summaryrefslogtreecommitdiffstats
path: root/src/raster/ftraster.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/raster/ftraster.c')
-rw-r--r--src/raster/ftraster.c3382
1 files changed, 3382 insertions, 0 deletions
diff --git a/src/raster/ftraster.c b/src/raster/ftraster.c
new file mode 100644
index 0000000..86d77d4
--- /dev/null
+++ b/src/raster/ftraster.c
@@ -0,0 +1,3382 @@
+/***************************************************************************/
+/* */
+/* ftraster.c */
+/* */
+/* The FreeType glyph rasterizer (body). */
+/* */
+/* Copyright 1996-2001, 2002, 2003, 2005, 2007, 2008 by */
+/* David Turner, Robert Wilhelm, and Werner Lemberg. */
+/* */
+/* This file is part of the FreeType project, and may only be used, */
+/* modified, and distributed under the terms of the FreeType project */
+/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
+/* this file you indicate that you have read the license and */
+/* understand and accept it fully. */
+/* */
+/***************************************************************************/
+
+ /*************************************************************************/
+ /* */
+ /* This file can be compiled without the rest of the FreeType engine, by */
+ /* defining the _STANDALONE_ macro when compiling it. You also need to */
+ /* put the files `ftimage.h' and `ftmisc.h' into the $(incdir) */
+ /* directory. Typically, you should do something like */
+ /* */
+ /* - copy `src/raster/ftraster.c' (this file) to your current directory */
+ /* */
+ /* - copy `include/freetype/ftimage.h' and `src/raster/ftmisc.h' */
+ /* to your current directory */
+ /* */
+ /* - compile `ftraster' with the _STANDALONE_ macro defined, as in */
+ /* */
+ /* cc -c -D_STANDALONE_ ftraster.c */
+ /* */
+ /* The renderer can be initialized with a call to */
+ /* `ft_standard_raster.raster_new'; a bitmap can be generated */
+ /* with a call to `ft_standard_raster.raster_render'. */
+ /* */
+ /* See the comments and documentation in the file `ftimage.h' for more */
+ /* details on how the raster works. */
+ /* */
+ /*************************************************************************/
+
+
+ /*************************************************************************/
+ /* */
+ /* This is a rewrite of the FreeType 1.x scan-line converter */
+ /* */
+ /*************************************************************************/
+
+#ifdef _STANDALONE_
+
+#include "ftmisc.h"
+#include "ftimage.h"
+
+#else /* !_STANDALONE_ */
+
+#include <ft2build.h>
+#include "ftraster.h"
+#include FT_INTERNAL_CALC_H /* for FT_MulDiv only */
+
+#endif /* !_STANDALONE_ */
+
+
+ /*************************************************************************/
+ /* */
+ /* A simple technical note on how the raster works */
+ /* ----------------------------------------------- */
+ /* */
+ /* Converting an outline into a bitmap is achieved in several steps: */
+ /* */
+ /* 1 - Decomposing the outline into successive `profiles'. Each */
+ /* profile is simply an array of scanline intersections on a given */
+ /* dimension. A profile's main attributes are */
+ /* */
+ /* o its scanline position boundaries, i.e. `Ymin' and `Ymax'. */
+ /* */
+ /* o an array of intersection coordinates for each scanline */
+ /* between `Ymin' and `Ymax'. */
+ /* */
+ /* o a direction, indicating whether it was built going `up' or */
+ /* `down', as this is very important for filling rules. */
+ /* */
+ /* 2 - Sweeping the target map's scanlines in order to compute segment */
+ /* `spans' which are then filled. Additionally, this pass */
+ /* performs drop-out control. */
+ /* */
+ /* The outline data is parsed during step 1 only. The profiles are */
+ /* built from the bottom of the render pool, used as a stack. The */
+ /* following graphics shows the profile list under construction: */
+ /* */
+ /* ____________________________________________________________ _ _ */
+ /* | | | | | */
+ /* | profile | coordinates for | profile | coordinates for |--> */
+ /* | 1 | profile 1 | 2 | profile 2 |--> */
+ /* |_________|___________________|_________|_________________|__ _ _ */
+ /* */
+ /* ^ ^ */
+ /* | | */
