/****************************************************************************** * * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ***************************************************************************** * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore */ /** ******************************************************************************* * @file * ih264_iquant_itrans_recon_dc_ssse3.c * * @brief * Contains function definitions for inverse quantization, inverse * transform and reconstruction * * @author * Mohit [100664] * * @par List of Functions: * - ih264_iquant_itrans_recon_4x4_dc_ssse3() * - ih264_iquant_itrans_recon_8x8_dc_ssse3() * * @remarks * None * ******************************************************************************* */ /* User include files */ #include "ih264_typedefs.h" #include "ih264_defs.h" #include "ih264_trans_macros.h" #include "ih264_macros.h" #include "ih264_platform_macros.h" #include "ih264_trans_data.h" #include "ih264_size_defs.h" #include "ih264_structs.h" #include "ih264_trans_quant_itrans_iquant.h" #include /* ******************************************************************************** * * @brief This function reconstructs a 4x4 sub block from quantized resiude and * prediction buffer for dc input pattern only, i.e. only the (0,0) element of the input * 4x4 block is non-zero. For complete function, refer ih264_iquant_itrans_recon_ssse3.c * * @par Description: * The quantized residue is first inverse quantized, then inverse transformed. * This inverse transformed content is added to the prediction buffer to recon- * struct the end output * * @param[in] pi2_src * quantized 4x4 block * * @param[in] pu1_pred * prediction 4x4 block * * @param[out] pu1_out * reconstructed 4x4 block * * @param[in] src_strd * quantization buffer stride * * @param[in] pred_strd, * Prediction buffer stride * * @param[in] out_strd * recon buffer Stride * * @param[in] pu2_scaling_list * pointer to scaling list * * @param[in] pu2_norm_adjust * pointer to inverse scale matrix * * @param[in] u4_qp_div_6 * Floor (qp/6) * * @param[in] pi4_tmp * temporary buffer of size 1*16 * * @returns none * * @remarks none * ******************************************************************************* */ void ih264_iquant_itrans_recon_4x4_dc_ssse3(WORD16 *pi2_src, UWORD8 *pu1_pred, UWORD8 *pu1_out, WORD32 pred_strd, WORD32 out_strd, const UWORD16 *pu2_iscal_mat, const UWORD16 *pu2_weigh_mat, UWORD32 u4_qp_div_6, WORD16 *pi2_tmp, WORD32 iq_start_idx, WORD16 *pi2_dc_ld_addr) { UWORD32 *pu4_out = (UWORD32 *)pu1_out; WORD32 q0 = pi2_src[0]; WORD16 i_macro, rnd_fact = (u4_qp_div_6 < 4) ? 1 << (3 - u4_qp_div_6) : 0; __m128i predload_r,pred_r0, pred_r1, pred_r2, pred_r3; __m128i sign_reg; __m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero __m128i temp4, temp5, temp6, temp7; __m128i value_add; UNUSED (pi2_tmp); INV_QUANT(q0, pu2_iscal_mat[0], pu2_weigh_mat[0], u4_qp_div_6, rnd_fact, 4); if (iq_start_idx != 0 ) q0 = pi2_dc_ld_addr[0]; // Restoring dc value for intra case i_macro = ((q0 + 32) >> 6); value_add = _mm_set1_epi16(i_macro); zero_8x16b = _mm_setzero_si128(); // all bits reset to zero //Load pred buffer predload_r = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits pred_r0 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p00 p01 p02 p03 0 0 0 0 -- all 16 bits predload_r = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits pred_r1 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p10 p11 p12 p13 0 0 0 0 -- all 16 bits predload_r = _mm_loadl_epi64((__m128i *) (&pu1_pred[2*pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits pred_r2 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p20 p21 p22 p23 0 0 0 0 -- all 16 bits