/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "vp9/common/vp9_loopfilter.h" #include "vp9/common/vp9_onyxc_int.h" #include "vp9/common/vp9_reconinter.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_seg_common.h" // This structure holds bit masks for all 8x8 blocks in a 64x64 region. // Each 1 bit represents a position in which we want to apply the loop filter. // Left_ entries refer to whether we apply a filter on the border to the // left of the block. Above_ entries refer to whether or not to apply a // filter on the above border. Int_ entries refer to whether or not to // apply borders on the 4x4 edges within the 8x8 block that each bit // represents. // Since each transform is accompanied by a potentially different type of // loop filter there is a different entry in the array for each transform size. typedef struct { uint64_t left_y[TX_SIZES]; uint64_t above_y[TX_SIZES]; uint64_t int_4x4_y; uint16_t left_uv[TX_SIZES]; uint16_t above_uv[TX_SIZES]; uint16_t int_4x4_uv; } LOOP_FILTER_MASK; // 64 bit masks for left transform size. Each 1 represents a position where // we should apply a loop filter across the left border of an 8x8 block // boundary. // // In the case of TX_16X16-> ( in low order byte first we end up with // a mask that looks like this // // 10101010 // 10101010 // 10101010 // 10101010 // 10101010 // 10101010 // 10101010 // 10101010 // // A loopfilter should be applied to every other 8x8 horizontally. static const uint64_t left_64x64_txform_mask[TX_SIZES]= { 0xffffffffffffffff, // TX_4X4 0xffffffffffffffff, // TX_8x8 0x5555555555555555, // TX_16x16 0x1111111111111111, // TX_32x32 }; // 64 bit masks for above transform size. Each 1 represents a position where // we should apply a loop filter across the top border of an 8x8 block // boundary. // // In the case of TX_32x32 -> ( in low order byte first we end up with // a mask that looks like this // // 11111111 // 00000000 // 00000000 // 00000000 // 11111111 // 00000000 // 00000000 // 00000000 // // A loopfilter should be applied to every other 4 the row vertically. static const uint64_t above_64x64_txform_mask[TX_SIZES]= { 0xffffffffffffffff, // TX_4X4 0xffffffffffffffff, // TX_8x8 0x00ff00ff00ff00ff, // TX_16x16 0x000000ff000000ff, // TX_32x32 }; // 64 bit masks for prediction sizes (left). Each 1 represents a position // where left border of an 8x8 block. These are aligned to the right most // appropriate bit, and then shifted into place. // // In the case of TX_16x32 -> ( low order byte first ) we end up with // a mask that looks like this : // // 10000000 // 10000000 // 10000000 // 10000000 // 00000000 // 00000000 // 00000000 // 00000000 static const uint64_t left_prediction_mask[BLOCK_SIZES] = { 0x0000000000000001, // BLOCK_4X4, 0x0000000000000001, // BLOCK_4X8, 0x0000000000000001, // BLOCK_8X4, 0x0000000000000001, // BLOCK_8X8, 0x0000000000000101, // BLOCK_8X16, 0x0000000000000001, // BLOCK_16X8, 0x0000000000000101, // BLOCK_16X16, 0x0000000001010101, // BLOCK_16X32, 0x0000000000000101, // BLOCK_32X16, 0x0000000001010101, // BLOCK_32X32, 0x0101010101010101, // BLOCK_32X64, 0x0000000001010101, // BLOCK_64X32, 0x0101010101010101, // BLOCK_64X64 }; // 64 bit mask to shift and set for each prediction size. static const uint64_t above_prediction_mask[BLOCK_SIZES] = { 0x0000000000000001, // BLOCK_4X4 0x0000000000000001, // BLOCK_4X8 0x0000000000000001, // BLOCK_8X4 0x0000000000000001, // BLOCK_8X8 0x0000000000000001, // BLOCK_8X16, 0x0000000000000003, // BLOCK_16X8 0x0000000000000003, // BLOCK_16X16 0x0000000000000003, // BLOCK_16X32, 0x000000000000000f, // BLOCK_32X16, 0x000000000000000f, // BLOCK_32X32, 0x000000000000000f, // BLOCK_32X64, 0x00000000000000ff, // BLOCK_64X32, 0x00000000000000ff, // BLOCK_64X64 }; // 64 bit mask to shift and set for each prediction size. A bit is set for // each 8x8 block that would be in the left most block of the given block // size in the 64x64 