+ /* start of render pool top */
+ /* */
+ /* The top of the profile stack is kept in the `top' variable. */
+ /* */
+ /* As you can see, a profile record is pushed on top of the render */
+ /* pool, which is then followed by its coordinates/intersections. If */
+ /* a change of direction is detected in the outline, a new profile is */
+ /* generated until the end of the outline. */
+ /* */
+ /* Note that when all profiles have been generated, the function */
+ /* Finalize_Profile_Table() is used to record, for each profile, its */
+ /* bottom-most scanline as well as the scanline above its upmost */
+ /* boundary. These positions are called `y-turns' because they (sort */
+ /* of) correspond to local extrema. They are stored in a sorted list */
+ /* built from the top of the render pool as a downwards stack: */
+ /* */
+ /* _ _ _______________________________________ */
+ /* | | */
+ /* <--| sorted list of | */
+ /* <--| extrema scanlines | */
+ /* _ _ __________________|____________________| */
+ /* */
+ /* ^ ^ */
+ /* | | */
+ /* maxBuff sizeBuff = end of pool */
+ /* */
+ /* This list is later used during the sweep phase in order to */
+ /* optimize performance (see technical note on the sweep below). */
+ /* */
+ /* Of course, the raster detects whether the two stacks collide and */
+ /* handles the situation properly. */
+ /* */
+ /*************************************************************************/
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** CONFIGURATION MACROS **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+ /* define DEBUG_RASTER if you want to compile a debugging version */
+#define xxxDEBUG_RASTER
+
+ /* undefine FT_RASTER_OPTION_ANTI_ALIASING if you do not want to support */
+ /* 5-levels anti-aliasing */
+#undef FT_RASTER_OPTION_ANTI_ALIASING
+
+ /* The size of the two-lines intermediate bitmap used */
+ /* for anti-aliasing, in bytes. */
+#define RASTER_GRAY_LINES 2048
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** OTHER MACROS (do not change) **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+ /*************************************************************************/
+ /* */
+ /* The macro FT_COMPONENT is used in trace mode. It is an implicit */
+ /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */
+ /* messages during execution. */
+ /* */
+#undef FT_COMPONENT
+#define FT_COMPONENT trace_raster
+
+
+#ifdef _STANDALONE_
+
+
+ /* This macro is used to indicate that a function parameter is unused. */
+ /* Its purpose is simply to reduce compiler warnings. Note also that */
+ /* simply defining it as `(void)x' doesn't avoid warnings with certain */
+ /* ANSI compilers (e.g. LCC). */
+#define FT_UNUSED( x ) (x) = (x)
+
+ /* Disable the tracing mechanism for simplicity -- developers can */
+ /* activate it easily by redefining these two macros. */
+#ifndef FT_ERROR
+#define FT_ERROR( x ) do ; while ( 0 ) /* nothing */
+#endif
+
+#ifndef FT_TRACE
+#define FT_TRACE( x ) do ; while ( 0 ) /* nothing */
+#define FT_TRACE1( x ) do ; while ( 0 ) /* nothing */
+#define FT_TRACE6( x ) do ; while ( 0 ) /* nothing */
+#endif
+
+#define Raster_Err_None 0
+#define Raster_Err_Not_Ini -1
+#define Raster_Err_Overflow -2
+#define Raster_Err_Neg_Height -3
+#define Raster_Err_Invalid -4
+#define Raster_Err_Unsupported -5
+
+#define ft_memset memset
+
+#else /* _STANDALONE_ */
+
+
+#include FT_INTERNAL_OBJECTS_H
+#include FT_INTERNAL_DEBUG_H /* for FT_TRACE() and FT_ERROR() */
+
+#include "rasterrs.h"
+
+#define Raster_Err_None Raster_Err_Ok
+#define Raster_Err_Not_Ini Raster_Err_Raster_Uninitialized
+#define Raster_Err_Overflow Raster_Err_Raster_Overflow
+#define Raster_Err_Neg_Height Raster_Err_Raster_Negative_Height
+#define Raster_Err_Invalid Raster_Err_Invalid_Outline
+#define Raster_Err_Unsupported Raster_Err_Cannot_Render_Glyph
+
+
+#endif /* _STANDALONE_ */
+
+
+#ifndef FT_MEM_SET
+#define FT_MEM_SET( d, s, c ) ft_memset( d, s, c )
+#endif
+
+#ifndef FT_MEM_ZERO
+#define FT_MEM_ZERO( dest, count ) FT_MEM_SET( dest, 0, count )
+#endif
+
+ /* FMulDiv means `Fast MulDiv'; it is used in case where `b' is */
