/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VP9_COMMON_VP9_ONYXC_INT_H_ #define VP9_COMMON_VP9_ONYXC_INT_H_ #include "./vpx_config.h" #include "vpx/internal/vpx_codec_internal.h" #include "./vp9_rtcd.h" #include "vp9/common/vp9_loopfilter.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_frame_buffers.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_tile_common.h" #if CONFIG_VP9_POSTPROC #include "vp9/common/vp9_postproc.h" #endif #ifdef __cplusplus extern "C" { #endif #define REFS_PER_FRAME 3 #define REF_FRAMES_LOG2 3 #define REF_FRAMES (1 << REF_FRAMES_LOG2) // 1 scratch frame for the new frame, 3 for scaled references on the encoder // TODO(jkoleszar): These 3 extra references could probably come from the // normal reference pool. #define FRAME_BUFFERS (REF_FRAMES + 4) #define FRAME_CONTEXTS_LOG2 2 #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2) extern const struct { PARTITION_CONTEXT above; PARTITION_CONTEXT left; } partition_context_lookup[BLOCK_SIZES]; typedef enum { SINGLE_REFERENCE = 0, COMPOUND_REFERENCE = 1, REFERENCE_MODE_SELECT = 2, REFERENCE_MODES = 3, } REFERENCE_MODE; typedef struct { int ref_count; vpx_codec_frame_buffer_t raw_frame_buffer; YV12_BUFFER_CONFIG buf; } RefCntBuffer; typedef struct VP9Common { struct vpx_internal_error_info error; DECLARE_ALIGNED(16, int16_t, y_dequant[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, uv_dequant[QINDEX_RANGE][8]); #if CONFIG_ALPHA DECLARE_ALIGNED(16, int16_t, a_dequant[QINDEX_RANGE][8]); #endif COLOR_SPACE color_space; int width; int height; int display_width; int display_height; int last_width; int last_height; // TODO(jkoleszar): this implies chroma ss right now, but could vary per // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to // support additional planes. int subsampling_x; int subsampling_y; YV12_BUFFER_CONFIG *frame_to_show; RefCntBuffer frame_bufs[FRAME_BUFFERS]; int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and // roll new_fb_idx into it. // Each frame can reference REFS_PER_FRAME buffers RefBuffer frame_refs[REFS_PER_FRAME]; int new_fb_idx; YV12_BUFFER_CONFIG post_proc_buffer; FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ FRAME_TYPE frame_type; int show_frame; int last_show_frame; int show_existing_frame; // Flag signaling that the frame is encoded using only INTRA modes. int intra_only; int allow_high_precision_mv; // Flag signaling that the frame context should be reset to default values. // 0 or 1 implies don't reset, 2 reset just the context specified in the // frame header, 3 reset all contexts. int reset_frame_context; int frame_flags; // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in // MODE_INFO (8-pixel) units. int MBs; int mb_rows, mi_rows; int mb_cols, mi_cols; int mi_stride; /* profile settings */ TX_MODE tx_mode; int base_qindex; int y_dc_delta_q; int uv_dc_delta_q; int uv_ac_delta_q; #if CONFIG_ALPHA int a_dc_delta_q; int a_ac_delta_q; #endif /* We allocate a MODE_INFO struct for each macroblock, together with an extra row on top and column on the left to simplify prediction. */ MODE_INFO *mip; /* Base of allocated array */ MODE_INFO *mi; /* Corresponds to upper left visible macroblock */ MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */ MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */ MODE_INFO **mi_grid_base; MODE_INFO **mi_grid_visible; MODE_INFO **prev_mi_grid_base; MODE_INFO **prev_mi_grid_visible; // Persistent mb segment id map used in prediction. unsigned char *last_frame_seg_map; INTERP_FILTER interp_filter; loop_filter_info_n lf_info; int refresh_frame_context; /* Two state 0 = NO, 1 = YES */ int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */ struct loopfilter lf; struct segmentation seg; // Context probabilities for reference frame prediction int allow_comp_inter_inter; MV_REFERENCE_FRAME comp_fixed_ref; MV_REFERENCE_FRAME comp_var_ref[2]; REFERENCE_MODE reference_mode; FRAME_CONTEXT fc; /* this frame entropy */ FRAME_CONTEXT frame_contexts[FRAME_CONTEXTS]; unsigned int frame_context_idx; /* Context to