/****************************************************************************** * * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /** ******************************************************************************* * @file * ihevcd_mv_pred.c * * @brief * Contains functions for motion vector prediction * * @author * Ittiam * * @par List of Functions: * - ihevcd_scale_mv() * - ihevcd_mv_pred() * * @remarks * None * ******************************************************************************* */ /*****************************************************************************/ /* File Includes */ /*****************************************************************************/ #include #include #include #include #include "ihevc_typedefs.h" #include "iv.h" #include "ivd.h" #include "ihevcd_cxa.h" #include "ithread.h" #include "ihevc_defs.h" #include "ihevc_debug.h" #include "ihevc_structs.h" #include "ihevc_macros.h" #include "ihevc_platform_macros.h" #include "ihevc_cabac_tables.h" #include "ihevc_disp_mgr.h" #include "ihevc_buf_mgr.h" #include "ihevc_dpb_mgr.h" #include "ihevcd_defs.h" #include "ihevcd_function_selector.h" #include "ihevcd_structs.h" #include "ihevcd_error.h" #include "ihevcd_nal.h" #include "ihevcd_bitstream.h" #include "ihevcd_fmt_conv.h" #include "ihevcd_job_queue.h" #include "ihevcd_debug.h" #include "ihevcd_mv_merge.h" /** ******************************************************************************* * * @brief Function scaling motion vector * * * @par Description: * Scales mv based on difference between current POC and current * reference POC and neighbour reference poc * * @param[inout] mv * motion vector to be scaled * * @param[in] cur_ref_poc * Current PU refernce pic poc * * @param[in] nbr_ref_poc * Neighbor PU reference pic poc * * @param[in] cur_poc * Picture order count of current pic * * @returns * None * * @remarks * ******************************************************************************* */ void ihevcd_scale_mv(mv_t *ps_mv, WORD32 cur_ref_poc, WORD32 nbr_ref_poc, WORD32 cur_poc) { WORD32 td, tb, tx; WORD32 dist_scale_factor; WORD32 mvx, mvy; td = CLIP_S8(cur_poc - nbr_ref_poc); tb = CLIP_S8(cur_poc - cur_ref_poc); if(0 != td) { tx = (16384 + (abs(td) >> 1)) / td; dist_scale_factor = (tb * tx + 32) >> 6; dist_scale_factor = CLIP3(dist_scale_factor, -4096, 4095); mvx = ps_mv->i2_mvx; mvy = ps_mv->i2_mvy; mvx = SIGN(dist_scale_factor * mvx) * ((abs(dist_scale_factor * mvx) + 127) >> 8); mvy = SIGN(dist_scale_factor * mvy) * ((abs(dist_scale_factor * mvy) + 127) >> 8); ps_mv->i2_mvx = CLIP_S16(mvx); ps_mv->i2_mvy = CLIP_S16(mvy); } } /** ******************************************************************************* * * @brief Function scaling temporal motion vector * * * @par Description: * Scales mv based on difference between current POC and current * reference POC and neighbour reference poc * * @param[inout] mv * motion vector to be scaled * * @param[in] cur_ref_poc * Current PU refernce pic poc * * @param[in] nbr_ref_poc * Neighbor PU reference pic poc * * @param[in] cur_poc * Picture order count