+ /* typically a small value and the result of a*b is known to fit into */
+ /* 32 bits. */
+#define FMulDiv( a, b, c ) ( (a) * (b) / (c) )
+
+ /* On the other hand, SMulDiv means `Slow MulDiv', and is used typically */
+ /* for clipping computations. It simply uses the FT_MulDiv() function */
+ /* defined in `ftcalc.h'. */
+#define SMulDiv FT_MulDiv
+
+ /* The rasterizer is a very general purpose component; please leave */
+ /* the following redefinitions there (you never know your target */
+ /* environment). */
+
+#ifndef TRUE
+#define TRUE 1
+#endif
+
+#ifndef FALSE
+#define FALSE 0
+#endif
+
+#ifndef NULL
+#define NULL (void*)0
+#endif
+
+#ifndef SUCCESS
+#define SUCCESS 0
+#endif
+
+#ifndef FAILURE
+#define FAILURE 1
+#endif
+
+
+#define MaxBezier 32 /* The maximum number of stacked Bezier curves. */
+ /* Setting this constant to more than 32 is a */
+ /* pure waste of space. */
+
+#define Pixel_Bits 6 /* fractional bits of *input* coordinates */
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** SIMPLE TYPE DECLARATIONS **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+ typedef int Int;
+ typedef unsigned int UInt;
+ typedef short Short;
+ typedef unsigned short UShort, *PUShort;
+ typedef long Long, *PLong;
+ typedef unsigned long ULong;
+
+ typedef unsigned char Byte, *PByte;
+ typedef char Bool;
+
+
+ typedef union Alignment_
+ {
+ long l;
+ void* p;
+ void (*f)(void);
+
+ } Alignment, *PAlignment;
+
+
+ typedef struct TPoint_
+ {
+ Long x;
+ Long y;
+
+ } TPoint;
+
+
+ typedef enum TFlow_
+ {
+ Flow_None = 0,
+ Flow_Up = 1,
+ Flow_Down = -1
+
+ } TFlow;
+
+
+ /* States of each line, arc, and profile */
+ typedef enum TStates_
+ {
+ Unknown_State,
+ Ascending_State,
+ Descending_State,
+ Flat_State
+
+ } TStates;
+
+
+ typedef struct TProfile_ TProfile;
+ typedef TProfile* PProfile;
+
+ struct TProfile_
+ {
+ FT_F26Dot6 X; /* current coordinate during sweep */
+ PProfile link; /* link to next profile - various purpose */
+ PLong offset; /* start of profile's data in render pool */
+ int flow; /* Profile orientation: Asc/Descending */
+ long height; /* profile's height in scanlines */
+ long start; /* profile's starting scanline */
+
+ unsigned countL; /* number of lines to step before this */
+ /* profile becomes drawable */
+
+ PProfile next; /* next profile in same contour, used */
+ /* during drop-out control */
+ };
+
+ typedef PProfile TProfileList;
+ typedef PProfile* PProfileList;
+
+
+ /* Simple record used to implement a stack of bands, required */
+ /* by the sub-banding mechanism */
+ typedef struct TBand_
+ {
+ Short y_min; /* band's minimum */
+ Short y_max; /* band's maximum */
+
+ } TBand;
+
+
+#define AlignProfileSize \
+ ( ( sizeof ( TProfile ) + sizeof ( Alignment ) - 1 ) / sizeof ( long ) )
+
+
+#ifdef FT_STATIC_RASTER
+
+
+#define RAS_ARGS /* void */
+#define RAS_ARG /* void */
+
+#define RAS_VARS /* void */
+#define RAS_VAR /* void */
+
+#define FT_UNUSED_RASTER do ; while ( 0 )
+
+
+#else /* FT_STATIC_RASTER */
+
+
+#define RAS_ARGS PWorker worker,
+#define RAS_ARG PWorker worker
+
+#define RAS_VARS worker,
+#define RAS_VAR worker
+
+#define FT_UNUSED_RASTER FT_UNUSED( worker )
+
+
+#endif /* FT_STATIC_RASTER */
+
+
+ typedef struct TWorker_ TWorker, *PWorker;
+
+
+ /* prototypes used for sweep function dispatch */
+ typedef void
+ Function_Sweep_Init( RAS_ARGS Short* min,
+ Short* max );
+
+ typedef void
+ Function_Sweep_Span( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right );
+
+ typedef void
+ Function_Sweep_Step( RAS_ARG );
+
+
+ /* NOTE: These operations are only valid on 2's complement processors */
+
+#define FLOOR( x ) ( (x) & -ras.precision )
+#define CEILING( x ) ( ( (x) + ras.precision - 1 ) & -ras.precision )
+#define TRUNC( x ) ( (signed long)(x) >> ras.precision_bits )
+#define FRAC( x ) ( (x) & ( ras.precision - 1 ) )
+#define SCALED( x ) ( ( (x) << ras.scale_shift ) - ras.precision_half )
+
+ /* Note that I have moved the location of some fields in the */
+ /* structure to ensure that the most used variables are used */
+ /* at the top. Thus, their offset can be coded with less */
+ /* opcodes, and it results in a smaller executable. */
+