predload_r = _mm_loadl_epi64((__m128i *) (&pu1_pred[3*pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits pred_r3 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p30 p31 p32 p33 0 0 0 0 -- all 16 bits pred_r0 = _mm_unpacklo_epi64(pred_r0, pred_r1); //p00 p01 p02 p03 p10 p11 p12 p13 pred_r2 = _mm_unpacklo_epi64(pred_r2, pred_r3); //p20 p21 p22p p23 p30 p31 p32 p33 temp4 = _mm_add_epi16(value_add, pred_r0); temp5 = _mm_add_epi16(value_add, pred_r2); /*------------------------------------------------------------------*/ //Clipping the results to 8 bits sign_reg = _mm_cmpgt_epi16(temp4, zero_8x16b); // sign check temp4 = _mm_and_si128(temp4, sign_reg); sign_reg = _mm_cmpgt_epi16(temp5, zero_8x16b); // sign check temp5 = _mm_and_si128(temp5, sign_reg); temp4 = _mm_packus_epi16(temp4,temp5); temp5 = _mm_srli_si128(temp4,4); temp6 = _mm_srli_si128(temp5,4); temp7 = _mm_srli_si128(temp6,4); *pu4_out = _mm_cvtsi128_si32(temp4); pu1_out += out_strd; pu4_out = (UWORD32 *)(pu1_out); *(pu4_out) = _mm_cvtsi128_si32(temp5); pu1_out += out_strd; pu4_out = (UWORD32 *)(pu1_out); *(pu4_out) = _mm_cvtsi128_si32(temp6); pu1_out += out_strd; pu4_out = (UWORD32 *)(pu1_out); *(pu4_out) = _mm_cvtsi128_si32(temp7); } /** ******************************************************************************* * * @brief * This function performs inverse quant and Inverse transform type Ci4 for 8x8 block * for dc input pattern only, i.e. only the (0,0) element of the input 8x8 block is * non-zero. For complete function, refer ih264_iquant_itrans_recon_ssse3.c * * @par Description: * Performs inverse transform Ci8 and adds the residue to get the * reconstructed block * * @param[in] pi2_src * Input 8x8coefficients * * @param[in] pu1_pred * Prediction 8x8 block * * @param[out] pu1_recon * Output 8x8 block * * @param[in] q_div * QP/6 * * @param[in] q_rem * QP%6 * * @param[in] q_lev * Quantizer level * * @param[in] u4_src_stride * Input stride * * @param[in] u4_pred_stride, * Prediction stride * * @param[in] u4_out_stride * Output Stride * * @param[in] pi4_tmp * temporary buffer of size 1*64 * the tmp for each block * * @param[in] pu4_iquant_mat * Pointer to the inverse quantization matrix * * @returns Void * * @remarks * None * ******************************************************************************* */ void ih264_iquant_itrans_recon_8x8_dc_ssse3 (WORD16 *pi2_src, UWORD8 *pu1_pred, UWORD8 *pu1_out, WORD32 pred_strd, WORD32 out_strd, const UWORD16 *pu2_iscale_mat, const UWORD16 *pu2_weigh_mat, UWORD32 qp_div, WORD16 *pi2_tmp, WORD32 iq_start_idx, WORD16 *pi2_dc_ld_addr) { WORD32 q0 = pi2_src[0]; WORD16 i_macro, rnd_fact = (qp_div < 6) ? 1 << (5 - qp_div) : 0; __m128i predload_r,pred_r0, pred_r1, pred_r2, pred_r3,pred_r4,pred_r5,pred_r6,pred_r7; __m128i sign_reg; __m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero __m128i temp1,temp2,temp3,temp4, temp5, temp6, temp7,temp8; __m128i value_add; UNUSED (pi2_tmp); UNUSED (iq_start_idx); UNUSED (pi2_dc_ld_addr); INV_QUANT(q0, pu2_iscale_mat[0], pu2_weigh_mat[0], qp_div, rnd_fact, 6); i_macro = ((q0 + 32) >> 6); value_add = _mm_set1_epi16(i_macro); //Load pred buffer row 0 predload_r = _mm_loadl_epi64((__m128i *)(&pu1_pred[0])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits pred_r0 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits //Load pred buffer row 1 predload_r = _mm_loadl_epi64((__m128i *)(&pu1_pred[pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits pred_r1 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits //Load pred buffer row 2 predload_r = _mm_loadl_epi64( (__m128i *)(&pu1_pred[2 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits pred_r2 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits //Load