use/update */ FRAME_COUNTS counts; unsigned int current_video_frame; BITSTREAM_PROFILE profile; // BITS_8 in versions 0 and 1, BITS_10 or BITS_12 in version 2 BIT_DEPTH bit_depth; #if CONFIG_VP9_POSTPROC struct postproc_state postproc_state; #endif int error_resilient_mode; int frame_parallel_decoding_mode; // Flag indicates if prev_mi can be used in coding: // 0: encoder assumes decoder does not have prev_mi // 1: encoder assumes decoder has and uses prev_mi unsigned int coding_use_prev_mi; int log2_tile_cols, log2_tile_rows; // Private data associated with the frame buffer callbacks. void *cb_priv; vpx_get_frame_buffer_cb_fn_t get_fb_cb; vpx_release_frame_buffer_cb_fn_t release_fb_cb; // Handles memory for the codec. InternalFrameBufferList int_frame_buffers; PARTITION_CONTEXT *above_seg_context; ENTROPY_CONTEXT *above_context; } VP9_COMMON; static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(VP9_COMMON *cm) { return &cm->frame_bufs[cm->new_fb_idx].buf; } static INLINE int get_free_fb(VP9_COMMON *cm) { int i; for (i = 0; i < FRAME_BUFFERS; i++) if (cm->frame_bufs[i].ref_count == 0) break; assert(i < FRAME_BUFFERS); cm->frame_bufs[i].ref_count = 1; return i; } static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) { const int ref_index = *idx; if (ref_index >= 0 && bufs[ref_index].ref_count > 0) bufs[ref_index].ref_count--; *idx = new_idx; bufs[new_idx].ref_count++; } static INLINE int mi_cols_aligned_to_sb(int n_mis) { return ALIGN_POWER_OF_TWO(n_mis, MI_BLOCK_SIZE_LOG2); } static INLINE void init_macroblockd(VP9_COMMON *cm, MACROBLOCKD *xd) { int i; for (i = 0; i < MAX_MB_PLANE; ++i) { xd->plane[i].dqcoeff = xd->dqcoeff[i]; xd->above_context[i] = cm->above_context + i * sizeof(*cm->above_context) * 2 * mi_cols_aligned_to_sb(cm->mi_cols); } xd->above_seg_context = cm->above_seg_context; xd->mi_stride = cm->mi_stride; } static INLINE const vp9_prob* get_partition_probs(const VP9_COMMON *cm, int ctx) { return cm->frame_type == KEY_FRAME ? vp9_kf_partition_probs[ctx] : cm->fc.partition_prob[ctx]; } static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) { const int above_idx = mi_col * 2; const int left_idx = (mi_row * 2) & 15; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; } } static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, int mi_row, int bh, int mi_col, int bw, int mi_rows, int mi_cols) { xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; // Are edges available for intra prediction? xd->up_available = (mi_row != 0); xd->left_available = (mi_col > tile->mi_col_start); } static INLINE MODE_INFO *get_prev_mi(VP9_COMMON *cm) { const int use_prev_mi = cm->coding_use_prev_mi && cm->width == cm->last_width && cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame; // Special case: set prev_mi to NULL when the previous mode info // context cannot be used. return use_prev_mi ? &cm->prev_mip[cm->mi_stride + 1] : NULL; } static INLINE int frame_is_intra_only(const VP9_COMMON *const cm) { return cm->frame_type == KEY_FRAME || cm->intra_only; } static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE subsize, BLOCK_SIZE bsize) { PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK); // num_4x4_blocks_wide_lookup[bsize] / 2 const int bs = num_8x8_blocks_wide_lookup[bsize]; // update the partition context at the end notes. set partition bits // of block sizes larger than the current one to be one, and partition // bits of smaller block sizes to be zero. vpx_memset(above_ctx, partition_context_lookup[subsize].above, bs); vpx_memset(left_ctx, partition_context_lookup[subsize].left, bs); } static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK); const int bsl = mi_width_log2(bsize); const int bs = 1 << bsl; int above = 0, left = 0, i; assert(b_width_log2(bsize) == b_height_log2(bsize)); assert(bsl >= 0); for (i = 0; i < bs; i++) { above |= above_ctx[i]; left |= left_ctx[i]; } above = (above & bs) > 0; left = (left & bs) > 0; return (left * 2 + above) + bsl * PARTITION_PLOFFSET; } #ifdef __cplusplus } // extern "C" #endif #endif // VP9_COMMON_VP9_ONYXC_INT_H_