+ struct TWorker_
+ {
+ Int precision_bits; /* precision related variables */
+ Int precision;
+ Int precision_half;
+ Long precision_mask;
+ Int precision_shift;
+ Int precision_step;
+ Int precision_jitter;
+
+ Int scale_shift; /* == precision_shift for bitmaps */
+ /* == precision_shift+1 for pixmaps */
+
+ PLong buff; /* The profiles buffer */
+ PLong sizeBuff; /* Render pool size */
+ PLong maxBuff; /* Profiles buffer size */
+ PLong top; /* Current cursor in buffer */
+
+ FT_Error error;
+
+ Int numTurns; /* number of Y-turns in outline */
+
+ TPoint* arc; /* current Bezier arc pointer */
+
+ UShort bWidth; /* target bitmap width */
+ PByte bTarget; /* target bitmap buffer */
+ PByte gTarget; /* target pixmap buffer */
+
+ Long lastX, lastY, minY, maxY;
+
+ UShort num_Profs; /* current number of profiles */
+
+ Bool fresh; /* signals a fresh new profile which */
+ /* 'start' field must be completed */
+ Bool joint; /* signals that the last arc ended */
+ /* exactly on a scanline. Allows */
+ /* removal of doublets */
+ PProfile cProfile; /* current profile */
+ PProfile fProfile; /* head of linked list of profiles */
+ PProfile gProfile; /* contour's first profile in case */
+ /* of impact */
+
+ TStates state; /* rendering state */
+
+ FT_Bitmap target; /* description of target bit/pixmap */
+ FT_Outline outline;
+
+ Long traceOfs; /* current offset in target bitmap */
+ Long traceG; /* current offset in target pixmap */
+
+ Short traceIncr; /* sweep's increment in target bitmap */
+
+ Short gray_min_x; /* current min x during gray rendering */
+ Short gray_max_x; /* current max x during gray rendering */
+
+ /* dispatch variables */
+
+ Function_Sweep_Init* Proc_Sweep_Init;
+ Function_Sweep_Span* Proc_Sweep_Span;
+ Function_Sweep_Span* Proc_Sweep_Drop;
+ Function_Sweep_Step* Proc_Sweep_Step;
+
+ Byte dropOutControl; /* current drop_out control method */
+
+ Bool second_pass; /* indicates whether a horizontal pass */
+ /* should be performed to control */
+ /* drop-out accurately when calling */
+ /* Render_Glyph. Note that there is */
+ /* no horizontal pass during gray */
+ /* rendering. */
+
+ TPoint arcs[3 * MaxBezier + 1]; /* The Bezier stack */
+
+ TBand band_stack[16]; /* band stack used for sub-banding */
+ Int band_top; /* band stack top */
+
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+
+ Byte* grays;
+
+ Byte gray_lines[RASTER_GRAY_LINES];
+ /* Intermediate table used to render the */
+ /* graylevels pixmaps. */
+ /* gray_lines is a buffer holding two */
+ /* monochrome scanlines */
+
+ Short gray_width; /* width in bytes of one monochrome */
+ /* intermediate scanline of gray_lines. */
+ /* Each gray pixel takes 2 bits long there */
+
+ /* The gray_lines must hold 2 lines, thus with size */
+ /* in bytes of at least `gray_width*2'. */
+
+#endif /* FT_RASTER_ANTI_ALIASING */
+
+ };
+
+
+ typedef struct TRaster_
+ {
+ char* buffer;
+ long buffer_size;
+ void* memory;
+ PWorker worker;
+ Byte grays[5];
+ Short gray_width;
+
+ } TRaster, *PRaster;
+
+#ifdef FT_STATIC_RASTER
+
+ static TWorker cur_ras;
+#define ras cur_ras
+
+#else
+
+#define ras (*worker)
+
+#endif /* FT_STATIC_RASTER */
+
+
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+
+static const char count_table[256] =
+{
+ 0 , 1 , 1 , 2 , 1 , 2 , 2 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 3 , 4,
+ 1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 , 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5,
+ 1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 , 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5,
+ 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6,
+ 1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 , 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5,
+ 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6,
+ 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6,
+ 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 , 4 , 5 , 5 , 6 , 5 , 6 , 6 , 7,
+ 1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 , 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5,
+ 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6,