block. static const uint64_t size_mask[BLOCK_SIZES] = { 0x0000000000000001, // BLOCK_4X4 0x0000000000000001, // BLOCK_4X8 0x0000000000000001, // BLOCK_8X4 0x0000000000000001, // BLOCK_8X8 0x0000000000000101, // BLOCK_8X16, 0x0000000000000003, // BLOCK_16X8 0x0000000000000303, // BLOCK_16X16 0x0000000003030303, // BLOCK_16X32, 0x0000000000000f0f, // BLOCK_32X16, 0x000000000f0f0f0f, // BLOCK_32X32, 0x0f0f0f0f0f0f0f0f, // BLOCK_32X64, 0x00000000ffffffff, // BLOCK_64X32, 0xffffffffffffffff, // BLOCK_64X64 }; // These are used for masking the left and above borders. static const uint64_t left_border = 0x1111111111111111; static const uint64_t above_border = 0x000000ff000000ff; // 16 bit masks for uv transform sizes. static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= { 0xffff, // TX_4X4 0xffff, // TX_8x8 0x5555, // TX_16x16 0x1111, // TX_32x32 }; static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= { 0xffff, // TX_4X4 0xffff, // TX_8x8 0x0f0f, // TX_16x16 0x000f, // TX_32x32 }; // 16 bit left mask to shift and set for each uv prediction size. static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = { 0x0001, // BLOCK_4X4, 0x0001, // BLOCK_4X8, 0x0001, // BLOCK_8X4, 0x0001, // BLOCK_8X8, 0x0001, // BLOCK_8X16, 0x0001, // BLOCK_16X8, 0x0001, // BLOCK_16X16, 0x0011, // BLOCK_16X32, 0x0001, // BLOCK_32X16, 0x0011, // BLOCK_32X32, 0x1111, // BLOCK_32X64 0x0011, // BLOCK_64X32, 0x1111, // BLOCK_64X64 }; // 16 bit above mask to shift and set for uv each prediction size. static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = { 0x0001, // BLOCK_4X4 0x0001, // BLOCK_4X8 0x0001, // BLOCK_8X4 0x0001, // BLOCK_8X8 0x0001, // BLOCK_8X16, 0x0001, // BLOCK_16X8 0x0001, // BLOCK_16X16 0x0001, // BLOCK_16X32, 0x0003, // BLOCK_32X16, 0x0003, // BLOCK_32X32, 0x0003, // BLOCK_32X64, 0x000f, // BLOCK_64X32, 0x000f, // BLOCK_64X64 }; // 64 bit mask to shift and set for each uv prediction size static const uint16_t size_mask_uv[BLOCK_SIZES] = { 0x0001, // BLOCK_4X4 0x0001, // BLOCK_4X8 0x0001, // BLOCK_8X4 0x0001, // BLOCK_8X8 0x0001, // BLOCK_8X16, 0x0001, // BLOCK_16X8 0x0001, // BLOCK_16X16 0x0011, // BLOCK_16X32, 0x0003, // BLOCK_32X16, 0x0033, // BLOCK_32X32, 0x3333, // BLOCK_32X64, 0x00ff, // BLOCK_64X32, 0xffff, // BLOCK_64X64 }; static const uint16_t left_border_uv = 0x1111; static const uint16_t above_border_uv = 0x000f; static void lf_init_lut(loop_filter_info_n *lfi) { lfi->mode_lf_lut[DC_PRED] = 0; lfi->mode_lf_lut[D45_PRED] = 0; lfi->mode_lf_lut[D135_PRED] = 0; lfi->mode_lf_lut[D117_PRED] = 0; lfi->mode_lf_lut[D153_PRED] = 0; lfi->mode_lf_lut[D207_PRED] = 0; lfi->mode_lf_lut[D63_PRED] = 0; lfi->mode_lf_lut[V_PRED] = 0; lfi->mode_lf_lut[H_PRED] = 0; lfi->mode_lf_lut[TM_PRED] = 0; lfi->mode_lf_lut[ZEROMV] = 0; lfi->mode_lf_lut[NEARESTMV] = 1; lfi->mode_lf_lut[NEARMV] = 1; lfi->mode_lf_lut[NEWMV] = 1; } static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { int lvl; // For each possible value for the loop filter fill out limits for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { // Set loop filter paramaeters that control sharpness. int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); if (sharpness_lvl > 0) { if (block_inside_limit > (9 - sharpness_lvl)) block_inside_limit = (9 - sharpness_lvl); } if (block_inside_limit < 1) block_inside_limit = 1; vpx_memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH); vpx_memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), SIMD_WIDTH); } } void vp9_loop_filter_init(VP9_COMMON *cm) { loop_filter_info_n *lfi = &cm->lf_info; struct loopfilter *lf = &cm->lf; int lvl; // init limits for given sharpness update_sharpness(lfi, lf->sharpness_level); lf->last_sharpness_level = lf->sharpness_level; // init LUT for lvl and hev thr picking lf_init_lut(lfi); // init hev threshold const vectors for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) vpx_memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH); } void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) { int