/****************************************************************************** * * Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ /** ******************************************************************************* * @file * ihevc_intra_pred_filters.c * * @brief * Contains function Definition for intra prediction interpolation filters * * * @author * Srinivas T * * @par List of Functions: * - ihevc_intra_pred_luma_planar() * - ihevc_intra_pred_luma_dc() * - ihevc_intra_pred_luma_horz() * - ihevc_intra_pred_luma_ver() * - ihevc_intra_pred_luma_mode2() * - ihevc_intra_pred_luma_mode_18_34() * - ihevc_intra_pred_luma_mode_3_to_9() * - ihevc_intra_pred_luma_mode_11_to_17() * - ihevc_intra_pred_luma_mode_19_to_25() * - ihevc_intra_pred_luma_mode_27_to_33() * - ihevc_intra_pred_luma_ref_substitution() * * @remarks * None * ******************************************************************************* */ /*****************************************************************************/ /* File Includes */ /*****************************************************************************/ #include #include "ihevc_typedefs.h" #include "ihevc_intra_pred.h" #include "ihevc_macros.h" #include "ihevc_func_selector.h" #include "ihevc_platform_macros.h" #include "ihevc_common_tables.h" #include "ihevc_defs.h" #include "ihevc_mem_fns.h" #include "ihevc_debug.h" /****************************************************************************/ /* Constant Macros */ /****************************************************************************/ #define MAX_CU_SIZE 64 #define BIT_DEPTH 8 #define T32_4NT 128 #define T16_4NT 64 /****************************************************************************/ /* Function Macros */ /****************************************************************************/ #define GET_BITS(y,x) ((y) & (1 << x)) && (1 << x) /*****************************************************************************/ /* global tables Definition */ /*****************************************************************************/ /*****************************************************************************/ /* Function Definition */ /*****************************************************************************/ /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for pu1_ref substitution * * * @par Description: * Reference substitution process for samples unavailable for prediction * Refer to section 8.4.4.2.2 * * @param[in] pu1_top_left * UWORD8 pointer to the top-left * * @param[in] pu1_top * UWORD8 pointer to the top * * @param[in] pu1_left * UWORD8 pointer to the left * * @param[in] src_strd * WORD32 Source stride * * @param[in] nbr_flags * WORD32 neighbor availability flags * * @param[in] nt * WORD32 transform Block size * * @param[in] dst_strd * WORD32 Destination stride * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_ref_subst_all_avlble(UWORD8 *pu1_top_left, UWORD8 *pu1_top, UWORD8 *pu1_left, WORD32 src_strd, WORD32 nt, WORD32 nbr_flags, UWORD8 *pu1_dst, WORD32 dst_strd) { WORD32 i; WORD32 two_nt = 2 * nt; UNUSED(nbr_flags); UNUSED(dst_strd); /* Neighbor Flag Structure*/ /* MSB ---> LSB */ /* Top-Left | Top-Right | Top | Left | Bottom-Left 1 4 4 4 4 */ ASSERT((nbr_flags == 0x11188) || (nbr_flags == 0x133CC) || (nbr_flags == 0x1FFFF)); { if(nt == 4) { /* 1 bit extraction for all the neighboring blocks */ /* Else fill the corresponding samples */ pu1_dst[two_nt] = *pu1_top_left; //if(left) { for(i = 0; i < nt; i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } // if(bot_left) { for(i = nt; i < two_nt; i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } // if(top) { ihevc_memcpy(&pu1_dst[two_nt + 