of current pic * * @returns * None * * @remarks * ******************************************************************************* */ void ihevcd_scale_collocated_mv(mv_t *ps_mv, WORD32 cur_ref_poc, WORD32 col_ref_poc, WORD32 col_poc, WORD32 cur_poc) { WORD32 td, tb, tx; WORD32 dist_scale_factor; WORD32 mvx, mvy; td = CLIP_S8(col_poc - col_ref_poc); tb = CLIP_S8(cur_poc - cur_ref_poc); tx = (16384 + (abs(td) >> 1)) / td; dist_scale_factor = (tb * tx + 32) >> 6; dist_scale_factor = CLIP3(dist_scale_factor, -4096, 4095); mvx = ps_mv->i2_mvx; mvy = ps_mv->i2_mvy; mvx = SIGN(dist_scale_factor * mvx) * ((abs(dist_scale_factor * mvx) + 127) >> 8); mvy = SIGN(dist_scale_factor * mvy) * ((abs(dist_scale_factor * mvy) + 127) >> 8); ps_mv->i2_mvx = CLIP_S16(mvx); ps_mv->i2_mvy = CLIP_S16(mvy); } #define CHECK_NBR_MV_ST(pi4_avail_flag, cur_ref_poc, u1_nbr_pred_flag, nbr_ref_poc, \ ps_mv, ps_nbr_mv ) \ { \ if((u1_nbr_pred_flag) && (cur_ref_poc == nbr_ref_poc)) \ { \ *pi4_avail_flag = 1; \ *ps_mv = *ps_nbr_mv; \ break ; \ } \ } #define CHECK_NBR_MV_LT(pi4_avail_flag, u1_cur_ref_lt, cur_poc, cur_ref_poc, \ u1_nbr_pred_flag, u1_nbr_ref_lt, nbr_ref_poc, \ ps_mv, ps_nbr_mv ) \ { \ WORD32 cur_lt, nbr_lt; \ cur_lt = (LONG_TERM_REF == (u1_cur_ref_lt)); \ nbr_lt = (LONG_TERM_REF == (u1_nbr_ref_lt)); \ if((u1_nbr_pred_flag) && (cur_lt == nbr_lt)) \ { \ *pi4_avail_flag = 1; \ *ps_mv = *ps_nbr_mv; \ if(SHORT_TERM_REF == u1_nbr_ref_lt) \ { \ ihevcd_scale_mv(ps_mv, cur_ref_poc, nbr_ref_poc, \ cur_poc); \ } \ break ; \ } \ } void GET_MV_NBR_ST(ref_list_t **ps_ref_pic_list, WORD32 *pi4_avail_flag, pic_buf_t *ps_cur_pic_buf_lx, pu_t **aps_nbr_pu, mv_t *ps_mv, WORD32 num_nbrs, WORD32 lx) { WORD32 i, nbr_pred_lx; pic_buf_t *ps_nbr_pic_buf_lx; /* Short Term */ /* L0 */ if(0 == lx) { for(i = 0; i < num_nbrs; i++) { nbr_pred_lx = (PRED_L1 != aps_nbr_pu[i]->b2_pred_mode); ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[0][aps_nbr_pu[i]->mv.i1_l0_ref_idx].pv_pic_buf)); CHECK_NBR_MV_ST(pi4_avail_flag, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx, ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l0_mv); nbr_pred_lx = (PRED_L0 != aps_nbr_pu[i]->b2_pred_mode); nbr_pred_lx = (PRED_L0 != aps_nbr_pu[i]->b2_pred_mode); ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[1][aps_nbr_pu[i]->mv.i1_l1_ref_idx].pv_pic_buf)); CHECK_NBR_MV_ST(pi4_avail_flag, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx, ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l1_mv); } } /* L1 */ else { for(i = 0; i < num_nbrs; i++) { nbr_pred_lx = (PRED_L0 != aps_nbr_pu[i]->b2_pred_mode); ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[1][aps_nbr_pu[i]->mv.i1_l1_ref_idx].pv_pic_buf)); CHECK_NBR_MV_ST(pi4_avail_flag, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx, ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l1_mv); nbr_pred_lx = (PRED_L1 != aps_nbr_pu[i]->b2_pred_mode); ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[0][aps_nbr_pu[i]->mv.i1_l0_ref_idx].pv_pic_buf)); CHECK_NBR_MV_ST(pi4_avail_flag, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx, ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l0_mv); } } } void GET_MV_NBR_LT(ref_list_t **ps_ref_pic_list, slice_header_t *ps_slice_hdr, WORD32 *pi4_avail_flag, pic_buf_t *ps_cur_pic_buf_lx, pu_t **aps_nbr_pu, mv_t *ps_mv, WORD32 num_nbrs, WORD32 lx) { WORD32 i, nbr_pred_lx; pic_buf_t *ps_nbr_pic_buf_lx; /* Long Term*/ /* L0 */ if(0 == lx) { for(i = 0; i < num_nbrs; i++) { nbr_pred_lx = (PRED_L1 != aps_nbr_pu[i]->b2_pred_mode); ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[0][aps_nbr_pu[i]->mv.i1_l0_ref_idx].pv_pic_buf)); CHECK_NBR_MV_LT(pi4_avail_flag, ps_cur_pic_buf_lx->u1_used_as_ref, ps_slice_hdr->i4_abs_pic_order_cnt, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx, ps_nbr_pic_buf_lx->u1_used_as_ref, ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l0_mv); nbr_pred_lx = (PRED_L0 != aps_nbr_pu[i]->b2_pred_mode); ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[1][aps_nbr_pu[i]->mv.i1_l1_ref_idx].pv_pic_buf)); CHECK_NBR_MV_LT(pi4_avail_flag, ps_cur_pic_buf_lx->u1_used_as_ref, ps_slice_hdr->i4_abs_pic_order_cnt, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx, ps_nbr_pic_buf_lx->u1_used_as_ref, ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l1_mv); } } /* L1 */ else { for(i = 0; i < num_nbrs; i++) { nbr_pred_lx = (PRED_L0 != aps_nbr_pu[i]->b2_pred_mode); ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[1][aps_nbr_pu[i]->mv.i1_l1_ref_idx].pv_pic_buf)); CHECK_NBR_MV_LT(pi4_avail_flag, ps_cur_pic_buf_lx->u1_used_as_ref, ps_slice_hdr->i4_abs_pic_order_cnt, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx, ps_nbr_pic_buf_lx->u1_used_as_ref, ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l1_mv); nbr_pred_lx = (PRED_L1 != aps_nbr_pu[i]->b2_pred_mode); ps_nbr_pic_buf_lx = (pic_buf_t *)((ps_ref_pic_list[0][aps_nbr_pu[i]->mv.i1_l0_ref_idx].pv_pic_buf)); CHECK_NBR_MV_LT(pi4_avail_flag, ps_cur_pic_buf_lx->u1_used_as_ref, ps_slice_hdr->i4_abs_pic_order_cnt, ps_cur_pic_buf_lx->i4_abs_poc, nbr_pred_lx, ps_nbr_pic_buf_lx->u1_used_as_ref, ps_nbr_pic_buf_lx->i4_abs_poc, ps_mv, &aps_nbr_pu[i]->mv.s_l0_mv); } } } /** ******************************************************************************* * * @brief * This function performs Motion Vector prediction and return a list of mv * * @par Description: * MV predictor list is computed using neighbor mvs and colocated mv * * @param[in] ps_ctxt * pointer to mv predictor context * * @param[in] ps_top_nbr_4x4 * pointer to top 4x4 nbr structure * * @param[in] ps_left_nbr_4x4 * pointer to left 4x4 nbr structure * * @param[in] ps_top_left_nbr_4x4 * pointer to top left 4x4 nbr structure * * @param[in] left_nbr_4x4_strd * left nbr buffer stride in terms of 4x4 units * * @param[in] ps_avail_flags * Neighbor availability flags container * * @param[in] ps_col_mv * Colocated MV pointer * * @param[in] ps_pu * Current Partition PU strucrture pointer * * @param[inout] ps_pred_mv * pointer to store predicted MV list * * @returns * None * @remarks * * ******************************************************************************* */ void ihevcd_mv_pred(mv_ctxt_t *ps_mv_ctxt, UWORD32 *pu4_top_pu_idx, UWORD32 *pu4_left_pu_idx, UWORD32 *pu4_top_left_pu_idx, WORD32 left_nbr_4x4_strd, pu_t *ps_pu, WORD32 lb_avail, WORD32 l_avail, WORD32 tr_avail, WORD32 t_avail, WORD32 tl_avail, pu_mv_t *ps_pred_mv) { slice_header_t *ps_slice_hdr; ref_list_t *ps_ref_pic_list[2]; pu_t *ps_pic_pu; WORD32 max_l0_mvp_cand, max_l1_mvp_cand; WORD32 l0_done_flag, l1_done_flag; WORD32 num_l0_mvp_cand, num_l1_mvp_cand; WORD32 is_scaled_flag_list /* Indicates whether A0 or A1 is available */; WORD32 avail_a_flag[2]; mv_t as_mv_a[2]; WORD32 part_pos_x; WORD32 part_pos_y; WORD32 part_wd; WORD32 part_ht; pic_buf_t *ps_cur_pic_buf_l0, *ps_cur_pic_buf_l1; WORD32 nbr_avail[3]; /*[A0/A1] */ /* [B0/B1/B2] */ pu_t *aps_nbr_pu[3]; /*[A0/A1] */ /* [B0/B1/B2] */ WORD32 num_nbrs = 0; /*******************************************/ /* Neighbor location: Graphical indication */ /* */ /* B2 _____________B1 B0 */ /* | | */ /* | | */ /* | | */ /* | PU ht| */ /* | | */ /* | | */ /* A1|______wd_______| */ /* A0 */ /* */ /*******************************************/ ps_slice_hdr = ps_mv_ctxt->ps_slice_hdr; ps_pic_pu = ps_mv_ctxt->ps_pic_pu; max_l0_mvp_cand = ps_pu->b1_l0_mvp_idx + 1; max_l1_mvp_cand = ps_pu->b1_l1_mvp_idx + 1; num_l0_mvp_cand = 0; num_l1_mvp_cand = 0; /* Initializing reference list */ ps_ref_pic_list[0] = ps_slice_hdr->as_ref_pic_list0; ps_ref_pic_list[1] = ps_slice_hdr->as_ref_pic_list1; if(PSLICE == ps_slice_hdr->i1_slice_type) ps_ref_pic_list[1] = ps_slice_hdr->as_ref_pic_list0; ps_cur_pic_buf_l0 = (pic_buf_t *)((ps_ref_pic_list[0][ps_pu->mv.i1_l0_ref_idx].pv_pic_buf)); ps_cur_pic_buf_l1 = (pic_buf_t *)((ps_ref_pic_list[1][ps_pu->mv.i1_l1_ref_idx].pv_pic_buf)); is_scaled_flag_list = 0; part_pos_x = ps_pu->b4_pos_x << 2; part_pos_y = ps_pu->b4_pos_y << 2; part_wd = (ps_pu->b4_wd + 1) << 2; part_ht = (ps_pu->b4_ht + 1) << 2; /************************************************************/ /* Calculating of motion vector A from neighbors A0 and A1 */ /************************************************************/ { nbr_avail[0] = 0; nbr_avail[1] = 0; /* Pointers to A0 and A1 */ { WORD32 y_a0, y_a1; WORD32 pu_idx_a0, pu_idx_a1; /* TODO: y_a0, y_a1 is coded assuming left nbr pointer starts at PU */ y_a0 = (part_ht >> 2); y_a1 = ((part_ht - 1) >> 2); pu_idx_a0 = *(pu4_left_pu_idx + (y_a0 * left_nbr_4x4_strd)); pu_idx_a1 = *(pu4_left_pu_idx + (y_a1 * left_nbr_4x4_strd)); if(lb_avail && (!ps_pic_pu[pu_idx_a0].b1_intra_flag)) { aps_nbr_pu[num_nbrs] = &ps_pic_pu[pu_idx_a0]; num_nbrs++; nbr_avail[0] = 1; } if(l_avail && (!ps_pic_pu[pu_idx_a1].b1_intra_flag)) { aps_nbr_pu[num_nbrs] = &ps_pic_pu[pu_idx_a1]; num_nbrs++; nbr_avail[1] = 1; } } /* Setting is scaled flag based on availability of A0 and A1 */ if((nbr_avail[0] == 1) || (nbr_avail[1])) { is_scaled_flag_list = 1; } avail_a_flag[0] = 0; avail_a_flag[1] = 0; /* L0 */ GET_MV_NBR_ST(ps_ref_pic_list, &avail_a_flag[0], ps_cur_pic_buf_l0, aps_nbr_pu, &as_mv_a[0], num_nbrs, 0); if(0 == avail_a_flag[0]) { GET_MV_NBR_LT(ps_ref_pic_list, ps_slice_hdr, &avail_a_flag[0], ps_cur_pic_buf_l0, aps_nbr_pu, &as_mv_a[0], num_nbrs, 