+ 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6,
+ 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 , 4 , 5 , 5 , 6 , 5 , 6 , 6 , 7,
+ 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6,
+ 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 , 4 , 5 , 5 , 6 , 5 , 6 , 6 , 7,
+ 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 , 4 , 5 , 5 , 6 , 5 , 6 , 6 , 7,
+ 4 , 5 , 5 , 6 , 5 , 6 , 6 , 7 , 5 , 6 , 6 , 7 , 6 , 7 , 7 , 8 };
+
+#endif /* FT_RASTER_OPTION_ANTI_ALIASING */
+
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** PROFILES COMPUTATION **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Set_High_Precision */
+ /* */
+ /* <Description> */
+ /* Sets precision variables according to param flag. */
+ /* */
+ /* <Input> */
+ /* High :: Set to True for high precision (typically for ppem < 18), */
+ /* false otherwise. */
+ /* */
+ static void
+ Set_High_Precision( RAS_ARGS Int High )
+ {
+ if ( High )
+ {
+ ras.precision_bits = 10;
+ ras.precision_step = 128;
+ ras.precision_jitter = 24;
+ }
+ else
+ {
+ ras.precision_bits = 6;
+ ras.precision_step = 32;
+ ras.precision_jitter = 2;
+ }
+
+ FT_TRACE6(( "Set_High_Precision(%s)\n", High ? "true" : "false" ));
+
+ ras.precision = 1 << ras.precision_bits;
+ ras.precision_half = ras.precision / 2;
+ ras.precision_shift = ras.precision_bits - Pixel_Bits;
+ ras.precision_mask = -ras.precision;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* New_Profile */
+ /* */
+ /* <Description> */
+ /* Creates a new profile in the render pool. */
+ /* */
+ /* <Input> */
+ /* aState :: The state/orientation of the new profile. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success. FAILURE in case of overflow or of incoherent */
+ /* profile. */
+ /* */
+ static Bool
+ New_Profile( RAS_ARGS TStates aState )
+ {
+ if ( !ras.fProfile )
+ {
+ ras.cProfile = (PProfile)ras.top;
+ ras.fProfile = ras.cProfile;
+ ras.top += AlignProfileSize;
+ }
+
+ if ( ras.top >= ras.maxBuff )
+ {
+ ras.error = Raster_Err_Overflow;
+ return FAILURE;
+ }
+
+ switch ( aState )
+ {
+ case Ascending_State:
+ ras.cProfile->flow = Flow_Up;
+ FT_TRACE6(( "New ascending profile = %lx\n", (long)ras.cProfile ));
+ break;
+
+ case Descending_State:
+ ras.cProfile->flow = Flow_Down;
+ FT_TRACE6(( "New descending profile = %lx\n", (long)ras.cProfile ));
+ break;
+
+ default:
+ FT_ERROR(( "New_Profile: invalid profile direction!\n" ));
+ ras.error = Raster_Err_Invalid;
+ return FAILURE;
+ }
+
+ ras.cProfile->start = 0;
+ ras.cProfile->height = 0;
+ ras.cProfile->offset = ras.top;
+ ras.cProfile->link = (PProfile)0;
+ ras.cProfile->next = (PProfile)0;
+
+ if ( !ras.gProfile )
+ ras.gProfile = ras.cProfile;
+
+ ras.state = aState;
+ ras.fresh = TRUE;
+ ras.joint = FALSE;
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* End_Profile */
+ /* */
+ /* <Description> */
+ /* Finalizes the current profile. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success. FAILURE in case of overflow or incoherency. */
+ /* */
+ static Bool
+ End_Profile( RAS_ARG )
+ {
+ Long h;
+ PProfile oldProfile;
+
+
+ h = (Long)( ras.top - ras.cProfile->offset );
+
+ if ( h < 0 )
+ {
+ FT_ERROR(( "End_Profile: negative height encountered!\n" ));
+ ras.error = Raster_Err_Neg_Height;
+ return FAILURE;
+ }
+
+ if ( h > 0 )
+ {
+ FT_TRACE6(( "Ending profile %lx, start = %ld, height = %ld\n",
+ (long)ras.cProfile, ras.cProfile->start, h ));
+
+ oldProfile = ras.cProfile;
+ ras.cProfile->height = h;
+ ras.cProfile = (PProfile)ras.top;
+
+ ras.top += AlignProfileSize;
+
+ ras.cProfile->height = 0;
+ ras.cProfile->offset = ras.top;
+ oldProfile->next = ras.cProfile;
+ ras.num_Profs++;
+ }
+
+ if ( ras.top >= ras.maxBuff )
+ {
+ FT_TRACE1(( "overflow in End_Profile\n" ));
+ ras.error = Raster_Err_Overflow;
+ return FAILURE;
+ }
+
+ ras.joint = FALSE;
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Insert_Y_Turn */
+ /* */
+ /* <Description> */
+ /* Inserts a salient into the sorted list placed on top of the render */
+ /* pool. */
+ /* */
+ /* <Input> */
+ /* New y scanline position. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success. FAILURE in case of overflow. */
+ /* */