1], pu1_top, nt); } // if(tp_right) { ihevc_memcpy(&pu1_dst[two_nt + 1 + nt], pu1_top + nt, nt); } } else { /* Else fill the corresponding samples */ ASSERT((nt == 8) || (nt == 16) || (nt == 32)); pu1_dst[two_nt] = *pu1_top_left; for(i = 0; i < nt; i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; for(i = nt; i < two_nt; i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1], pu1_top, nt); ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1 + nt], pu1_top + nt, nt); } } } void ihevc_intra_pred_luma_ref_substitution(UWORD8 *pu1_top_left, UWORD8 *pu1_top, UWORD8 *pu1_left, WORD32 src_strd, WORD32 nt, WORD32 nbr_flags, UWORD8 *pu1_dst, WORD32 dst_strd) { UWORD8 pu1_ref; WORD32 dc_val, i; WORD32 total_samples = (4 * nt) + 1; WORD32 two_nt = 2 * nt; WORD32 three_nt = 3 * nt; WORD32 get_bits; WORD32 next; WORD32 bot_left, left, top, tp_right, tp_left; WORD32 idx, nbr_id_from_bl, frwd_nbr_flag; UNUSED(dst_strd); /*dc_val = 1 << (BIT_DEPTH - 1);*/ dc_val = 1 << (8 - 1); /* Neighbor Flag Structure*/ /* MSB ---> LSB */ /* Top-Left | Top-Right | Top | Left | Bottom-Left 1 4 4 4 4 */ /* If no neighbor flags are present, fill the neighbor samples with DC value */ if(nbr_flags == 0) { for(i = 0; i < total_samples; i++) { pu1_dst[i] = dc_val; } } else { if(nt <= 8) { /* 1 bit extraction for all the neighboring blocks */ tp_left = (nbr_flags & 0x10000) >> 16; bot_left = (nbr_flags & 0x8) >> 3; left = (nbr_flags & 0x80) >> 7; top = (nbr_flags & 0x100) >> 8; tp_right = (nbr_flags & 0x1000) >> 12; /* Else fill the corresponding samples */ if(tp_left) pu1_dst[two_nt] = *pu1_top_left; else pu1_dst[two_nt] = 0; if(left) { for(i = 0; i < nt; i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } else { ihevc_memset(&pu1_dst[two_nt - 1 - (nt - 1)], 0, nt); } if(bot_left) { for(i = nt; i < two_nt; i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } else { ihevc_memset(&pu1_dst[two_nt - 1 - (two_nt - 1)], 0, nt); } if(top) { ihevc_memcpy(&pu1_dst[two_nt + 1], pu1_top, nt); } else { ihevc_memset(&pu1_dst[two_nt + 1], 0, nt); } if(tp_right) { ihevc_memcpy(&pu1_dst[two_nt + 1 + nt], pu1_top + nt, nt); } else { ihevc_memset(&pu1_dst[two_nt + 1 + nt], 0, nt); } next = 1; /* If bottom -left is not available, reverse substitution process*/ if(bot_left == 0) { WORD32 a_nbr_flag[5]; a_nbr_flag[0] = bot_left; a_nbr_flag[1] = left; a_nbr_flag[2] = tp_left; a_nbr_flag[3] = top; a_nbr_flag[4] = tp_right; /* Check for the 1st available sample from bottom-left*/ while(!a_nbr_flag[next]) next++; /* If Left, top-left are available*/ if(next <= 2) { idx = nt * next; pu1_ref = pu1_dst[idx]; for(i = 0; i < idx; i++) pu1_dst[i] = pu1_ref; } else /* If top, top-right are available */ { /* Idx is changed to copy 1 pixel value for top-left ,if top-left is not available*/ idx = (nt * (next - 1)) + 1; pu1_ref = pu1_dst[idx]; for(i = 0; i < idx; i++) pu1_dst[i] = pu1_ref; } } /* Forward Substitution Process */ /* If left is Unavailable, copy the last bottom-left value */ if(left == 0) { ihevc_memset(&pu1_dst[nt], pu1_dst[nt - 1], nt); } /* If top-left is Unavailable, copy the last left value */ if(tp_left == 0) pu1_dst[two_nt] = pu1_dst[two_nt - 1]; /* If top is Unavailable, copy the last top-left value */ if(top == 0) { ihevc_memset(&pu1_dst[two_nt + 1], pu1_dst[two_nt], nt); } /* If to right is Unavailable, copy the last top value */ if(tp_right == 0) { ihevc_memset(&pu1_dst[three_nt + 1], pu1_dst[three_nt], nt); } } if(nt == 16) { WORD32 nbr_flags_temp = 0; nbr_flags_temp = ((nbr_flags & 0xC) >> 2) + ((nbr_flags & 0xC0) >> 4) + ((nbr_flags & 0x300) >> 4) + ((nbr_flags & 0x3000) >> 6) + ((nbr_flags & 0x10000) >> 8); /* Else fill the corresponding samples */ if(nbr_flags & 0x10000) pu1_dst[two_nt] = *pu1_top_left; else pu1_dst[two_nt] = 0; if(nbr_flags & 0xC0) { for(i = 0; i < nt; i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } else { ihevc_memset_mul_8(&pu1_dst[two_nt - 1 - (nt - 1)], 0, nt); } /* Bottom - left availability is checked for every 8x8 TU position and set accordingly */ { if(nbr_flags & 0x8) { for(i = nt; i < (nt + 8); i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } else { ihevc_memset_mul_8(&pu1_dst[nt - 8], 0, 8); } if(nbr_flags & 0x4) { for(i = (nt + 8); i < two_nt; i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } else { ihevc_memset_mul_8(&pu1_dst[0], 0, 8); } } if(nbr_flags & 0x300) { ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1], pu1_top, nt); } else { ihevc_memset_mul_8(&pu1_dst[two_nt + 1], 0, nt); } if(nbr_flags & 0x3000) { ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1 + nt], pu1_top + nt, nt); } else { ihevc_memset_mul_8(&pu1_dst[two_nt + 1 + nt], 0, nt); } /* compute trailing zeors based on nbr_flag for substitution process of below left see section .*/ /* as each bit in nbr flags corresponds to 8 pels for bot_left, left, top and topright but 1 pel for topleft */ { nbr_id_from_bl = look_up_trailing_zeros(nbr_flags_temp & 0XF) * 8; /* for below left and left */ if(nbr_id_from_bl == 64) nbr_id_from_bl = 32; if(nbr_id_from_bl == 32) { /* for top left : 1 pel per nbr bit */ if(!((nbr_flags_temp >> 8) & 0x1)) { nbr_id_from_bl++; nbr_id_from_bl += look_up_trailing_zeros((nbr_flags_temp >> 4) & 0xF) * 8; /* top and top right; 8 pels per nbr bit */ //nbr_id_from_bl += idx * 8; } } /* Reverse Substitution Process*/ if(nbr_id_from_bl) { /* Replicate the bottom-left and subsequent unavailable pixels with the 1st available pixel above */ pu1_ref = pu1_dst[nbr_id_from_bl]; for(i = (nbr_id_from_bl - 1); i >= 0; i--) { pu1_dst[i] = pu1_ref; } } } /* for the loop of 4*Nt+1 pixels (excluding pixels computed from reverse substitution) */ while(nbr_id_from_bl < ((T16_4NT)+1)) { /* To Obtain the next unavailable idx flag after reverse neighbor substitution */ /* Devide by 8 to obtain the original index */ frwd_nbr_flag = (nbr_id_from_bl >> 3); /*+ (nbr_id_from_bl & 0x1);*/ /* The Top-left flag is at the last bit location of nbr_flags*/ if(nbr_id_from_bl == (T16_4NT / 2)) { get_bits = GET_BITS(nbr_flags_temp, 8); /* only pel substitution for TL */ if(!get_bits) pu1_dst[nbr_id_from_bl] = pu1_dst[nbr_id_from_bl - 1]; } else { get_bits = GET_BITS(nbr_flags_temp, frwd_nbr_flag); if(!get_bits) { /* 8 pel substitution (other than TL) */ pu1_ref = pu1_dst[nbr_id_from_bl - 1]; ihevc_memset_mul_8(pu1_dst + nbr_id_from_bl, pu1_ref, 8); } } nbr_id_from_bl += (nbr_id_from_bl == (T16_4NT / 2)) ? 1 : 8; } } if(nt == 32) { /* Else fill the corresponding samples */ if(nbr_flags & 0x10000) pu1_dst[two_nt] = *pu1_top_left; else pu1_dst[two_nt] = 0; if(nbr_flags & 0xF0) { for(i = 0; i < nt; i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } else { ihevc_memset_mul_8(&pu1_dst[two_nt - 1 - (nt - 1)], 0, nt); } /* Bottom - left availability is checked for every 8x8 TU position and set accordingly */ { if(nbr_flags & 0x8) { for(i = nt; i < (nt + 8); i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } else { ihevc_memset_mul_8(&pu1_dst[24], 0, 8); } if(nbr_flags & 0x4) { for(i = (nt + 8); i < (nt + 16); i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } else { ihevc_memset_mul_8(&pu1_dst[16], 0, 8); } if(nbr_flags & 0x2) { for(i = (nt + 16); i < (nt + 24); i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } else { ihevc_memset_mul_8(&pu1_dst[8], 0, 8); } if(nbr_flags & 0x1) { for(i = (nt + 24); i < (two_nt); i++) pu1_dst[two_nt - 1 - i] = pu1_left[i * src_strd]; } else { ihevc_memset_mul_8(&pu1_dst[0], 0, 8); } } if(nbr_flags & 0xF00) { ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1], pu1_top, nt); } else { ihevc_memset_mul_8(&pu1_dst[two_nt + 1], 0, nt); } if(nbr_flags & 0xF000) { ihevc_memcpy_mul_8(&pu1_dst[two_nt + 1 + nt], pu1_top + nt, nt); } else { ihevc_memset_mul_8(&pu1_dst[two_nt + 1 + nt], 0, nt); } /* compute trailing ones based on mbr_flag for substitution process of below left see section .