pred buffer row 3 predload_r = _mm_loadl_epi64( (__m128i *)(&pu1_pred[3 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits pred_r3 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits //Load pred buffer row 4 predload_r = _mm_loadl_epi64( (__m128i *)(&pu1_pred[4 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits pred_r4 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits //Load pred buffer row 5 predload_r = _mm_loadl_epi64( (__m128i *)(&pu1_pred[5 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bit pred_r5 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits //Load pred buffer row 6 predload_r = _mm_loadl_epi64( (__m128i *)(&pu1_pred[6 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits pred_r6 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits //Load pred buffer row 7 predload_r = _mm_loadl_epi64( (__m128i *)(&pu1_pred[7 * pred_strd])); //p0 p1 p2 p3 p4 p5 p6 p7 0 0 0 0 0 0 0 0 -- all 8 bits pred_r7 = _mm_unpacklo_epi8(predload_r, zero_8x16b); //p0 p1 p2 p3 p4 p5 p6 p7 -- all 16 bits temp1 = _mm_add_epi16(value_add, pred_r0); temp2 = _mm_add_epi16(value_add, pred_r1); temp3 = _mm_add_epi16(value_add, pred_r2); temp4 = _mm_add_epi16(value_add, pred_r3); temp5 = _mm_add_epi16(value_add, pred_r4); temp6 = _mm_add_epi16(value_add, pred_r5); temp7 = _mm_add_epi16(value_add, pred_r6); temp8 = _mm_add_epi16(value_add, pred_r7); /*------------------------------------------------------------------*/ //Clipping the results to 8 bits sign_reg = _mm_cmpgt_epi16(temp1, zero_8x16b); // sign check temp1 = _mm_and_si128(temp1, sign_reg); sign_reg = _mm_cmpgt_epi16(temp2, zero_8x16b); // sign check temp2 = _mm_and_si128(temp2, sign_reg); sign_reg = _mm_cmpgt_epi16(temp3, zero_8x16b); // sign check temp3 = _mm_and_si128(temp3, sign_reg); sign_reg = _mm_cmpgt_epi16(temp4, zero_8x16b); // sign check temp4 = _mm_and_si128(temp4, sign_reg); sign_reg = _mm_cmpgt_epi16(temp5, zero_8x16b); // sign check temp5 = _mm_and_si128(temp5, sign_reg); sign_reg = _mm_cmpgt_epi16(temp6, zero_8x16b); // sign check temp6 = _mm_and_si128(temp6, sign_reg); sign_reg = _mm_cmpgt_epi16(temp7, zero_8x16b); // sign check temp7 = _mm_and_si128(temp7, sign_reg); sign_reg = _mm_cmpgt_epi16(temp8, zero_8x16b); // sign check temp8 = _mm_and_si128(temp8, sign_reg); temp1 = _mm_packus_epi16(temp1, zero_8x16b); temp2 = _mm_packus_epi16(temp2, zero_8x16b); temp3 = _mm_packus_epi16(temp3, zero_8x16b); temp4 = _mm_packus_epi16(temp4, zero_8x16b); temp5 = _mm_packus_epi16(temp5, zero_8x16b); temp6 = _mm_packus_epi16(temp6, zero_8x16b); temp7 = _mm_packus_epi16(temp7, zero_8x16b); temp8 = _mm_packus_epi16(temp8, zero_8x16b); _mm_storel_epi64((__m128i *)(&pu1_out[0]), temp1); _mm_storel_epi64((__m128i *)(&pu1_out[out_strd]), temp2); _mm_storel_epi64((__m128i *)(&pu1_out[2 * out_strd]), temp3); _mm_storel_epi64((__m128i *)(&pu1_out[3 * out_strd]), temp4); _mm_storel_epi64((__m128i *)(&pu1_out[4 * out_strd]), temp5); _mm_storel_epi64((__m128i *)(&pu1_out[5 * out_strd]), temp6); _mm_storel_epi64((__m128i *)(&pu1_out[6 * out_strd]), temp7); _mm_storel_epi64((__m128i *)(&pu1_out[7 * out_strd]), temp8); } /* ******************************************************************************** * * @brief This function reconstructs a 4x4 sub block from quantized chroma resiude and * prediction buffer * * @par Description: * The quantized residue is first inverse quantized, then inverse transformed. * This inverse transformed content is added to the prediction buffer to recon- * struct the end output * * @param[in] pi2_src * quantized 4x4 block * * @param[in] pu1_pred * prediction 4x4 block * * @param[out] pu1_out * reconstructed 4x4 block * * @param[in] src_strd * quantization buffer stride * * @param[in] pred_strd, * Prediction buffer stride * * @param[in] out_strd * recon buffer Stride * * @param[in] pu2_scaling_list * pointer to scaling list * * @param[in] pu2_norm_adjust * pointer to inverse scale matrix * * @param[in] u4_qp_div_6 * Floor (qp/6) * * @param[in] pi4_tmp * temporary buffer of size 1*16 * * @returns none * * @remarks none * ******************************************************************************* */ void ih264_iquant_itrans_recon_chroma_4x4_dc_ssse3(WORD16 *pi2_src, UWORD8 *pu1_pred, UWORD8 *pu1_out, WORD32 pred_strd, WORD32 out_strd, const UWORD16 *pu2_iscal_mat, const UWORD16 *pu2_weigh_mat, UWORD32 u4_qp_div_6, WORD16 *pi2_tmp, WORD16 *pi2_dc_src) { WORD16 q0 = pi2_dc_src[0]; // DC value won't be dequantized for chroma inverse transform WORD16 i_macro = ((q0 + 32) >> 6); __m128i pred_r0, pred_r1, pred_r2, pred_r3, sign_reg; __m128i zero_8x16b = _mm_setzero_si128(); // all bits reset to zero __m128i chroma_mask = _mm_set1_epi16 (0xFF); __m128i value_add = _mm_set1_epi16(i_macro); __m128i out_r0, out_r1, out_r2, out_r3; UNUSED (pi2_src); UNUSED (pu2_iscal_mat); UNUSED (pu2_weigh_mat); UNUSED (u4_qp_div_6); UNUSED (pi2_tmp); //Load pred buffer pred_r0 = _mm_loadl_epi64((__m128i *) (&pu1_pred[0])); //p00 p01 p02 p03 0 0 0 0 0 0 0 0 -- all 8 bits pred_r1 = _mm_loadl_epi64((__m128i *) (&pu1_pred[pred_strd])); //p10 p11 p12 p13 0 0 0 0 0 0 0 0 -- all 8 bits pred_r2 = _mm_loadl_epi64((__m128i *) (&pu1_pred[2 * pred_strd])); //p20 p21 p22 p23 0 0 0 0 0 0 0 0 -- all 8 bits pred_r3 = _mm_loadl_epi64((__m128i *) (&pu1_pred[3 * pred_strd])); //p30 p31 p32 p33 0 0 0 0 0 0 0 0 -- all 8 bits pred_r0 = _mm_and_si128(pred_r0, chroma_mask); pred_r1 = _mm_and_si128(pred_r1, chroma_mask); pred_r2 = _mm_and_si128(pred_r2, chroma_mask); pred_r3 = _mm_and_si128(pred_r3, chroma_mask); pred_r0 = _mm_unpacklo_epi64(pred_r0, pred_r1); //p00 p01 p02 p03 p10 p11 p12 p13 pred_r2 = _mm_unpacklo_epi64(pred_r2, pred_r3); //p20 p21 p22p p23 p30 p31 p32 p33 pred_r0 = _mm_add_epi16(value_add, pred_r0); pred_r2 = _mm_add_epi16(value_add, pred_r2); /*------------------------------------------------------------------*/ //Clipping the results to 8 bits sign_reg = _mm_cmpgt_epi16(pred_r0, zero_8x16b); // sign check pred_r0 = _mm_and_si128(pred_r0, sign_reg); sign_reg = _mm_cmpgt_epi16(pred_r2, zero_8x16b); pred_r2 = _mm_and_si128(pred_r2, sign_reg); pred_r0 = _mm_packus_epi16(pred_r0, pred_r2); pred_r1 = _mm_srli_si128(pred_r0, 4); pred_r2 = _mm_srli_si128(pred_r1, 4); pred_r3 = _mm_srli_si128(pred_r2, 4); pred_r0 = _mm_unpacklo_epi8(pred_r0, zero_8x16b); //p00 p01 p02 p03 -- all 16 bits pred_r1 = _mm_unpacklo_epi8(pred_r1, zero_8x16b); //p10 p11 p12 p13 -- all 16 bits pred_r2 = _mm_unpacklo_epi8(pred_r2, zero_8x16b); //p20 p21 p22 p23 -- all 16 bits pred_r3 = _mm_unpacklo_epi8(pred_r3, zero_8x16b); //p30 p31 p32 p33 -- all 16 bits chroma_mask = _mm_set1_epi16 (0xFF00); out_r0 = _mm_loadl_epi64((__m128i *) (&pu1_out[0])); out_r1 = _mm_loadl_epi64((__m128i *) (&pu1_out[out_strd])); out_r2 = _mm_loadl_epi64((__m128i *) (&pu1_out[2 * out_strd])); out_r3 = _mm_loadl_epi64((__m128i *) (&pu1_out[3 * out_strd])); out_r0 = _mm_and_si128(out_r0, chroma_mask); out_r1 = _mm_and_si128(out_r1, chroma_mask); out_r2 = _mm_and_si128(out_r2, chroma_mask); out_r3 = _mm_and_si128(out_r3, chroma_mask); out_r0 = _mm_add_epi8(out_r0, pred_r0); out_r1 = _mm_add_epi8(out_r1, pred_r1); out_r2 = _mm_add_epi8(out_r2, pred_r2); out_r3 = _mm_add_epi8(out_r3, pred_r3); _mm_storel_epi64((__m128i *)(&pu1_out[0]), out_r0); _mm_storel_epi64((__m128i *)(&pu1_out[out_strd]), out_r1); _mm_storel_epi64((__m128i *)(&pu1_out[2 * out_strd]), out_r2); _mm_storel_epi64((__m128i *)(&pu1_out[3 * out_strd]), out_r3); }