+ static Bool
+ Insert_Y_Turn( RAS_ARGS Int y )
+ {
+ PLong y_turns;
+ Int y2, n;
+
+
+ n = ras.numTurns - 1;
+ y_turns = ras.sizeBuff - ras.numTurns;
+
+ /* look for first y value that is <= */
+ while ( n >= 0 && y < y_turns[n] )
+ n--;
+
+ /* if it is <, simply insert it, ignore if == */
+ if ( n >= 0 && y > y_turns[n] )
+ while ( n >= 0 )
+ {
+ y2 = (Int)y_turns[n];
+ y_turns[n] = y;
+ y = y2;
+ n--;
+ }
+
+ if ( n < 0 )
+ {
+ ras.maxBuff--;
+ if ( ras.maxBuff <= ras.top )
+ {
+ ras.error = Raster_Err_Overflow;
+ return FAILURE;
+ }
+ ras.numTurns++;
+ ras.sizeBuff[-ras.numTurns] = y;
+ }
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Finalize_Profile_Table */
+ /* */
+ /* <Description> */
+ /* Adjusts all links in the profiles list. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success. FAILURE in case of overflow. */
+ /* */
+ static Bool
+ Finalize_Profile_Table( RAS_ARG )
+ {
+ Int bottom, top;
+ UShort n;
+ PProfile p;
+
+
+ n = ras.num_Profs;
+
+ if ( n > 1 )
+ {
+ p = ras.fProfile;
+ while ( n > 0 )
+ {
+ if ( n > 1 )
+ p->link = (PProfile)( p->offset + p->height );
+ else
+ p->link = NULL;
+
+ switch ( p->flow )
+ {
+ case Flow_Down:
+ bottom = (Int)( p->start - p->height + 1 );
+ top = (Int)p->start;
+ p->start = bottom;
+ p->offset += p->height - 1;
+ break;
+
+ case Flow_Up:
+ default:
+ bottom = (Int)p->start;
+ top = (Int)( p->start + p->height - 1 );
+ }
+
+ if ( Insert_Y_Turn( RAS_VARS bottom ) ||
+ Insert_Y_Turn( RAS_VARS top + 1 ) )
+ return FAILURE;
+
+ p = p->link;
+ n--;
+ }
+ }
+ else
+ ras.fProfile = NULL;
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Split_Conic */
+ /* */
+ /* <Description> */
+ /* Subdivides one conic Bezier into two joint sub-arcs in the Bezier */
+ /* stack. */
+ /* */
+ /* <Input> */
+ /* None (subdivided Bezier is taken from the top of the stack). */
+ /* */
+ /* <Note> */
+ /* This routine is the `beef' of this component. It is _the_ inner */
+ /* loop that should be optimized to hell to get the best performance. */
+ /* */
+ static void
+ Split_Conic( TPoint* base )
+ {
+ Long a, b;
+
+
+ base[4].x = base[2].x;
+ b = base[1].x;
+ a = base[3].x = ( base[2].x + b ) / 2;
+ b = base[1].x = ( base[0].x + b ) / 2;
+ base[2].x = ( a + b ) / 2;
+
+ base[4].y = base[2].y;
+ b = base[1].y;
+ a = base[3].y = ( base[2].y + b ) / 2;
+ b = base[1].y = ( base[0].y + b ) / 2;
+ base[2].y = ( a + b ) / 2;
+
+ /* hand optimized. gcc doesn't seem to be too good at common */
+ /* expression substitution and instruction scheduling ;-) */
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Split_Cubic */
+ /* */
+ /* <Description> */
+ /* Subdivides a third-order Bezier arc into two joint sub-arcs in the */
+ /* Bezier stack. */
+ /* */
+ /* <Note> */
+ /* This routine is the `beef' of the component. It is one of _the_ */
+ /* inner loops that should be optimized like hell to get the best */
+ /* performance. */
+ /* */
+ static void
+ Split_Cubic( TPoint* base )
+ {
+ Long a, b, c, d;
+
+
+ base[6].x = base[3].x;
+ c = base[1].x;
+ d = base[2].x;
+ base[1].x = a = ( base[0].x + c + 1 ) >> 1;
+ base[5].x = b = ( base[3].x + d + 1 ) >> 1;
+ c = ( c + d + 1 ) >> 1;
+ base[2].x = a = ( a + c + 1 ) >> 1;
+ base[4].x = b = ( b + c + 1 ) >> 1;
+ base[3].x = ( a + b + 1 ) >> 1;
+
+ base[6].y = base[3].y;
+ c = base[1].y;
+ d = base[2].y;
+ base[1].y = a = ( base[0].y + c + 1 ) >> 1;
+ base[5].y = b = ( base[3].y + d + 1 ) >> 1;
+ c = ( c + d + 1 ) >> 1;
+ base[2].y = a = ( a + c + 1 ) >> 1;
+ base[4].y = b = ( b + c + 1 ) >> 1;
+ base[3].y = ( a + b + 1 ) >> 1;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Line_Up */
+ /* */
+ /* <Description> */
+ /* Computes the x-coordinates of an ascending line segment and stores */
+ /* them in the render pool. */
+ /* */
+ /* <Input> */
+ /* x1 :: The x-coordinate of the segment's start point. */
+ /* */
+ /* y1 :: The y-coordinate of the segment's start point. */
+ /* */
+ /* x2 :: The x-coordinate of the segment's end point. */
+ /* */
+ /* y2 :: The y-coordinate of the segment's end point. */
+ /* */
+ /* miny :: A lower vertical clipping bound value. */
+ /* */