*/ /* as each bit in nbr flags corresponds to 8 pels for bot_left, left, top and topright but 1 pel for topleft */ { nbr_id_from_bl = look_up_trailing_zeros((nbr_flags & 0XFF)) * 8; /* for below left and left */ if(nbr_id_from_bl == 64) { /* for top left : 1 pel per nbr bit */ if(!((nbr_flags >> 16) & 0x1)) { /* top left not available */ nbr_id_from_bl++; /* top and top right; 8 pels per nbr bit */ nbr_id_from_bl += look_up_trailing_zeros((nbr_flags >> 8) & 0xFF) * 8; } } /* Reverse Substitution Process*/ if(nbr_id_from_bl) { /* Replicate the bottom-left and subsequent unavailable pixels with the 1st available pixel above */ pu1_ref = pu1_dst[nbr_id_from_bl]; for(i = (nbr_id_from_bl - 1); i >= 0; i--) pu1_dst[i] = pu1_ref; } } /* for the loop of 4*Nt+1 pixels (excluding pixels computed from reverse substitution) */ while(nbr_id_from_bl < ((T32_4NT)+1)) { /* To Obtain the next unavailable idx flag after reverse neighbor substitution */ /* Devide by 8 to obtain the original index */ frwd_nbr_flag = (nbr_id_from_bl >> 3); /*+ (nbr_id_from_bl & 0x1);*/ /* The Top-left flag is at the last bit location of nbr_flags*/ if(nbr_id_from_bl == (T32_4NT / 2)) { get_bits = GET_BITS(nbr_flags, 16); /* only pel substitution for TL */ if(!get_bits) pu1_dst[nbr_id_from_bl] = pu1_dst[nbr_id_from_bl - 1]; } else { get_bits = GET_BITS(nbr_flags, frwd_nbr_flag); if(!get_bits) { /* 8 pel substitution (other than TL) */ pu1_ref = pu1_dst[nbr_id_from_bl - 1]; ihevc_memset_mul_8(&pu1_dst[nbr_id_from_bl], pu1_ref, 8); } } nbr_id_from_bl += (nbr_id_from_bl == (T32_4NT / 2)) ? 1 : 8; } } } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for ref_filtering * * * @par Description: * Reference DC filtering for neighboring samples dependent on TU size and * mode Refer to section 8.4.4.2.3 in the standard * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_ref_filtering(UWORD8 *pu1_src, WORD32 nt, UWORD8 *pu1_dst, WORD32 mode, WORD32 strong_intra_smoothing_enable_flag) { WORD32 filter_flag; WORD32 i; /* Generic indexing variable */ WORD32 four_nt = 4 * nt; UWORD8 au1_flt[(4 * MAX_CU_SIZE) + 1]; WORD32 bi_linear_int_flag = 0; WORD32 abs_cond_left_flag = 0; WORD32 abs_cond_top_flag = 0; /*WORD32 dc_val = 1 << (BIT_DEPTH - 5);*/ WORD32 dc_val = 1 << (8 - 5); //WORD32 strong_intra_smoothing_enable_flag = 1; filter_flag = gau1_intra_pred_ref_filter[mode] & (1 << (CTZ(nt) - 2)); if(0 == filter_flag) { if(pu1_src == pu1_dst) { return; } else { for(i = 0; i < (four_nt + 1); i++) pu1_dst[i] = pu1_src[i]; } } else { /* If strong intra smoothin is enabled and transform size is 32 */ if((1 == strong_intra_smoothing_enable_flag) && (32 == nt)) { /* Strong Intra Filtering */ abs_cond_top_flag = (ABS(pu1_src[2 * nt] + pu1_src[4 * nt] - (2 * pu1_src[3 * nt]))) < dc_val; abs_cond_left_flag = (ABS(pu1_src[2 * nt] + pu1_src[0] - (2 * pu1_src[nt]))) < dc_val; bi_linear_int_flag = ((1 == abs_cond_left_flag) && (1 == abs_cond_top_flag)); } /* Extremities Untouched*/ au1_flt[0] = pu1_src[0]; au1_flt[4 * nt] = pu1_src[4 * nt]; /* Strong filtering of reference samples */ if(1 == bi_linear_int_flag) { au1_flt[2 * nt] = pu1_src[2 * nt]; for(i = 1; i < (2 * nt); i++) au1_flt[i] = (((2 * nt) - i) * pu1_src[0] + i * pu1_src[2 * nt] + 32) >> 6; for(i = 1; i < (2 * nt); i++) au1_flt[i + (2 * nt)] = (((2 * nt) - i) * pu1_src[2 * nt] + i * pu1_src[4 * nt] + 32) >> 6; } else { /* Perform bilinear filtering of Reference Samples */ for(i = 0; i < (four_nt - 1); i++) { au1_flt[i + 1] = (pu1_src[i] + 2 * pu1_src[i + 1] + pu1_src[i + 2] + 2) >> 2; } } for(i = 0; i < (four_nt + 1); i++) pu1_dst[i] = au1_flt[i]; } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for luma planar * * @par Description: * Planar Intraprediction with reference neighboring samples location * pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer * to section 8.4.4.2.4 in the standard * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] src_strd * integer source stride * * @param[in] dst_strd * integer destination stride * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_planar(UWORD8 *pu1_ref, WORD32 src_strd, UWORD8 *pu1_dst, WORD32 dst_strd, WORD32 nt, WORD32 mode) { WORD32 row, col; WORD32 log2nt = 5; WORD32 two_nt, three_nt; UNUSED(src_strd); UNUSED(mode); switch(nt) { case 32: log2nt = 5; break; case 16: log2nt = 4; break; case 8: log2nt = 3; break; case 4: log2nt = 2; break; default: break; } two_nt = 2 * nt; three_nt = 3 * nt; /* Planar filtering */ for(row = 0; row < nt; row++) { for(col = 0; col < nt; col++) { pu1_dst[row * dst_strd + col] = ((nt - 1 - col) * pu1_ref[two_nt - 1 - row] + (col + 1) * pu1_ref[three_nt + 1] + (nt - 1 - row) * pu1_ref[two_nt + 1 + col] + (row + 1) * pu1_ref[nt - 1] + nt) >> (log2nt + 1); } } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for luma dc * * @par Description: * Intraprediction for DC mode with reference neighboring samples location * pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer * to section 8.4.4.2.5 in the standard * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] src_strd * integer source stride * * @param[in] dst_strd * integer destination stride * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_dc(UWORD8 *pu1_ref, WORD32 src_strd, UWORD8 *pu1_dst, WORD32 dst_strd, WORD32 nt, WORD32 mode) { WORD32 acc_dc; WORD32 dc_val, two_dc_val, three_dc_val; WORD32 i; WORD32 row, col; WORD32 log2nt = 5; WORD32 two_nt, three_nt; UNUSED(mode); UNUSED(src_strd); switch(nt) { case 32: log2nt = 5; break; case 16: log2nt = 4; break; case 8: log2nt = 3; break; case 4: log2nt = 2; break; default: break; } two_nt = 2 * nt; three_nt = 3 * nt; acc_dc = 0; /* Calculate DC value for the transform block */ for(i = nt; i < two_nt; i++) acc_dc += pu1_ref[i]; for(i = (two_nt + 1); i <= three_nt; i++) acc_dc += pu1_ref[i]; dc_val = (acc_dc + nt) >> (log2nt + 1); two_dc_val = 2 * dc_val; three_dc_val = 3 * dc_val; if(nt == 32) { for(row = 0; row < nt; row++) for(col = 0; col < nt; col++) pu1_dst[(row * dst_strd) + col] = dc_val; } else { /* DC filtering for the first top row and first left column */ pu1_dst[0] = ((pu1_ref[two_nt - 1] + two_dc_val + pu1_ref[two_nt + 1] + 2) >> 2); for(col = 1; col < nt; col++) pu1_dst[col] = (pu1_ref[two_nt + 1 + col] + three_dc_val + 2) >> 2; for(row = 1; row < nt; row++) pu1_dst[row * dst_strd] = (pu1_ref[two_nt - 1 - row] + three_dc_val + 2) >> 2; /* Fill the remaining rows with DC value*/ for(row = 1; row < nt; row++) for(col = 1; col < nt; col++) pu1_dst[(row * dst_strd) + col] = dc_val; } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for horizontal luma variable. * * @par Description: * Horizontal intraprediction(mode 10) with reference samples location * pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer * to section 8.4.4.2.6 in the standard (Special case) * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] src_strd * integer source stride * * @param[in] dst_strd * integer destination stride * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_horz(UWORD8 *pu1_ref, WORD32 src_strd, UWORD8 *pu1_dst, WORD32 dst_strd, WORD32 nt, WORD32 mode) { WORD32 row, col; WORD32 two_nt; WORD16 s2_predpixel; UNUSED(mode); UNUSED(src_strd); two_nt = 2 * nt; if(nt == 32) { for(row = 0; row < nt; row++) for(col = 0; col < nt; col++) pu1_dst[(row * dst_strd) + col] = pu1_ref[two_nt - 1 - row]; } else { /*Filtering done for the 1st row */ for(col = 0; col < nt; col++) { s2_predpixel = pu1_ref[two_nt - 1] + ((pu1_ref[two_nt + 1 + col] - pu1_ref[two_nt]) >> 1); pu1_dst[col] = CLIP_U8(s2_predpixel); } /* Replication to next rows*/ for(row = 1; row < nt; row++) for(col = 0; col < nt; col++) pu1_dst[(row * dst_strd) + col] = pu1_ref[two_nt - 1 - row]; } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for vertical luma variable. * * @par Description: * Horizontal intraprediction with reference neighboring samples location * pointed by 'pu1_ref' to the TU block location pointed by 'pu1_dst' Refer * to section 8.4.4.2.6 in the standard (Special case) * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] src_strd * integer source stride * * @param[in] dst_strd * integer destination stride * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_ver(UWORD8 *pu1_ref, WORD32 src_strd, UWORD8 *pu1_dst, WORD32 dst_strd, WORD32 nt, WORD32 mode) { WORD32 row, col; WORD16 s2_predpixel; WORD32 two_nt = 2 * nt; UNUSED(mode); UNUSED(src_strd); if(nt == 32) { /* Replication to next columns*/ for(row = 0; row < nt; row++) for(col = 0; col < nt; col++) pu1_dst[(row * dst_strd) + col] = pu1_ref[two_nt + 1 + col]; } else { /*Filtering done for the 1st column */ for(row = 0; row < nt; row++) { s2_predpixel = pu1_ref[two_nt + 1] + ((pu1_ref[two_nt - 1 - row] - pu1_ref[two_nt]) >> 1); pu1_dst[row * dst_strd] = CLIP_U8(s2_predpixel); } /* Replication to next columns*/ for(row = 0; row < nt; row++) for(col = 1; col < nt; col++) pu1_dst[(row * dst_strd) + col] = pu1_ref[two_nt + 1 + col]; } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for luma mode2. * * @par Description: * Intraprediction for mode 2 (sw angle) with reference neighboring samples * location pointed by 'pu1_ref' to the TU block location pointed by * 'pu1_dst' Refer to section 8.4.4.2.6 in the standard * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] src_strd * integer source stride * * @param[in] dst_strd * integer destination stride * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_mode2(UWORD8 *pu1_ref, WORD32 src_strd, UWORD8 *pu1_dst, WORD32 dst_strd, WORD32 nt, WORD32 mode) { WORD32 row, col; WORD32 two_nt = 2 * nt; WORD32 intra_pred_ang = 32; WORD32 idx = 0; UNUSED(mode); UNUSED(src_strd); /* For the angle 45, replication is done from the corresponding angle */ /* intra_pred_ang = tan(angle) in q5 format */ for(col = 0; col < nt; col++) { idx = ((col + 1) * intra_pred_ang) >> 5; /* Use idx++ */ for(row = 0; row < nt; row++) pu1_dst[col + (row * dst_strd)] = pu1_ref[two_nt - row - idx - 1]; } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for luma mode 18 & mode 34. * * @par Description: * Intraprediction for mode 34 (ne angle) and mode 18 (nw angle) with * reference neighboring samples location pointed by 'pu1_ref' to the TU * block location pointed by 'pu1_dst' * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] src_strd * integer source stride * * @param[in] dst_strd * integer destination stride * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_mode_18_34(UWORD8 *pu1_ref, WORD32 src_strd, UWORD8 *pu1_dst, WORD32 dst_strd, WORD32 nt, WORD32 mode) { WORD32 row, col; WORD32 intra_pred_ang; WORD32 idx = 