/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_seg_common.h" static INLINE const MB_MODE_INFO *get_mbmi(const MODE_INFO *const mi) { return (mi != NULL) ? &mi->mbmi : NULL; } // Returns a context number for the given MB prediction signal int vp9_get_pred_context_switchable_interp(const MACROBLOCKD *xd) { // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. const MB_MODE_INFO *const left_mbmi = get_mbmi(get_left_mi(xd)); const int left_type = left_mbmi != NULL && is_inter_block(left_mbmi) ? left_mbmi->interp_filter : SWITCHABLE_FILTERS; const MB_MODE_INFO *const above_mbmi = get_mbmi(get_above_mi(xd)); const int above_type = above_mbmi != NULL && is_inter_block(above_mbmi) ? above_mbmi->interp_filter : SWITCHABLE_FILTERS; if (left_type == above_type) return left_type; else if (left_type == SWITCHABLE_FILTERS && above_type != SWITCHABLE_FILTERS) return above_type; else if (left_type != SWITCHABLE_FILTERS && above_type == SWITCHABLE_FILTERS) return left_type; else return SWITCHABLE_FILTERS; } // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. // 0 - inter/inter, inter/--, --/inter, --/-- // 1 - intra/inter, inter/intra // 2 - intra/--, --/intra // 3 - intra/intra int vp9_get_intra_inter_context(const MACROBLOCKD *xd) { const MB_MODE_INFO *const above_mbmi = get_mbmi(get_above_mi(xd)); const MB_MODE_INFO *const left_mbmi = get_mbmi(get_left_mi(xd)); const int has_above = above_mbmi != NULL; const int has_left = left_mbmi != NULL; if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); return left_intra && above_intra ? 3 : left_intra || above_intra; } else if (has_above || has_left) { // one edge available return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi); } else { return 0; } } int vp9_get_reference_mode_context(const VP9_COMMON *cm, const MACROBLOCKD *xd) { int ctx; const MB_MODE_INFO *const above_mbmi = get_mbmi(get_above_mi(xd)); const MB_MODE_INFO *const left_mbmi = get_mbmi(get_left_mi(xd)); const int has_above = above_mbmi != NULL; const int has_left = left_mbmi != NULL; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (has_above && has_left) { // both edges available if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) // neither edge uses comp pred (0/1) ctx = (above_mbmi->ref_frame[0] == cm->comp_fixed_ref) ^ (left_mbmi->ref_frame[0] == cm->comp_fixed_ref); else if (!has_second_ref(above_mbmi)) // one of two edges uses comp pred (2/3) ctx = 2 + (above_mbmi->ref_frame[0] == cm->comp_fixed_ref || !is_inter_block(above_mbmi)); else if (!has_second_ref(left_mbmi)) // one of two edges uses comp pred (2/3) ctx = 2 + (left_mbmi->ref_frame[0] == cm->comp_fixed_ref || !is_inter_block(left_mbmi)); else // both edges use comp pred (4) ctx = 4; } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!has_second_ref(edge_mbmi)) // edge does not use comp pred (0/1) ctx = edge_mbmi->ref_frame[0] == cm->comp_fixed_ref; else // edge uses comp pred (3) ctx = 3; } else { // no edges available (1) ctx = 1; } assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS); return ctx; } // Returns a context number for the given MB prediction signal int vp9_get_pred_context_comp_ref_p(const VP9_COMMON *cm, const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = get_mbmi(get_above_mi(xd)); const MB_MODE_INFO *const left_mbmi = get_mbmi(get_left_mi(xd)); const int above_in_image = above_mbmi != NULL; const int left_in_image = left_mbmi != NULL; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; const int var_ref_idx = !fix_ref_idx; if (above_in_image && left_in_image) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra (2) pred_context = 2; } else if (above_intra || left_intra) { // intra/inter const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) // single pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]); else // comp pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]); } else { // inter/inter const int l_sg = !has_second_ref(left_mbmi); const int a_sg = !has_second_ref(above_mbmi); const MV_REFERENCE_FRAME vrfa = a_sg ? above_mbmi->ref_frame[0] : above_mbmi->ref_frame[var_ref_idx]; const MV_REFERENCE_FRAME vrfl = l_sg ? left_mbmi->ref_frame[0] : left_mbmi->ref_frame[var_ref_idx]; if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) { pred_context = 0; } else if (l_sg && a_sg) { // single/single if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) || (vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) pred_context = 4; else if (vrfa == vrfl) pred_context = 3; else pred_context = 1; } else if (l_sg || a_sg) { // single/comp const MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl; const MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl; if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) pred_context = 1; else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1]) pred_context = 2; else pred_context = 4; } else if (vrfa == vrfl) { // comp/comp pred_context = 4; } else { pred_context = 2; } } } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { pred_context = 2; } else { if (has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]); else pred_context = 3 