/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "third_party/googletest/src/include/gtest/gtest.h" extern "C" { #include "./vp9_rtcd.h" } #include "test/acm_random.h" #include "vpx/vpx_integer.h" #include "vpx_ports/mem.h" using libvpx_test::ACMRandom; namespace { void fdct4x4(int16_t *in, int16_t *out, uint8_t* /*dst*/, int stride, int /*tx_type*/) { vp9_fdct4x4_c(in, out, stride); } void idct4x4_add(int16_t* /*in*/, int16_t *out, uint8_t *dst, int stride, int /*tx_type*/) { vp9_idct4x4_16_add_c(out, dst, stride); } void fht4x4(int16_t *in, int16_t *out, uint8_t* /*dst*/, int stride, int tx_type) { vp9_short_fht4x4_c(in, out, stride, tx_type); } void iht4x4_add(int16_t* /*in*/, int16_t *out, uint8_t *dst, int stride, int tx_type) { vp9_iht4x4_16_add_c(out, dst, stride, tx_type); } class FwdTrans4x4Test : public ::testing::TestWithParam { public: virtual ~FwdTrans4x4Test() {} virtual void SetUp() { tx_type_ = GetParam(); if (tx_type_ == 0) { fwd_txfm_ = fdct4x4; inv_txfm_ = idct4x4_add; } else { fwd_txfm_ = fht4x4; inv_txfm_ = iht4x4_add; } } protected: void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst, int stride, int tx_type) { (*fwd_txfm_)(in, out, dst, stride, tx_type); } void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst, int stride, int tx_type) { (*inv_txfm_)(in, out, dst, stride, tx_type); } int tx_type_; void (*fwd_txfm_)(int16_t *in, int16_t *out, uint8_t *dst, int stride, int tx_type); void (*inv_txfm_)(int16_t *in, int16_t *out, uint8_t *dst, int stride, int tx_type); }; TEST_P(FwdTrans4x4Test, SignBiasCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 16); DECLARE_ALIGNED_ARRAY(16, int16_t, test_output_block, 16); const int pitch = 4; int count_sign_block[16][2]; const int count_test_block = 1000000; memset(count_sign_block, 0, sizeof(count_sign_block)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 16; ++j) test_input_block[j] = rnd.Rand8() - rnd.Rand8(); RunFwdTxfm(test_input_block, test_output_block, NULL, pitch, tx_type_); for (int j = 0; j < 16; ++j) { if (test_output_block[j] < 0) ++count_sign_block[j][0]; else if (test_output_block[j] > 0) ++count_sign_block[j][1]; } } for (int j = 0; j < 16; ++j) { const bool bias_acceptable = (abs(count_sign_block[j][0] - count_sign_block[j][1]) < 10000); EXPECT_TRUE(bias_acceptable) << "Error: 4x4 FDCT/FHT has a sign bias > 1%" << " for input range [-255, 255] at index " << j << " tx_type " << tx_type_; } memset(count_sign_block, 0, sizeof(count_sign_block)); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-15, 15]. for (int j = 0; j < 16; ++j) test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4); RunFwdTxfm(test_input_block, test_output_block, NULL, pitch, tx_type_); for (int j = 0; j < 16; ++j) { if (test_output_block[j] < 0) ++count_sign_block[j][0]; else if (test_output_block[j] > 0) ++count_sign_block[j][1]; } } for (int j = 0; j < 16; ++j) { const bool bias_acceptable = (abs(count_sign_block[j][0] - count_sign_block[j][1]) < 100000); EXPECT_TRUE(bias_acceptable) << "Error: 4x4 FDCT/FHT has a sign bias > 10%" << " for input range [-15, 15] at index " << j; } } TEST_P(FwdTrans4x4Test, RoundTripErrorCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); int max_error = 0; int total_error = 0; const int count_test_block = 1000000; for (int i = 0; i < count_test_block; ++i) { DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 16); DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 16); DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 16); DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 16); for (int j = 0; j < 16; ++j) { src[j] = rnd.Rand8(); dst[j] = rnd.Rand8(); } // Initialize a test block with input range [-255, 255]. for (int j = 0; j < 16; ++j) test_input_block[j] = src[j] - dst[j]; const int pitch = 4; RunFwdTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_); for (int j = 0; j < 16; ++j) { if (test_temp_block[j] > 0) { test_temp_block[j] += 2; test_temp_block[j] /= 4; test_temp_block[j] *= 4; } else { test_temp_block[j] -= 2; test_temp_block[j] /= 4; test_temp_block[j] *= 4; } } // inverse transform and reconstruct the pixel block RunInvTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_); for (int j = 0; j < 16; ++j) { const int diff = dst[j] - src[j]; const int error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } EXPECT_GE(1, max_error) << "Error: FDCT/IDCT or FHT/IHT has an individual roundtrip error > 1"; EXPECT_GE(count_test_block, total_error) << "Error: FDCT/IDCT or FHT/IHT has average " << "roundtrip error > 1 per block"; } INSTANTIATE_TEST_CASE_P(VP9, FwdTrans4x4Test, ::testing::Range(0, 4)); } // namespace