0; WORD32 two_nt = 2 * nt; UNUSED(src_strd); intra_pred_ang = 32; /*Default value*/ /* For mode 18, angle is -45degree */ if(mode == 18) intra_pred_ang = -32; /* For mode 34, angle is 45degree */ else if(mode == 34) intra_pred_ang = 32; /* For the angle 45 and -45, replication is done from the corresponding angle */ /* No interpolation is done for 45 degree*/ for(row = 0; row < nt; row++) { idx = ((row + 1) * intra_pred_ang) >> 5; #if OPT if(mode == 18) idx--; if(mode == 34) idx++; #endif for(col = 0; col < nt; col++) pu1_dst[col + (row * dst_strd)] = pu1_ref[two_nt + col + idx + 1]; } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for luma mode 3 to mode 9 * * @par Description: * Intraprediction for mode 3 to 9 (positive angle, horizontal mode ) with * reference neighboring samples location pointed by 'pu1_ref' to the TU * block location pointed by 'pu1_dst' * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] src_strd * integer source stride * * @param[in] dst_strd * integer destination stride * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_mode_3_to_9(UWORD8 *pu1_ref, WORD32 src_strd, UWORD8 *pu1_dst, WORD32 dst_strd, WORD32 nt, WORD32 mode) { WORD32 row, col; WORD32 two_nt = 2 * nt; WORD32 intra_pred_ang; WORD32 idx, ref_main_idx; WORD32 pos, fract; UNUSED(src_strd); /* Intra Pred Angle according to the mode */ intra_pred_ang = gai4_ihevc_ang_table[mode]; /* For the angles other then 45 degree, interpolation btw 2 neighboring */ /* samples dependent on distance to obtain destination sample */ for(col = 0; col < nt; col++) { pos = ((col + 1) * intra_pred_ang); idx = pos >> 5; fract = pos & (31); // Do linear filtering for(row = 0; row < nt; row++) { ref_main_idx = two_nt - row - idx - 1; pu1_dst[col + (row * dst_strd)] = (((32 - fract) * pu1_ref[ref_main_idx] + fract * pu1_ref[ref_main_idx - 1] + 16) >> 5); } } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for luma mode 11 to mode 17 * * @par Description: * Intraprediction for mode 11 to 17 (negative angle, horizontal mode ) * with reference neighboring samples location pointed by 'pu1_ref' to the * TU block location pointed by 'pu1_dst' * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] src_strd * integer source stride * * @param[in] dst_strd * integer destination stride * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_mode_11_to_17(UWORD8 *pu1_ref, WORD32 src_strd, UWORD8 *pu1_dst, WORD32 dst_strd, WORD32 nt, WORD32 mode) { /* This function and ihevc_intra_pred_luma_mode_19_to_25 are same except*/ /* for ref main & side samples assignment,can be combined for */ /* optimzation*/ WORD32 row, col, k; WORD32 two_nt; WORD32 intra_pred_ang, inv_ang, inv_ang_sum; WORD32 idx, ref_main_idx, ref_idx; WORD32 pos, fract; UWORD8 ref_temp[2 * MAX_CU_SIZE + 1]; UWORD8 *ref_main; UNUSED(src_strd); inv_ang_sum = 128; two_nt = 2 * nt; intra_pred_ang = gai4_ihevc_ang_table[mode]; inv_ang = gai4_ihevc_inv_ang_table[mode - 11]; /* Intermediate reference samples for negative angle modes */ /* This have to be removed during optimization*/ /* For horizontal modes, (ref main = ref left) (ref side = ref above) */ ref_main = ref_temp + nt - 1; for(k = 0; k < nt + 1; k++) ref_temp[k + nt - 1] = pu1_ref[two_nt - k]; ref_main = ref_temp + nt - 1; ref_idx = (nt * intra_pred_ang) >> 5; /* SIMD Optimization can be done using look-up table for the loop */ /* For negative angled derive the main reference samples from side */ /* reference samples refer to section 8.4.4.2.6 */ for(k = -1; k > ref_idx; k--) { inv_ang_sum += inv_ang; ref_main[k] = pu1_ref[two_nt + (inv_ang_sum >> 8)]; } /* For the angles other then 45 degree, interpolation btw 2 neighboring */ /* samples