seg_id; // n_shift is the a multiplier for lf_deltas // the multiplier is 1 for when filter_lvl is between 0 and 31; // 2 when filter_lvl is between 32 and 63 const int n_shift = default_filt_lvl >> 5; loop_filter_info_n *const lfi = &cm->lf_info; struct loopfilter *const lf = &cm->lf; struct segmentation *const seg = &cm->seg; // update limits if sharpness has changed if (lf->last_sharpness_level != lf->sharpness_level) { update_sharpness(lfi, lf->sharpness_level); lf->last_sharpness_level = lf->sharpness_level; } for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { int lvl_seg = default_filt_lvl, ref, mode, intra_lvl; // Set the baseline filter values for each segment if (vp9_segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) { const int data = vp9_get_segdata(seg, seg_id, SEG_LVL_ALT_LF); lvl_seg = seg->abs_delta == SEGMENT_ABSDATA ? data : clamp(default_filt_lvl + data, 0, MAX_LOOP_FILTER); } if (!lf->mode_ref_delta_enabled) { // we could get rid of this if we assume that deltas are set to // zero when not in use; encoder always uses deltas vpx_memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id])); continue; } intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * (1 << n_shift); lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER); for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * (1 << n_shift) + lf->mode_deltas[mode] * (1 << n_shift); lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER); } } } static int build_lfi(const loop_filter_info_n *lfi_n, const MB_MODE_INFO *mbmi, const loop_filter_thresh **lfi) { const int seg = mbmi->segment_id; const int ref = mbmi->ref_frame[0]; const int mode = lfi_n->mode_lf_lut[mbmi->mode]; const int filter_level = lfi_n->lvl[seg][ref][mode]; if (filter_level > 0) { *lfi = &lfi_n->lfthr[filter_level]; return 1; } else { return 0; } } static void filter_selectively_vert(uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, const loop_filter_thresh **p_lfi) { unsigned int mask; for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; mask >>= 1) { const loop_filter_thresh *lfi = *p_lfi; if (mask & 1) { if (mask_16x16 & 1) { vp9_mb_lpf_vertical_edge_w(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); assert(!(mask_8x8 & 1)); assert(!(mask_4x4 & 1)); assert(!(mask_4x4_int & 1)); } else if (mask_8x8 & 1) { vp9_mbloop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_4x4 & 1)); } else if (mask_4x4 & 1) { vp9_loop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_8x8 & 1)); } } if (mask_4x4_int & 1) vp9_loop_filter_vertical_edge(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); s += 8; p_lfi++; mask_16x16 >>= 1; mask_8x8 >>= 1; mask_4x4 >>= 1; mask_4x4_int >>= 1; } } static void filter_selectively_horiz(uint8_t *s, int pitch, unsigned int mask_16x16, unsigned int mask_8x8, unsigned int mask_4x4, unsigned int mask_4x4_int, int only_4x4_1, const loop_filter_thresh **p_lfi) { unsigned int mask; int count; for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; mask; mask >>= count) { const loop_filter_thresh *lfi = *p_lfi; count = 1; if (mask & 1) { if (!only_4x4_1) { if (mask_16x16 & 1) { if ((mask_16x16 & 3) == 3) { vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 2); count = 2; } else { vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); } assert(!(mask_8x8 & 1)); assert(!(mask_4x4 & 1)); assert(!(mask_4x4_int & 1)); } else if (mask_8x8 & 1) { vp9_mbloop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_4x4 & 1)); } else if (mask_4x4 & 1) { vp9_loop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); assert(!(mask_16x16 & 1)); assert(!