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]); } } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } int vp9_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = get_mbmi(get_above_mi(xd)); const MB_MODE_INFO *const left_mbmi = get_mbmi(get_left_mi(xd)); const int has_above = above_mbmi != NULL; const int has_left = left_mbmi != NULL; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); else pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME || edge_mbmi->ref_frame[1] == LAST_FRAME); } else { // inter/inter const int above_has_second = has_second_ref(above_mbmi); const int left_has_second = has_second_ref(left_mbmi); const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; if (above_has_second && left_has_second) { pred_context = 1 + (above0 == LAST_FRAME || above1 == LAST_FRAME || left0 == LAST_FRAME || left1 == LAST_FRAME); } else if (above_has_second || left_has_second) { const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; if (rfs == LAST_FRAME) pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); else pred_context = (crf1 == LAST_FRAME || crf2 == LAST_FRAME); } else { pred_context = 2 * (above0 == LAST_FRAME) + 2 * (left0 == LAST_FRAME); } } } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { // intra pred_context = 2; } else { // inter if (!has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); else pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME || edge_mbmi->ref_frame[1] == LAST_FRAME); } } else { // no edges available pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } int vp9_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { int pred_context; const MB_MODE_INFO *const above_mbmi = get_mbmi(get_above_mi(xd)); const MB_MODE_INFO *const left_mbmi = get_mbmi(get_left_mi(xd)); const int has_above = above_mbmi != NULL; const int has_left = left_mbmi != NULL; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mbmi); const int left_intra = !is_inter_block(left_mbmi); if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) { if (edge_mbmi->ref_frame[0] == LAST_FRAME) pred_context = 3; else pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); } else { pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME || edge_mbmi->ref_frame[1] == GOLDEN_FRAME); } } else { // inter/inter const int above_has_second = has_second_ref(above_mbmi); const int left_has_second = has_second_ref(left_mbmi); const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; if (above_has_second && left_has_second) { if (above0 == left0 && above1 == left1) pred_context = 3 * (above0 == GOLDEN_FRAME || above1 == GOLDEN_FRAME || left0 == GOLDEN_FRAME || left1 == GOLDEN_FRAME); else pred_context = 2; } else if (above_has_second || left_has_second) { const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; if (rfs == GOLDEN_FRAME) pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); else if (rfs == ALTREF_FRAME) pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME; else pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); } else { if (above0 == LAST_FRAME && left0 == LAST_FRAME) { pred_context = 3; } else if (above0 == LAST_FRAME || left0 == LAST_FRAME) { const MV_REFERENCE_FRAME edge0 = (above0 == LAST_FRAME) ? left0 : above0; pred_context = 4 * (edge0 == GOLDEN_FRAME); } else { pred_context = 2 * (above0 == GOLDEN_FRAME) + 2 * (left0 == GOLDEN_FRAME); } } } } else if (has_above || has_left) { // one edge available const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi) || (edge_mbmi->ref_frame[0] == LAST_FRAME && !has_second_ref(edge_mbmi))) pred_context = 2; else if (!has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); else pred_context = 3 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME || edge_mbmi->ref_frame[1] == GOLDEN_FRAME); } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // Returns a context number for the given MB prediction signal // The mode info data structure has a one element border above and to the // left of the entries corresponding to real blocks. // The prediction flags in these dummy entries are initialized to 0. int vp9_get_tx_size_context(const MACROBLOCKD *xd) { const int max_tx_size = max_txsize_lookup[xd->mi[0]->mbmi.sb_type]; const MB_MODE_INFO *const above_mbmi = get_mbmi(get_above_mi(xd)); const MB_MODE_INFO *const left_mbmi = get_mbmi(get_left_mi(xd)); const int has_above = above_mbmi != NULL; const int has_left = left_mbmi != NULL; int above_ctx = (has_above && !above_mbmi->skip) ? above_mbmi->tx_size : max_tx_size; int left_ctx = (has_left && !left_mbmi->skip) ? left_mbmi->tx_size : max_tx_size; if (!has_left) left_ctx = above_ctx; if (!has_above) above_ctx = left_ctx; return (above_ctx + left_ctx) > max_tx_size; } int vp9_get_segment_id(VP9_COMMON *cm, const uint8_t *segment_ids, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int xmis = MIN(cm->mi_cols - mi_col, bw); const int ymis = MIN(cm->mi_rows - mi_row, bh); int x, y, segment_id = INT_MAX; for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) segment_id = MIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]); assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); return segment_id; }