+ /* maxy :: An upper vertical clipping bound value. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow. */
+ /* */
+ static Bool
+ Line_Up( RAS_ARGS Long x1,
+ Long y1,
+ Long x2,
+ Long y2,
+ Long miny,
+ Long maxy )
+ {
+ Long Dx, Dy;
+ Int e1, e2, f1, f2, size; /* XXX: is `Short' sufficient? */
+ Long Ix, Rx, Ax;
+
+ PLong top;
+
+
+ Dx = x2 - x1;
+ Dy = y2 - y1;
+
+ if ( Dy <= 0 || y2 < miny || y1 > maxy )
+ return SUCCESS;
+
+ if ( y1 < miny )
+ {
+ /* Take care: miny-y1 can be a very large value; we use */
+ /* a slow MulDiv function to avoid clipping bugs */
+ x1 += SMulDiv( Dx, miny - y1, Dy );
+ e1 = (Int)TRUNC( miny );
+ f1 = 0;
+ }
+ else
+ {
+ e1 = (Int)TRUNC( y1 );
+ f1 = (Int)FRAC( y1 );
+ }
+
+ if ( y2 > maxy )
+ {
+ /* x2 += FMulDiv( Dx, maxy - y2, Dy ); UNNECESSARY */
+ e2 = (Int)TRUNC( maxy );
+ f2 = 0;
+ }
+ else
+ {
+ e2 = (Int)TRUNC( y2 );
+ f2 = (Int)FRAC( y2 );
+ }
+
+ if ( f1 > 0 )
+ {
+ if ( e1 == e2 )
+ return SUCCESS;
+ else
+ {
+ x1 += FMulDiv( Dx, ras.precision - f1, Dy );
+ e1 += 1;
+ }
+ }
+ else
+ if ( ras.joint )
+ {
+ ras.top--;
+ ras.joint = FALSE;
+ }
+
+ ras.joint = (char)( f2 == 0 );
+
+ if ( ras.fresh )
+ {
+ ras.cProfile->start = e1;
+ ras.fresh = FALSE;
+ }
+
+ size = e2 - e1 + 1;
+ if ( ras.top + size >= ras.maxBuff )
+ {
+ ras.error = Raster_Err_Overflow;
+ return FAILURE;
+ }
+
+ if ( Dx > 0 )
+ {
+ Ix = ( ras.precision * Dx ) / Dy;
+ Rx = ( ras.precision * Dx ) % Dy;
+ Dx = 1;
+ }
+ else
+ {
+ Ix = -( ( ras.precision * -Dx ) / Dy );
+ Rx = ( ras.precision * -Dx ) % Dy;
+ Dx = -1;
+ }
+
+ Ax = -Dy;
+ top = ras.top;
+
+ while ( size > 0 )
+ {
+ *top++ = x1;
+
+ x1 += Ix;
+ Ax += Rx;
+ if ( Ax >= 0 )
+ {
+ Ax -= Dy;
+ x1 += Dx;
+ }
+ size--;
+ }
+
+ ras.top = top;
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Line_Down */
+ /* */
+ /* <Description> */
+ /* Computes the x-coordinates of an descending line segment and */
+ /* stores them in the render pool. */
+ /* */
+ /* <Input> */
+ /* x1 :: The x-coordinate of the segment's start point. */
+ /* */
+ /* y1 :: The y-coordinate of the segment's start point. */
+ /* */
+ /* x2 :: The x-coordinate of the segment's end point. */
+ /* */
+ /* y2 :: The y-coordinate of the segment's end point. */
+ /* */
+ /* miny :: A lower vertical clipping bound value. */
+ /* */
+ /* maxy :: An upper vertical clipping bound value. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow. */
+ /* */
+ static Bool
+ Line_Down( RAS_ARGS Long x1,
+ Long y1,
+ Long x2,
+ Long y2,
+ Long miny,
+ Long maxy )
+ {
+ Bool result, fresh;
+
+
+ fresh = ras.fresh;
+
+ result = Line_Up( RAS_VARS x1, -y1, x2, -y2, -maxy, -miny );
+
+ if ( fresh && !ras.fresh )
+ ras.cProfile->start = -ras.cProfile->start;
+
+ return result;
+ }
+
+
+ /* A function type describing the functions used to split Bezier arcs */
+ typedef void (*TSplitter)( TPoint* base );
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Bezier_Up */
+ /* */
+ /* <Description> */
+ /* Computes the x-coordinates of an ascending Bezier arc and stores */
+ /* them in the render pool. */
+ /* */
+ /* <Input> */
+ /* degree :: The degree of the Bezier arc (either 2 or 3). */
+ /* */
+ /* splitter :: The function to split Bezier arcs. */
+ /* */
+ /* miny :: A lower vertical clipping bound value. */
+ /* */
+ /* maxy :: An upper vertical clipping bound value. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow. */
+ /* */
+ static Bool
+ Bezier_Up( RAS_ARGS Int degree,
+ TSplitter splitter,
+ Long miny,
+ Long maxy )
+ {
+ Long y1, y2, e, e2, e0;
+ Short f1;
+
+ TPoint* arc;
+ TPoint* start_arc;
+
+ PLong top;
+
+
+ arc = ras.arc;
+ y1 = arc[degree].y;
+ y2 = arc[0].y;
+ top = ras.top;
+
+ if ( y2 < miny || y1 > maxy )
+ goto Fin;
+
+ e2 = FLOOR( y2 );
+
+ if ( e2 > maxy )
+ e2 = maxy;
+
+ e0 = miny;
+
+ if ( y1 < miny )
+ e = miny;
+ else
+ {
+ e = CEILING( y1 );
+ f1 = (Short)( FRAC( y1 ) );
+ e0 = e;
+
+ if ( f1 == 0 )
+ {
+ if ( ras.joint )
+ {
+ top--;
+ ras.joint = FALSE;
+ }
+
+ *top++ = arc[degree].x;
+
+ e += ras.precision;
+ }
+ }
+
+ if ( ras.fresh )
+ {
+ ras.cProfile->start = TRUNC( e0 );
+ ras.fresh = FALSE;
+ }
+
+ if ( e2 < e )
+ goto Fin;
+