dependent on distance to obtain destination sample */ for(col = 0; col < nt; col++) { pos = ((col + 1) * intra_pred_ang); idx = pos >> 5; fract = pos & (31); // Do linear filtering for(row = 0; row < nt; row++) { ref_main_idx = row + idx + 1; pu1_dst[col + (dst_strd * row)] = (UWORD8)(((32 - fract) * ref_main[ref_main_idx] + fract * ref_main[ref_main_idx + 1] + 16) >> 5); } } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for luma mode 19 to mode 25 * * @par Description: * Intraprediction for mode 19 to 25 (negative angle, vertical mode ) with * reference neighboring samples location pointed by 'pu1_ref' to the TU * block location pointed by 'pu1_dst' * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] src_strd * integer source stride * * @param[in] dst_strd * integer destination stride * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_mode_19_to_25(UWORD8 *pu1_ref, WORD32 src_strd, UWORD8 *pu1_dst, WORD32 dst_strd, WORD32 nt, WORD32 mode) { WORD32 row, col, k; WORD32 two_nt, intra_pred_ang, idx; WORD32 inv_ang, inv_ang_sum, pos, fract; WORD32 ref_main_idx, ref_idx; UWORD8 ref_temp[(2 * MAX_CU_SIZE) + 1]; UWORD8 *ref_main; UNUSED(src_strd); two_nt = 2 * nt; intra_pred_ang = gai4_ihevc_ang_table[mode]; inv_ang = gai4_ihevc_inv_ang_table[mode - 12]; /* Intermediate reference samples for negative angle modes */ /* This have to be removed during optimization*/ /* For horizontal modes, (ref main = ref above) (ref side = ref left) */ ref_main = ref_temp + nt - 1; for(k = 0; k < (nt + 1); k++) ref_temp[k + nt - 1] = pu1_ref[two_nt + k]; ref_idx = (nt * intra_pred_ang) >> 5; inv_ang_sum = 128; /* SIMD Optimization can be done using look-up table for the loop */ /* For negative angled derive the main reference samples from side */ /* reference samples refer to section 8.4.4.2.6 */ for(k = -1; k > ref_idx; k--) { inv_ang_sum += inv_ang; ref_main[k] = pu1_ref[two_nt - (inv_ang_sum >> 8)]; } for(row = 0; row < nt; row++) { pos = ((row + 1) * intra_pred_ang); idx = pos >> 5; fract = pos & (31); // Do linear filtering for(col = 0; col < nt; col++) { ref_main_idx = col + idx + 1; pu1_dst[(row * dst_strd) + col] = (UWORD8)(((32 - fract) * ref_main[ref_main_idx] + fract * ref_main[ref_main_idx + 1] + 16) >> 5); } } } /** ******************************************************************************* * * @brief * Intra prediction interpolation filter for luma mode 27 to mode 33 * * @par Description: * Intraprediction for mode 27 to 33 (positive angle, vertical mode ) with * reference neighboring samples location pointed by 'pu1_ref' to the TU * block location pointed by 'pu1_dst' * * @param[in] pu1_src * UWORD8 pointer to the source * * @param[out] pu1_dst * UWORD8 pointer to the destination * * @param[in] src_strd * integer source stride * * @param[in] dst_strd * integer destination stride * * @param[in] nt * integer Transform Block size * * @param[in] mode * integer intraprediction mode * * @returns * * @remarks * None * ******************************************************************************* */ void ihevc_intra_pred_luma_mode_27_to_33(UWORD8 *pu1_ref, WORD32 src_strd, UWORD8 *pu1_dst, WORD32 dst_strd, WORD32 nt, WORD32 mode) { WORD32 row, col; WORD32 two_nt, pos, fract; WORD32 intra_pred_ang; WORD32 idx, ref_main_idx; UNUSED(src_strd); two_nt = 2 * nt; intra_pred_ang = gai4_ihevc_ang_table[mode]; for(row = 0; row < nt; row++) { pos = ((row + 1) * intra_pred_ang); idx = pos >> 5; fract = pos & (31); // Do linear filtering for(col = 0; col < nt; col++) { ref_main_idx = two_nt + col + idx + 1; pu1_dst[col + (row * dst_strd)] = (((32 - fract) * pu1_ref[ref_main_idx] + fract * pu1_ref[ref_main_idx + 1] + 16) >> 5); } } }