(mask_8x8 & 1)); } } if (mask_4x4_int & 1) vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1); } s += 8 * count; p_lfi += count; mask_16x16 >>= count; mask_8x8 >>= count; mask_4x4 >>= count; mask_4x4_int >>= count; } } // This function ors into the current lfm structure, where to do loop // filters for the specific mi we are looking at. It uses information // including the block_size_type (32x16, 32x32, etc), the transform size, // whether there were any coefficients encoded, and the loop filter strength // block we are currently looking at. Shift is used to position the // 1's we produce. // TODO(JBB) Need another function for different resolution color.. static void build_masks(const loop_filter_info_n *const lfi_n, const MODE_INFO *mi, const int shift_y, const int shift_uv, LOOP_FILTER_MASK *lfm) { const BLOCK_SIZE block_size = mi->mbmi.sb_type; const TX_SIZE tx_size_y = mi->mbmi.tx_size; const TX_SIZE tx_size_uv = get_uv_tx_size(&mi->mbmi); const int skip = mi->mbmi.skip_coeff; const int seg = mi->mbmi.segment_id; const int ref = mi->mbmi.ref_frame[0]; const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode]; const int filter_level = lfi_n->lvl[seg][ref][mode]; uint64_t *left_y = &lfm->left_y[tx_size_y]; uint64_t *above_y = &lfm->above_y[tx_size_y]; uint64_t *int_4x4_y = &lfm->int_4x4_y; uint16_t *left_uv = &lfm->left_uv[tx_size_uv]; uint16_t *above_uv = &lfm->above_uv[tx_size_uv]; uint16_t *int_4x4_uv = &lfm->int_4x4_uv; // If filter level is 0 we don't loop filter. if (!filter_level) return; // These set 1 in the current block size for the block size edges. // For instance if the block size is 32x16, we'll set : // above = 1111 // 0000 // and // left = 1000 // = 1000 // NOTE : In this example the low bit is left most ( 1000 ) is stored as // 1, not 8... // // U and v set things on a 16 bit scale. // *above_y |= above_prediction_mask[block_size] << shift_y; *above_uv |= above_prediction_mask_uv[block_size] << shift_uv; *left_y |= left_prediction_mask[block_size] << shift_y; *left_uv |= left_prediction_mask_uv[block_size] << shift_uv; // If the block has no coefficients and is not intra we skip applying // the loop filter on block edges. if (skip && ref > INTRA_FRAME) return; // Here we are adding a mask for the transform size. The transform // size mask is set to be correct for a 64x64 prediction block size. We // mask to match the size of the block we are working on and then shift it // into place.. *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y]) << shift_y; *above_uv |= (size_mask_uv[block_size] & above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv; *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y]) << shift_y; *left_uv |= (size_mask_uv[block_size] & left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv; // Here we are trying to determine what to do with the internal 4x4 block // boundaries. These differ from the 4x4 boundaries on the outside edge of // an 8x8 in that the internal ones can be skipped and don't depend on // the prediction block size. if (tx_size_y == TX_4X4) { *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y; } if (tx_size_uv == TX_4X4) { *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv; } } // This function does the same thing as the one above with the exception that // it only affects the y masks. It exists because for blocks < 16x16 in size, // we only update u and v masks on the first block. static void build_y_mask(const loop_filter_info_n *const lfi_n, const MODE_INFO *mi, const int shift_y, LOOP_FILTER_MASK *lfm) { const BLOCK_SIZE block_size = mi->mbmi.sb_type; const TX_SIZE tx_size_y = mi->mbmi.tx_size; const int skip = mi->mbmi.skip_coeff; const int seg = mi->mbmi.segment_id; const int ref = mi->mbmi.ref_frame[0]; const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode]; const int filter_level = lfi_n->lvl[seg][ref][mode]; uint64_t *left_y = &lfm->left_y[tx_size_y]; uint64_t *above_y = &lfm->above_y[tx_size_y]; uint64_t *int_4x4_y = &lfm->int_4x4_y; if (!filter_level) return; *above_y |= above_prediction_mask[block_size] << shift_y; *left_y |= left_prediction_mask[block_size] << shift_y; if (skip && ref > INTRA_FRAME) return; *above_y |= (size_mask[block_size] & above_64x64_txform_mask[tx_size_y]) << shift_y; *left_y |= (size_mask[block_size] & left_64x64_txform_mask[tx_size_y]) << shift_y; if (tx_size_y == TX_4X4) { *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y; } } // This function sets up the bit masks for the entire 64x64 region represented // by mi_row, mi_col. // TODO(JBB): This function only works for yv12. static void setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col, MODE_INFO **mi_8x8, const int mode_info_stride, LOOP_FILTER_MASK *lfm) { int idx_32, idx_16, idx_8; const loop_filter_info_n *const lfi_n = &cm->lf_info; MODE_INFO **mip = mi_8x8; MODE_INFO **mip2 = mi_8x8; // These are offsets to the next mi in the 64x64 block. It is what gets // added to the mi ptr as we go through each loop. It helps us to avoids // setting up special row and column counters for each index. The last step // brings us out back to the starting position. const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4, -(mode_info_stride << 2) - 4}; const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2, -(mode_info_stride << 1) - 2}; const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1}; // Following variables represent shifts to position the current block // mask over the appropriate block. A shift of 36 to the left will move // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left // 4 rows to the appropriate spot. const int shift_32_y[] = {0, 4, 32, 36}; const int shift_16_y[] = {0, 2, 16, 18}; const int shift_8_y[] = {0, 1, 8, 9}; const int shift_32_uv[] = {0, 2, 8, 10}; const int shift_16_uv[] = {0, 1, 4, 5}; int i; const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ? cm->mi_rows - mi_row : MI_BLOCK_SIZE); const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ? cm->mi_cols - mi_col : MI_BLOCK_SIZE); vp9_zero(*lfm); // TODO(jimbankoski): Try moving most of the following code into decode // loop and storing lfm in the mbmi structure so that we don't have to go // through the recursive loop structure multiple times. switch (mip[0]->mbmi.sb_type) { case BLOCK_64X64: build_masks(lfi_n, mip[0] , 0, 0, lfm); break; case BLOCK_64X32: build_masks(lfi_n, mip[0], 0, 0, lfm); mip2 = mip + mode_info_stride * 4; if (4 >= max_rows) break; build_masks(lfi_n, mip2[0], 32, 8, lfm); break; case BLOCK_32X64: build_masks(lfi_n, mip[0], 0, 0, lfm); mip2 = mip + 4; if (4 >= max_cols) break; build_masks(lfi_n, mip2[0], 4, 2, lfm); break; default: for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) { const int shift_y = shift_32_y[idx_32]; const int shift_uv = shift_32_uv[idx_32]; const int mi_32_col_offset = ((idx_32 & 1) << 2); const int mi_32_row_offset = ((idx_32 >> 1) << 2); if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows) continue; switch (mip[0]->mbmi.sb_type) { case BLOCK_32X32: build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); break; case BLOCK_32X16: build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); if (mi_32_row_offset + 2 >= max_rows) continue; mip2 = mip + mode_info_stride * 2; build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm); break; case BLOCK_16X32: build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); if (mi_32_col_offset + 2 >= max_cols) continue; mip2 = mip + 2; build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm); break; default: for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) { const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16]; const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16]; const int mi_16_col_offset = mi_32_col_offset + ((idx_16 & 1) << 1); const int mi_16_row_offset = mi_32_row_offset + ((idx_16 >> 1) << 1); if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows) continue; switch (mip[0]->mbmi.sb_type) { case BLOCK_16X16: build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); break; case BLOCK_16X8: build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); if (mi_16_row_offset + 1 >= max_rows) continue; mip2 = mip + mode_info_stride; build_y_mask(lfi_n, mip2[0], shift_y+8, lfm); break; case BLOCK_8X16: build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); if (mi_16_col_offset +1 >= max_cols) continue; mip2 = mip + 1; build_y_mask(lfi_n, mip2[0], shift_y+1, lfm); break; default: { const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16] + shift_8_y[0]; build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); mip += offset[0]; for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) { const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16] + shift_8_y[idx_8]; const int mi_8_col_offset = mi_16_col_offset + ((idx_8 & 1)); const int mi_8_row_offset = mi_16_row_offset + ((idx_8 >> 1)); if (mi_8_col_offset >= max_cols || mi_8_row_offset >= max_rows) continue; build_y_mask(lfi_n, mip[0], shift_y, lfm); } break; } } } break; } } break; } // The largest loopfilter we have is 16x16 so we use the 16x16 mask // for 32x32 transforms also also. lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32]; lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32]; lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32]; lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32]; // We do at least 8 tap filter on every 32x32 even if the transform size // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and // remove it from the 4x4. lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border; lfm->left_y[TX_4X4] &= ~left_border; lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border; lfm->above_y[TX_4X4] &= ~above_border; lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv; lfm->left_uv[TX_4X4] &= ~left_border_uv; lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv; lfm->above_uv[TX_4X4] &= ~above_border_uv; // We do some special edge handling. if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) { const uint64_t rows = cm->mi_rows - mi_row; // Each pixel inside the border gets a 1, const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1); const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1); // Remove values completely outside our border. for (i = 0; i < TX_32X32; i++) { lfm->left_y[i] &= mask_y; lfm->above_y[i] &= mask_y; lfm->left_uv[i] &= mask_uv; lfm->above_uv[i] &= mask_uv; } lfm->int_4x4_y &= mask_y; lfm->int_4x4_uv &= mask_uv; // We don't apply a wide loop filter on the last uv block row. If set // apply the shorter one instead. if (rows == 1) { lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16]; lfm->above_uv[TX_16X16] = 0; } if (rows == 5) { lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00; lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00); } } if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) { const uint64_t columns = cm->mi_cols - mi_col; // Each pixel inside the border gets a 1, the multiply copies the border // to where we need it. const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101; const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111; // Internal edges are not applied on the last column of the image so // we mask 1 more for the internal edges const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111; // Remove the bits outside the image edge. for (i = 0; i < TX_32X32; i++) { lfm->left_y[i] &= mask_y; lfm->above_y[i] &= mask_y; lfm->left_uv[i] &= mask_uv; lfm->above_uv[i] &= mask_uv; } lfm->int_4x4_y &= mask_y; lfm->int_4x4_uv &= mask_uv_int; // We don't apply a wide loop filter on the last uv column. If set // apply the shorter one instead. if (columns == 1) { lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16]; lfm->left_uv[TX_16X16] = 0; } if (columns == 5) { lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc); lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc); } } // We don't a loop filter on the first column in the image. Mask that out. if (mi_col == 0) { for (i = 0; i < TX_32X32; i++) { lfm->left_y[i] &= 0xfefefefefefefefe; lfm->left_uv[i] &= 0xeeee; } } } #if CONFIG_NON420 static void filter_block_plane_non420(VP9_COMMON *cm, struct macroblockd_plane *plane, MODE_INFO **mi_8x8, int mi_row, int mi_col) { const int ss_x = plane->subsampling_x; const int ss_y = plane->subsampling_y; const int row_step = 1 << ss_x; const int col_step = 1 << ss_y; const int row_step_stride = cm->mode_info_stride * row_step; struct buf_2d *const dst = &plane->dst; uint8_t* const dst0 = dst->buf; unsigned int mask_16x16[MI_BLOCK_SIZE] = {0}; unsigned int mask_8x8[MI_BLOCK_SIZE] = {0}; unsigned int mask_4x4[MI_BLOCK_SIZE] = {0}; unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0}; const loop_filter_thresh *lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE]; int r, c; for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { unsigned int mask_16x16_c = 0; unsigned int mask_8x8_c = 0; unsigned int mask_4x4_c = 0; unsigned int border_mask; // Determine the vertical edges that need filtering for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) { const MODE_INFO *mi = mi_8x8[c]; const int skip_this = mi[0].mbmi.skip_coeff && is_inter_block(&mi[0].mbmi); // left edge of current unit is block/partition edge -> no skip const int block_edge_left = b_width_log2(mi[0].mbmi.sb_type) ? !(c & ((1 << (b_width_log2(mi[0].mbmi.sb_type)-1)) - 1)) : 1; const int skip_this_c = skip_this && !block_edge_left; // top edge of current unit is block/partition edge -> no skip const int block_edge_above = b_height_log2(mi[0].mbmi.sb_type) ? !(r & ((1 << (b_height_log2(mi[0].mbmi.sb_type)-1)) - 1)) : 1; const int skip_this_r = skip_this && !block_edge_above; const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV) ? get_uv_tx_size(&mi[0].mbmi) : mi[0].mbmi.tx_size; const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1; const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; // Filter level can vary per MI if (!build_lfi(&cm->lf_info, &mi[0].mbmi, &lfi[r][c >> ss_x])) continue; // Build masks based on the transform size of each block if (tx_size == TX_32X32) { if (!skip_this_c && ((c >> ss_x) & 3) == 0) { if (!skip_border_4x4_c) mask_16x16_c |= 1 << (c >> ss_x); else mask_8x8_c |= 1 << (c >> ss_x); } if (!skip_this_r && ((r >> ss_y) & 3) == 0) { if (!skip_border_4x4_r) mask_16x16[r] |= 1 << (c >> ss_x); else mask_8x8[r] |= 1 << (c >> ss_x); } } else if (tx_size == TX_16X16) { if (!skip_this_c && ((c >> ss_x) & 1) == 0) { if (!skip_border_4x4_c) mask_16x16_c |= 1 << (c >> ss_x); else mask_8x8_c |= 1 << (c >> ss_x); } if (!skip_this_r && ((r >> ss_y) & 1) == 0) { if (!skip_border_4x4_r) mask_16x16[r] |= 1 << (c >> ss_x); else mask_8x8[r] |= 1 << (c >> ss_x); } } else { // force 8x8 filtering on 32x32 boundaries if (!skip_this_c) { if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0) mask_8x8_c |= 1 << (c >> ss_x); else mask_4x4_c |= 1 << (c >> ss_x); } if (!skip_this_r) { if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0) mask_8x8[r] |= 1 << (c >> ss_x); else mask_4x4[r] |= 1 << (c >> ss_x); } if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c) mask_4x4_int[r] |= 1 << (c >> ss_x); } } // Disable filtering on the leftmost column border_mask = ~(mi_col == 0); filter_selectively_vert(dst->buf, dst->stride, mask_16x16_c & border_mask, mask_8x8_c & border_mask, mask_4x4_c & border_mask, mask_4x4_int[r], lfi[r]); dst->buf += 8 * dst->stride; mi_8x8 += row_step_stride; } // Now do horizontal pass dst->buf = dst0; for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r]; filter_selectively_horiz(dst->buf, dst->stride, mask_16x16[r], mask_8x8[r], mask_4x4[r], mask_4x4_int_r, mi_row + r == 0, lfi[r]); dst->buf += 8 * dst->stride; } } #endif static void filter_block_plane(VP9_COMMON *const cm, struct macroblockd_plane *const plane, MODE_INFO **mi_8x8, int mi_row, int mi_col, LOOP_FILTER_MASK *lfm) { const int