/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include #include #include "test/acm_random.h" #include "third_party/googletest/src/include/gtest/gtest.h" #include "vpx/vpx_integer.h" #include "vp8/encoder/boolhuff.h" #include "vp8/decoder/dboolhuff.h" namespace { const int num_tests = 10; // In a real use the 'decrypt_state' parameter will be a pointer to a struct // with whatever internal state the decryptor uses. For testing we'll just // xor with a constant key, and decrypt_state will point to the start of // the original buffer. const uint8_t secret_key[16] = { 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0 }; void encrypt_buffer(uint8_t *buffer, size_t size) { for (size_t i = 0; i < size; ++i) { buffer[i] ^= secret_key[i & 15]; } } void test_decrypt_cb(void *decrypt_state, const uint8_t *input, uint8_t *output, int count) { const size_t offset = input - reinterpret_cast(decrypt_state); for (int i = 0; i < count; i++) { output[i] = input[i] ^ secret_key[(offset + i) & 15]; } } } // namespace using libvpx_test::ACMRandom; TEST(VP8, TestBitIO) { ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int n = 0; n < num_tests; ++n) { for (int method = 0; method <= 7; ++method) { // we generate various proba const int kBitsToTest = 1000; uint8_t probas[kBitsToTest]; for (int i = 0; i < kBitsToTest; ++i) { const int parity = i & 1; probas[i] = (method == 0) ? 0 : (method == 1) ? 255 : (method == 2) ? 128 : (method == 3) ? rnd.Rand8() : (method == 4) ? (parity ? 0 : 255) : // alternate between low and high proba: (method == 5) ? (parity ? rnd(128) : 255 - rnd(128)) : (method == 6) ? (parity ? rnd(64) : 255 - rnd(64)) : (parity ? rnd(32) : 255 - rnd(32)); } for (int bit_method = 0; bit_method <= 3; ++bit_method) { const int random_seed = 6432; const int kBufferSize = 10000; ACMRandom bit_rnd(random_seed); BOOL_CODER bw; uint8_t bw_buffer[kBufferSize]; vp8_start_encode(&bw, bw_buffer, bw_buffer + kBufferSize); int bit = (bit_method == 0) ? 0 : (bit_method == 1) ? 1 : 0; for (int i = 0; i < kBitsToTest; ++i) { if (bit_method == 2) { bit = (i & 1); } else if (bit_method == 3) { bit = bit_rnd(2); } vp8_encode_bool(&bw, bit, static_cast(probas[i])); } vp8_stop_encode(&bw); BOOL_DECODER br; #if CONFIG_DECRYPT encrypt_buffer(bw_buffer, buffer_size); vp8dx_start_decode(&br, bw_buffer, buffer_size, test_decrypt_cb, reinterpret_cast(bw_buffer)); #else vp8dx_start_decode(&br, bw_buffer, kBufferSize, NULL, NULL); #endif bit_rnd.Reset(random_seed); for (int i = 0; i < kBitsToTest; ++i) { if (bit_method == 2) { bit = (i & 1); } else if (bit_method == 3) { bit = bit_rnd(2); } GTEST_ASSERT_EQ(vp8dx_decode_bool(&br, probas[i]), bit) << "pos: "<< i << " / " << kBitsToTest << " bit_method: " << bit_method << " method: " << method; } } } } }