *above, const uint8_t *left); static intra_pred_fn pred[INTRA_MODES][4]; static intra_pred_fn dc_pred[2][2][4]; static void init_intra_pred_fn_ptrs(void) { #define intra_pred_allsizes(l, type) \ l[0] = vp9_##type##_predictor_4x4; \ l[1] = vp9_##type##_predictor_8x8; \ l[2] = vp9_##type##_predictor_16x16; \ l[3] = vp9_##type##_predictor_32x32 intra_pred_allsizes(pred[V_PRED], v); intra_pred_allsizes(pred[H_PRED], h); intra_pred_allsizes(pred[D207_PRED], d207); intra_pred_allsizes(pred[D45_PRED], d45); intra_pred_allsizes(pred[D63_PRED], d63); intra_pred_allsizes(pred[D117_PRED], d117); intra_pred_allsizes(pred[D135_PRED], d135); intra_pred_allsizes(pred[D153_PRED], d153); intra_pred_allsizes(pred[TM_PRED], tm); intra_pred_allsizes(dc_pred[0][0], dc_128); intra_pred_allsizes(dc_pred[0][1], dc_top); intra_pred_allsizes(dc_pred[1][0], dc_left); intra_pred_allsizes(dc_pred[1][1], dc); #undef intra_pred_allsizes } static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, MB_PREDICTION_MODE mode, TX_SIZE tx_size, int up_available, int left_available, int right_available, int x, int y, int plane) { int i; DECLARE_ALIGNED_ARRAY(16, uint8_t, left_col, 64); DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 128 + 16); uint8_t *above_row = above_data + 16; const uint8_t *const_above_row = above_row; const int bs = 4 << tx_size; int frame_width, frame_height; int x0, y0; const struct macroblockd_plane *const pd = &xd->plane[plane]; // 127 127 127 .. 127 127 127 127 127 127 // 129 A B .. Y Z // 129 C D .. W X // 129 E F .. U V // 129 G H .. S T T T T T // .. once(init_intra_pred_fn_ptrs); // Get current frame pointer, width and height. if (plane == 0) { frame_width = xd->cur_buf->y_width; frame_height = xd->cur_buf->y_height; } else { frame_width = xd->cur_buf->uv_width; frame_height = xd->cur_buf->uv_height; } // Get block position in current frame. x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x; y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y; vpx_memset(left_col, 129, 64); // left if (left_available) { if (xd->mb_to_bottom_edge < 0) { /* slower path if the block needs border extension */ if (y0 + bs <= frame_height) { for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } else { const int extend_bottom = frame_height - y0; for (i = 0; i < extend_bottom; ++i) left_col[i] = ref[i * ref_stride - 1]; for (; i < bs; ++i) left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1]; } } else { /* faster path if the block does not need extension */ for (i = 0; i < bs; ++i) left_col[i] = ref[i * ref_stride - 1]; } } // TODO(hkuang) do not extend 2*bs pixels for all modes. // above if (up_available) { const uint8_t *above_ref = ref - ref_stride; if (xd->mb_to_right_edge < 0) { /* slower path if the block needs border extension */ if (x0 + 2 * bs <= frame_width) { if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, 2 * bs); } else { vpx_memcpy(above_row, above_ref, bs); vpx_memset(above_row + bs, above_row[bs - 1], bs); } } else if (x0 + bs <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, bs); vpx_memset(above_row + bs, above_row[bs - 1], bs); } } else if (x0 <= frame_width) { const int r = frame_width - x0; if (right_available && bs == 4) { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } else { vpx_memcpy(above_row, above_ref, r); vpx_memset(above_row + r, above_row[r - 1], x0 + 2 * bs - frame_width); } } above_row[-1] = left_available ? above_ref[-1] : 129; } else { /* faster path if the block does not need extension */ if (bs == 4 && right_available && left_available) { const_above_row = above_ref; } else { vpx_memcpy(above_row, above_ref, bs); if (bs == 4 && right_available) vpx_memcpy(above_row + bs, above_ref + bs, bs); else vpx_memset(above_row + bs, above_row[bs - 1], bs); above_row[-1] = left_available ? above_ref[-1] : 129; } } } else { vpx_memset(above_row, 127, bs * 2); above_row[-1] = 127; } // predict if (mode == DC_PRED) { dc_pred[left_available][up_available][tx_size](dst, dst_stride, const_above_row, left_col); } else { pred[mode][tx_size](dst, dst_stride, const_above_row, left_col); } } void vp9_predict_intra_block(const MACROBLOCKD *xd, int block_idx, int bwl_in, TX_SIZE tx_size, MB_PREDICTION_MODE mode, const uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, int aoff, int loff, int plane) { const int bwl = bwl_in - tx_size; const int wmask = (1 << bwl) - 1; const int have_top = (block_idx >> bwl) || xd->up_available; const int have_left = (block_idx & wmask) || xd->left_available; const int have_right = ((block_idx & wmask) != wmask); const int x = aoff * 4; const int y = loff * 4; assert(bwl >= 0); build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, have_top, have_left, have_right, x, y, plane); }