/****************************************************************************** * * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ***************************************************************************** * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore */ /** ******************************************************************************* * @file * ih264_ihadamard_scaling.c * * @brief * Contains definition of functions for h264 inverse hadamard 4x4 transform and scaling * * @author * Mohit * * @par List of Functions: * - ih264_ihadamard_scaling_4x4() * * @remarks * ******************************************************************************* */ /*****************************************************************************/ /* File Includes */ /*****************************************************************************/ /* User include files */ #include "ih264_typedefs.h" #include "ih264_defs.h" #include "ih264_trans_macros.h" #include "ih264_macros.h" #include "ih264_trans_data.h" #include "ih264_size_defs.h" #include "ih264_structs.h" #include "ih264_trans_quant_itrans_iquant.h" /* ******************************************************************************** * * @brief This function performs a 4x4 inverse hadamard transform on the 4x4 DC coefficients * of a 16x16 intra prediction macroblock, and then performs scaling. * prediction buffer * * @par Description: * The DC coefficients pass through a 2-stage inverse hadamard transform. * This inverse transformed content is scaled to based on Qp value. * * @param[in] pi2_src * input 4x4 block of DC coefficients * * @param[out] pi2_out * output 4x4 block * * @param[in] pu2_iscal_mat * pointer to scaling list * * @param[in] pu2_weigh_mat * pointer to weight matrix * * @param[in] u4_qp_div_6 * Floor (qp/6) * * @param[in] pi4_tmp * temporary buffer of size 1*16 * * @returns none * * @remarks none * ******************************************************************************* */ void ih264_ihadamard_scaling_4x4(WORD16* pi2_src, WORD16* pi2_out, const UWORD16 *pu2_iscal_mat, const UWORD16 *pu2_weigh_mat, UWORD32 u4_qp_div_6, WORD32* pi4_tmp) { WORD32 i; WORD32 x0, x1, x2, x3, x4, x5, x6, x7; WORD16* pi2_src_ptr, *pi2_out_ptr; WORD32* pi4_tmp_ptr; WORD32 rnd_fact = (u4_qp_div_6 < 6) ? (1 << (5 - u4_qp_div_6)) : 0; pi4_tmp_ptr = pi4_tmp; pi2_src_ptr = pi2_src; pi2_out_ptr = pi2_out; // Horizontal transform for(i = 0; i < SUB_BLK_WIDTH_4x4; i++) { x4 = pi2_src_ptr[0]; x5 = pi2_src_ptr[1]; x6 = pi2_src_ptr[2]; x7 = pi2_src_ptr[3]; x0 = x4 + x7; x1 = x5 + x6; x2 = x5 - x6; x3 = x4 - x7; pi4_tmp_ptr[0] = x0 + x1; pi4_tmp_ptr[1] = x2 + x3; pi4_tmp_ptr[2] = x0 - x1; pi4_tmp_ptr[3] = x3 - x2; pi4_tmp_ptr += SUB_BLK_WIDTH_4x4; pi2_src_ptr += SUB_BLK_WIDTH_4x4; } pi4_tmp_ptr = pi4_tmp; // Vertical Transform for(i = 0; i < SUB_BLK_WIDTH_4x4; i++) { x4 = pi4_tmp_ptr[0]; x5 = pi4_tmp_ptr[4]; x6 = pi4_tmp_ptr[8]; x7 = pi4_tmp_ptr[12]; x0 = x4 + x7; x1 = x5 + x6; x2 = x5 - x6; x3 = x4 - x7; pi4_tmp_ptr[0] = x0 + x1; pi4_tmp_ptr[4] = x2 + x3; pi4_tmp_ptr[8] = x0 - x1; pi4_tmp_ptr[12] = x3 - x2; pi4_tmp_ptr++; } pi4_tmp_ptr = pi4_tmp; //Scaling for(i = 0; i < (SUB_BLK_WIDTH_4x4 * SUB_BLK_WIDTH_4x4); i++) { INV_QUANT(pi4_tmp_ptr[i], pu2_iscal_mat[0], pu2_weigh_mat[0], u4_qp_div_6, rnd_fact, 6); pi2_out_ptr[i] = pi4_tmp_ptr[i]; } } void ih264_ihadamard_scaling_2x2_uv(WORD16* pi2_src, WORD16* pi2_out, const UWORD16 *pu2_iscal_mat, const UWORD16 *pu2_weigh_mat, UWORD32 u4_qp_div_6, WORD32* pi4_tmp) { WORD32 i4_x0,i4_x1,i4_x2,i4_x3,i4_x4,i4_x5,i4_x6,i4_x7; WORD32 i4_y0,i4_y1,i4_y2,i4_y3,i4_y4,i4_y5,i4_y6,i4_y7; UNUSED(pi4_tmp); i4_x4 = pi2_src[0]; i4_x5 = pi2_src[1]; i4_x6 = pi2_src[2]; i4_x7 = pi2_src[3]; i4_x0 = i4_x4 + i4_x5; i4_x1 = i4_x4 - i4_x5; i4_x2 = i4_x6 + i4_x7; i4_x3 = i4_x6 - i4_x7; i4_x4 = i4_x0+i4_x2; i4_x5 = i4_x1+i4_x3; i4_x6 = i4_x0-i4_x2; i4_x7 = i4_x1-i4_x3; INV_QUANT(i4_x4,pu2_iscal_mat[0],pu2_weigh_mat[0],u4_qp_div_6,0,5); INV_QUANT(i4_x5,pu2_iscal_mat[0],pu2_weigh_mat[0],u4_qp_div_6,0,5); INV_QUANT(i4_x6,pu2_iscal_mat[0],pu2_weigh_mat[0],u4_qp_div_6,0,5); INV_QUANT(i4_x7,pu2_iscal_mat[0],pu2_weigh_mat[0],u4_qp_div_6,0,5); pi2_out[0] = i4_x4; pi2_out[1] = i4_x5; pi2_out[2] = i4_x6; pi2_out[3] = i4_x7; i4_y4 = pi2_src[4]; i4_y5 = pi2_src[5]; i4_y6 = pi2_src[6]; i4_y7 = pi2_src[7]; i4_y0 = i4_y4 + i4_y5; i4_y1 = i4_y4 - i4_y5; i4_y2 = i4_y6 + i4_y7; i4_y3 = i4_y6 - i4_y7; i4_y4 = i4_y0+i4_y2; i4_y5 = i4_y1+i4_y3; i4_y6 = i4_y0-i4_y2; i4_y7 = i4_y1-i4_y3; INV_QUANT(i4_y4,pu2_iscal_mat[0],pu2_weigh_mat[0],u4_qp_div_6,0,5); INV_QUANT(i4_y5,pu2_iscal_mat[0],pu2_weigh_mat[0],u4_qp_div_6,0,5); INV_QUANT(i4_y6,pu2_iscal_mat[0],pu2_weigh_mat[0],u4_qp_div_6,0,5); INV_QUANT(i4_y7,pu2_iscal_mat[0],pu2_weigh_mat[0],u4_qp_div_6,0,5); pi2_out[4] = i4_y4; pi2_out[5] = i4_y5; pi2_out[6] = i4_y6; pi2_out[7] = i4_y7; }