ss_x = plane->subsampling_x; const int ss_y = plane->subsampling_y; const int row_step = 1 << ss_x; const int col_step = 1 << ss_y; const int row_step_stride = cm->mode_info_stride * row_step; struct buf_2d *const dst = &plane->dst; uint8_t* const dst0 = dst->buf; unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0}; const loop_filter_thresh *lfi[MI_BLOCK_SIZE][MI_BLOCK_SIZE]; int r, c; int row_shift = 3 - ss_x; int row_mask = 0xff >> (ss_x << 2); #define MASK_ROW(value) ((value >> (r_sampled << row_shift)) & row_mask) for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { int r_sampled = r >> ss_x; // Determine the vertical edges that need filtering for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) { const MODE_INFO *mi = mi_8x8[c]; build_lfi(&cm->lf_info, &mi[0].mbmi, &lfi[r][c >> ss_x]); } if (!plane->plane_type) { mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_y); // Disable filtering on the leftmost column filter_selectively_vert(dst->buf, dst->stride, MASK_ROW(lfm->left_y[TX_16X16]), MASK_ROW(lfm->left_y[TX_8X8]), MASK_ROW(lfm->left_y[TX_4X4]), MASK_ROW(lfm->int_4x4_y), lfi[r]); } else { mask_4x4_int[r] = MASK_ROW(lfm->int_4x4_uv); // Disable filtering on the leftmost column filter_selectively_vert(dst->buf, dst->stride, MASK_ROW(lfm->left_uv[TX_16X16]), MASK_ROW(lfm->left_uv[TX_8X8]), MASK_ROW(lfm->left_uv[TX_4X4]), MASK_ROW(lfm->int_4x4_uv), lfi[r]); } dst->buf += 8 * dst->stride; mi_8x8 += row_step_stride; } // Now do horizontal pass dst->buf = dst0; for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r]; int r_sampled = r >> ss_x; if (!plane->plane_type) { filter_selectively_horiz(dst->buf, dst->stride, MASK_ROW(lfm->above_y[TX_16X16]), MASK_ROW(lfm->above_y[TX_8X8]), MASK_ROW(lfm->above_y[TX_4X4]), MASK_ROW(lfm->int_4x4_y), mi_row + r == 0, lfi[r]); } else { filter_selectively_horiz(dst->buf, dst->stride, MASK_ROW(lfm->above_uv[TX_16X16]), MASK_ROW(lfm->above_uv[TX_8X8]), MASK_ROW(lfm->above_uv[TX_4X4]), mask_4x4_int_r, mi_row + r == 0, lfi[r]); } dst->buf += 8 * dst->stride; } #undef MASK_ROW } void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer, VP9_COMMON *cm, MACROBLOCKD *xd, int start, int stop, int y_only) { const int num_planes = y_only ? 1 : MAX_MB_PLANE; int mi_row, mi_col; LOOP_FILTER_MASK lfm; #if CONFIG_NON420 int use_420 = y_only || (xd->plane[1].subsampling_y == 1 && xd->plane[1].subsampling_x == 1); #endif for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) { MODE_INFO **mi_8x8 = cm->mi_grid_visible + mi_row * cm->mode_info_stride; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { int plane; setup_dst_planes(xd, frame_buffer, mi_row, mi_col); // TODO(JBB): Make setup_mask work for non 420. #if CONFIG_NON420 if (use_420) #endif setup_mask(cm, mi_row, mi_col, mi_8x8 + mi_col, cm->mode_info_stride, &lfm); for (plane = 0; plane < num_planes; ++plane) { #if CONFIG_NON420 if (use_420) #endif filter_block_plane(cm, &xd->plane[plane], mi_8x8 + mi_col, mi_row, mi_col, &lfm); #if CONFIG_NON420 else filter_block_plane_non420(cm, &xd->plane[plane], mi_8x8 + mi_col, mi_row, mi_col); #endif } } } } void vp9_loop_filter_frame(VP9_COMMON *cm, MACROBLOCKD *xd, int frame_filter_level, int y_only, int partial) { int start_mi_row, end_mi_row, mi_rows_to_filter; if (!frame_filter_level) return; start_mi_row = 0; mi_rows_to_filter = cm->mi_rows; if (partial && cm->mi_rows > 8) { start_mi_row = cm->mi_rows >> 1; start_mi_row &= 0xfffffff8; mi_rows_to_filter = MAX(cm->mi_rows / 8, 8); } end_mi_row = start_mi_row + mi_rows_to_filter; vp9_loop_filter_frame_init(cm, frame_filter_level); vp9_loop_filter_rows(cm->frame_to_show, cm, xd, start_mi_row, end_mi_row, y_only); } int vp9_loop_filter_worker(void *arg1, void *arg2) { LFWorkerData *const lf_data = (LFWorkerData*)arg1; (void)arg2; vp9_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, &lf_data->xd, lf_data->start, lf_data->stop, lf_data->y_only); return 1; }