0); } /* L1 */ if(PRED_L0 != ps_pu->b2_pred_mode) { GET_MV_NBR_ST(ps_ref_pic_list, &avail_a_flag[1], ps_cur_pic_buf_l1, aps_nbr_pu, &as_mv_a[1], num_nbrs, 1); if(0 == avail_a_flag[1]) { GET_MV_NBR_LT(ps_ref_pic_list, ps_slice_hdr, &avail_a_flag[1], ps_cur_pic_buf_l1, aps_nbr_pu, &as_mv_a[1], num_nbrs, 1); } } l0_done_flag = (PRED_L1 == ps_pu->b2_pred_mode); l1_done_flag = (PRED_L0 == ps_pu->b2_pred_mode); if(avail_a_flag[0]) { num_l0_mvp_cand++; if(max_l0_mvp_cand == num_l0_mvp_cand) { ps_pred_mv->s_l0_mv = as_mv_a[0]; l0_done_flag = 1; } } if(avail_a_flag[1]) { num_l1_mvp_cand++; if(max_l1_mvp_cand == num_l1_mvp_cand) { ps_pred_mv->s_l1_mv = as_mv_a[1]; l1_done_flag = 1; } } if(l0_done_flag && l1_done_flag) return; } /************************************************************/ /* Calculating of motion vector B from neighbors B0 and B1 */ /************************************************************/ { WORD32 avail_b_flag[2]; mv_t as_mv_b[2]; /* Pointers to B0, B1 and B2 */ { WORD32 x_b0, x_b1, x_b2; WORD32 pu_idx_b0, pu_idx_b1, pu_idx_b2; /* Relative co-ordiante of Xp,Yp w.r.t CTB start will work */ /* as long as minCTB = 16 */ x_b0 = (part_pos_x + part_wd); x_b1 = (part_pos_x + part_wd - 1); x_b2 = (part_pos_x - 1); /* Getting offset back to given pointer */ x_b0 = x_b0 - part_pos_x; x_b1 = x_b1 - part_pos_x; x_b2 = x_b2 - part_pos_x; /* Below derivation are based on top pointer */ /* is pointing first pixel of PU */ pu_idx_b0 = *(pu4_top_pu_idx + (x_b0 >> 2)); pu_idx_b0 = pu_idx_b0 * tr_avail; pu_idx_b1 = *(pu4_top_pu_idx + (x_b1 >> 2)); pu_idx_b1 = pu_idx_b1 * t_avail; /* At CTB boundary, use top-left passed in */ if(part_pos_y) { pu_idx_b2 = *pu4_top_left_pu_idx; } else { /* Not at CTB boundary, use top and */ /* add correction to go to top-left */ pu_idx_b2 = *((pu4_top_pu_idx)+(x_b2 >> 2)); } pu_idx_b2 = pu_idx_b2 * tl_avail; num_nbrs = 0; nbr_avail[0] = 0; nbr_avail[1] = 0; nbr_avail[2] = 0; if(tr_avail && (!ps_pic_pu[pu_idx_b0].b1_intra_flag)) { aps_nbr_pu[num_nbrs] = &ps_pic_pu[pu_idx_b0]; num_nbrs++; nbr_avail[0] = 1; } if(t_avail && (!ps_pic_pu[pu_idx_b1].b1_intra_flag)) { aps_nbr_pu[num_nbrs] = &ps_pic_pu[pu_idx_b1]; num_nbrs++; nbr_avail[1] = 1; } if(tl_avail && (!ps_pic_pu[pu_idx_b2].b1_intra_flag)) { aps_nbr_pu[num_nbrs] = &ps_pic_pu[pu_idx_b2]; num_nbrs++; nbr_avail[2] = 1; } } /* L0 */ avail_b_flag[0] = 0; avail_b_flag[1] = 0; GET_MV_NBR_ST(ps_ref_pic_list, &avail_b_flag[0], ps_cur_pic_buf_l0, aps_nbr_pu, &as_mv_b[0], num_nbrs, 0); /* L1 */ if(PRED_L0 != ps_pu->b2_pred_mode) { /* B0 Short Term */ GET_MV_NBR_ST(ps_ref_pic_list, &avail_b_flag[1], ps_cur_pic_buf_l1, aps_nbr_pu, &as_mv_b[1], num_nbrs, 1); } if(avail_b_flag[0]) { if(((0 == num_l0_mvp_cand) || (as_mv_a[0].i2_mvx != as_mv_b[0].i2_mvx) || (as_mv_a[0].i2_mvy != as_mv_b[0].i2_mvy))) { num_l0_mvp_cand++; if(max_l0_mvp_cand == num_l0_mvp_cand) { ps_pred_mv->s_l0_mv = as_mv_b[0]; l0_done_flag = 1; } } } if(avail_b_flag[1]) { if(((0 == num_l1_mvp_cand) || (as_mv_a[1].i2_mvx != as_mv_b[1].i2_mvx) || (as_mv_a[1].i2_mvy != as_mv_b[1].i2_mvy))) { num_l1_mvp_cand++; if(max_l1_mvp_cand == num_l1_mvp_cand) { ps_pred_mv->s_l1_mv = as_mv_b[1]; l1_done_flag = 1; } } } if(l0_done_flag && l1_done_flag) return; if((is_scaled_flag_list == 0) && (avail_b_flag[0] == 1)) { avail_a_flag[0] = 1; as_mv_a[0] = as_mv_b[0]; } if((is_scaled_flag_list == 0) && (avail_b_flag[1] == 1)) { avail_a_flag[1] = 1; as_mv_a[1] = as_mv_b[1]; } if(0 == is_scaled_flag_list) { avail_b_flag[0] = avail_b_flag[1] = 0; GET_MV_NBR_LT(ps_ref_pic_list, ps_slice_hdr, &avail_b_flag[0], ps_cur_pic_buf_l0, aps_nbr_pu, &as_mv_b[0], num_nbrs, 0); if(PRED_L0 != ps_pu->b2_pred_mode) { GET_MV_NBR_LT(ps_ref_pic_list, ps_slice_hdr, &avail_b_flag[1], ps_cur_pic_buf_l1, aps_nbr_pu, &as_mv_b[1], num_nbrs, 1); } if(avail_b_flag[0]) { if(((0 == num_l0_mvp_cand) || (as_mv_a[0].i2_mvx != as_mv_b[0].i2_mvx) || (as_mv_a[0].i2_mvy != as_mv_b[0].i2_mvy))) { num_l0_mvp_cand++; if(max_l0_mvp_cand == num_l0_mvp_cand) { ps_pred_mv->s_l0_mv = as_mv_b[0]; l0_done_flag = 1; } } } if(avail_b_flag[1]) { if(((0 == num_l1_mvp_cand) || (as_mv_a[1].i2_mvx != as_mv_b[1].i2_mvx) || (as_mv_a[1].i2_mvy != as_mv_b[1].i2_mvy))) { num_l1_mvp_cand++; if(max_l1_mvp_cand == num_l1_mvp_cand) { ps_pred_mv->s_l1_mv = as_mv_b[1]; l1_done_flag = 1; } } } if(l0_done_flag && l1_done_flag) return; } /***********************************************************/ /* Collocated MV prediction */ /***********************************************************/ if((2 != num_l0_mvp_cand) || (2 != num_l1_mvp_cand)) { mv_t as_mv_col[2], s_mv_col_l0, s_mv_col_l1; WORD32 avail_col_flag[2] = { 0 }; WORD32 x_col, y_col, avail_col_l0, avail_col_l1; // ihevcd_collocated_mvp((mv_ctxt_t *)ps_mv_ctxt,ps_pu,part_pos_x,part_pos_y,part_wd,part_ht,as_mv_col,avail_col_flag,1); x_col = part_pos_x + part_wd; y_col = part_pos_y + part_ht; ihevcd_collocated_mvp(ps_mv_ctxt, ps_pu, as_mv_col, avail_col_flag, 1, x_col, y_col); avail_col_l0 = avail_col_flag[0]; avail_col_l1 = avail_col_flag[1]; if(avail_col_l0 || avail_col_l1) { s_mv_col_l0 = as_mv_col[0]; s_mv_col_l1 = as_mv_col[1]; } if(avail_col_l0 == 0 || avail_col_l1 == 0) { /* Checking Collocated MV availability at Center of PU */ x_col = part_pos_x + (part_wd >> 1); y_col = part_pos_y + (part_ht >> 1); ihevcd_collocated_mvp(ps_mv_ctxt, ps_pu, as_mv_col, avail_col_flag, 1, x_col, y_col); if(avail_col_l0 == 0) { s_mv_col_l0 = as_mv_col[0]; } if(avail_col_l1 == 0) { s_mv_col_l1 = as_mv_col[1]; } avail_col_l0 |= avail_col_flag[0]; avail_col_l1 |= avail_col_flag[1]; } /* Checking if mvp index matches collocated mv */ if(avail_col_l0) { if(2 != num_l0_mvp_cand) { num_l0_mvp_cand++; if(max_l0_mvp_cand == num_l0_mvp_cand) { ps_pred_mv->s_l0_mv = s_mv_col_l0; l0_done_flag = 1; } } } if(avail_col_l1) { if(2 != num_l1_mvp_cand) { num_l1_mvp_cand++; if(max_l1_mvp_cand == num_l1_mvp_cand) { ps_pred_mv->s_l1_mv = s_mv_col_l1; l1_done_flag = 1; } } } if(l0_done_flag && l1_done_flag) return; } if(0 == l0_done_flag) { ps_pred_mv->s_l0_mv.i2_mvx = 0; ps_pred_mv->s_l0_mv.i2_mvy = 0; } if(0 == l1_done_flag) { ps_pred_mv->s_l1_mv.i2_mvx = 0; ps_pred_mv->s_l1_mv.i2_mvy = 0; } } }