/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "third_party/googletest/src/include/gtest/gtest.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" extern "C" { #include "vp9/common/vp9_entropy.h" #include "./vp9_rtcd.h" void vp9_idct4x4_16_add_c(const int16_t *input, uint8_t *output, int pitch); } #include "vpx/vpx_integer.h" using libvpx_test::ACMRandom; namespace { const int kNumCoeffs = 16; typedef void (*fdct_t)(const int16_t *in, int16_t *out, int stride); typedef void (*idct_t)(const int16_t *in, uint8_t *out, int stride); typedef void (*fht_t) (const int16_t *in, int16_t *out, int stride, int tx_type); typedef void (*iht_t) (const int16_t *in, uint8_t *out, int stride, int tx_type); void fdct4x4_ref(const int16_t *in, int16_t *out, int stride, int tx_type) { vp9_fdct4x4_c(in, out, stride); } void fht4x4_ref(const int16_t *in, int16_t *out, int stride, int tx_type) { vp9_short_fht4x4_c(in, out, stride, tx_type); } class Trans4x4TestBase { public: virtual ~Trans4x4TestBase() {} protected: virtual void RunFwdTxfm(const int16_t *in, int16_t *out, int stride) = 0; virtual void RunInvTxfm(const int16_t *out, uint8_t *dst, int stride) = 0; void RunAccuracyCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); uint32_t max_error = 0; int64_t total_error = 0; const int count_test_block = 10000; for (int i = 0; i < count_test_block; ++i) { DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); // Initialize a test block with input range [-255, 255]. for (int j = 0; j < kNumCoeffs; ++j) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); test_input_block[j] = src[j] - dst[j]; } REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block, test_temp_block, pitch_)); REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); for (int j = 0; j < kNumCoeffs; ++j) { const uint32_t diff = dst[j] - src[j]; const uint32_t error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(1u, max_error) << "Error: 4x4 FHT/IHT has an individual round trip error > 1"; EXPECT_GE(count_test_block , total_error) << "Error: 4x4 FHT/IHT has average round trip error > 1 per block"; } void RunCoeffCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 5000; DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < kNumCoeffs; ++j) input_block[j] = rnd.Rand8() - rnd.Rand8(); fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_); REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_)); // The minimum quant value is 4. for (int j = 0; j < kNumCoeffs; ++j) EXPECT_EQ(output_block[j], output_ref_block[j]); } } void RunMemCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 5000; DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, output_ref_block, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, kNumCoeffs); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < kNumCoeffs; ++j) { input_block[j] = rnd.Rand8() - rnd.Rand8(); input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; } if (i == 0) for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = 255; if (i == 1) for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -255; fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_); REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block, output_block, pitch_)); // The minimum quant value is 4. for (int j = 0; j < kNumCoeffs; ++j) { EXPECT_EQ(output_block[j], output_ref_block[j]); EXPECT_GE(4 * DCT_MAX_VALUE, abs(output_block[j])) << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; } } } void RunInvAccuracyCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; DECLARE_ALIGNED_ARRAY(16, int16_t, in, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, int16_t, coeff, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, kNumCoeffs); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < kNumCoeffs; ++j) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); in[j] = src[j] - dst[j]; } fwd_txfm_ref(in, coeff, pitch_, tx_type_); REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); for (int j = 0; j < kNumCoeffs; ++j) { const uint32_t diff = dst[j] - src[j]; const uint32_t error = diff * diff; EXPECT_GE(1u, error) << "Error: 16x16 IDCT has error " << error << " at index " << j; } } } int pitch_; int tx_type_; fht_t fwd_txfm_ref; }; class Trans4x4DCT : public Trans4x4TestBase, public PARAMS(fdct_t, idct_t, int) { public: virtual ~Trans4x4DCT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); pitch_ = 4; fwd_txfm_ref = fdct4x4_ref; } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: void RunFwdTxfm(const int16_t *in, int16_t *out, int stride) { fwd_txfm_(in, out, stride); } void RunInvTxfm(const int16_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride); } fdct_t fwd_txfm_; idct_t inv_txfm_; }; TEST_P(Trans4x4DCT, AccuracyCheck) { RunAccuracyCheck(); } TEST_P(Trans4x4DCT, CoeffCheck) { RunCoeffCheck(); } TEST_P(Trans4x4DCT, MemCheck) { RunMemCheck(); } TEST_P(Trans4x4DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); } class Trans4x4HT : public Trans4x4TestBase, public PARAMS(fht_t, iht_t, int) { public: virtual ~Trans4x4HT() {} virtual void SetUp() { fwd_txfm_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); tx_type_ = GET_PARAM(2); pitch_ = 4; fwd_txfm_ref = fht4x4_ref; } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: void RunFwdTxfm(const int16_t *in, int16_t *out, int stride) { fwd_txfm_(in, out, stride, tx_type_); } void RunInvTxfm(const int16_t *out, uint8_t *dst, int stride) { inv_txfm_(out, dst, stride, tx_type_); } fht_t fwd_txfm_; iht_t inv_txfm_; }; TEST_P(Trans4x4HT, AccuracyCheck) { RunAccuracyCheck(); } TEST_P(Trans4x4HT, CoeffCheck) { RunCoeffCheck(); } TEST_P(Trans4x4HT, MemCheck) { RunMemCheck(); } TEST_P(Trans4x4HT, InvAccuracyCheck) { RunInvAccuracyCheck(); } using std::tr1::make_tuple; INSTANTIATE_TEST_CASE_P( C, Trans4x4DCT, ::testing::Values( make_tuple(&vp9_fdct4x4_c, &vp9_idct4x4_16_add_c, 0))); INSTANTIATE_TEST_CASE_P( C, Trans4x4HT, ::testing::Values( make_tuple(&vp9_short_fht4x4_c, &vp9_iht4x4_16_add_c, 0), make_tuple(&vp9_short_fht4x4_c, &vp9_iht4x4_16_add_c, 1), make_tuple(&vp9_short_fht4x4_c, &vp9_iht4x4_16_add_c, 2), make_tuple(&vp9_short_fht4x4_c, &vp9_iht4x4_16_add_c, 3))); #if HAVE_SSE2 INSTANTIATE_TEST_CASE_P( SSE2, Trans4x4DCT, ::testing::Values( make_tuple(&vp9_fdct4x4_sse2, &vp9_idct4x4_16_add_sse2, 0))); INSTANTIATE_TEST_CASE_P( SSE2, Trans4x4HT, ::testing::Values( make_tuple(&vp9_short_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 0), make_tuple(&vp9_short_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 1), make_tuple(&vp9_short_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 2), make_tuple(&vp9_short_fht4x4_sse2, &vp9_iht4x4_16_add_sse2, 3))); #endif } // namespace