+ if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.maxBuff )
+ {
+ ras.top = top;
+ ras.error = Raster_Err_Overflow;
+ return FAILURE;
+ }
+
+ start_arc = arc;
+
+ while ( arc >= start_arc && e <= e2 )
+ {
+ ras.joint = FALSE;
+
+ y2 = arc[0].y;
+
+ if ( y2 > e )
+ {
+ y1 = arc[degree].y;
+ if ( y2 - y1 >= ras.precision_step )
+ {
+ splitter( arc );
+ arc += degree;
+ }
+ else
+ {
+ *top++ = arc[degree].x + FMulDiv( arc[0].x-arc[degree].x,
+ e - y1, y2 - y1 );
+ arc -= degree;
+ e += ras.precision;
+ }
+ }
+ else
+ {
+ if ( y2 == e )
+ {
+ ras.joint = TRUE;
+ *top++ = arc[0].x;
+
+ e += ras.precision;
+ }
+ arc -= degree;
+ }
+ }
+
+ Fin:
+ ras.top = top;
+ ras.arc -= degree;
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Bezier_Down */
+ /* */
+ /* <Description> */
+ /* Computes the x-coordinates of an descending Bezier arc and stores */
+ /* them in the render pool. */
+ /* */
+ /* <Input> */
+ /* degree :: The degree of the Bezier arc (either 2 or 3). */
+ /* */
+ /* splitter :: The function to split Bezier arcs. */
+ /* */
+ /* miny :: A lower vertical clipping bound value. */
+ /* */
+ /* maxy :: An upper vertical clipping bound value. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow. */
+ /* */
+ static Bool
+ Bezier_Down( RAS_ARGS Int degree,
+ TSplitter splitter,
+ Long miny,
+ Long maxy )
+ {
+ TPoint* arc = ras.arc;
+ Bool result, fresh;
+
+
+ arc[0].y = -arc[0].y;
+ arc[1].y = -arc[1].y;
+ arc[2].y = -arc[2].y;
+ if ( degree > 2 )
+ arc[3].y = -arc[3].y;
+
+ fresh = ras.fresh;
+
+ result = Bezier_Up( RAS_VARS degree, splitter, -maxy, -miny );
+
+ if ( fresh && !ras.fresh )
+ ras.cProfile->start = -ras.cProfile->start;
+
+ arc[0].y = -arc[0].y;
+ return result;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Line_To */
+ /* */
+ /* <Description> */
+ /* Injects a new line segment and adjusts Profiles list. */
+ /* */
+ /* <Input> */
+ /* x :: The x-coordinate of the segment's end point (its start point */
+ /* is stored in `lastX'). */
+ /* */
+ /* y :: The y-coordinate of the segment's end point (its start point */
+ /* is stored in `lastY'). */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow or incorrect */
+ /* profile. */
+ /* */
+ static Bool
+ Line_To( RAS_ARGS Long x,
+ Long y )
+ {
+ /* First, detect a change of direction */
+
+ switch ( ras.state )
+ {
+ case Unknown_State:
+ if ( y > ras.lastY )
+ {
+ if ( New_Profile( RAS_VARS Ascending_State ) )
+ return FAILURE;
+ }
+ else
+ {
+ if ( y < ras.lastY )
+ if ( New_Profile( RAS_VARS Descending_State ) )
+ return FAILURE;
+ }
+ break;
+
+ case Ascending_State:
+ if ( y < ras.lastY )
+ {
+ if ( End_Profile( RAS_VAR ) ||
+ New_Profile( RAS_VARS Descending_State ) )
+ return FAILURE;
+ }
+ break;
+
+ case Descending_State:
+ if ( y > ras.lastY )
+ {
+ if ( End_Profile( RAS_VAR ) ||
+ New_Profile( RAS_VARS Ascending_State ) )
+ return FAILURE;
+ }
+ break;
+
+ default:
+ ;
+ }
+
+ /* Then compute the lines */
+
+ switch ( ras.state )
+ {
+ case Ascending_State:
+ if ( Line_Up( RAS_VARS ras.lastX, ras.lastY,
+ x, y, ras.minY, ras.maxY ) )
+ return FAILURE;
+ break;
+
+ case Descending_State:
+ if ( Line_Down( RAS_VARS ras.lastX, ras.lastY,
+ x, y, ras.minY, ras.maxY ) )
+ return FAILURE;
+ break;
+
+ default:
+ ;
+ }
+
+ ras.lastX = x;
+ ras.lastY = y;
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Conic_To */
+ /* */
+ /* <Description> */
+ /* Injects a new conic arc and adjusts the profile list. */
+ /* */
+ /* <Input> */
+ /* cx :: The x-coordinate of the arc's new control point. */
+ /* */
+ /* cy :: The y-coordinate of the arc's new control point. */
+ /* */
+ /* x :: The x-coordinate of the arc's end point (its start point is */
+ /* stored in `lastX'). */
+ /* */
+ /* y :: The y-coordinate of the arc's end point (its start point is */
+ /* stored in `lastY'). */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow or incorrect */
+ /* profile. */
+ /* */
+ static Bool
+ Conic_To( RAS_ARGS Long cx,
+ Long cy,
+ Long x,
+ Long y )
+ {
+ Long y1, y2, y3, x3, ymin, ymax;
+ TStates state_bez;
+
+
+ ras.arc = ras.arcs;
+ ras.arc[2].x = ras.lastX;
+ ras.arc[2].y = ras.lastY;
+ ras.arc[1].x = cx; ras.arc[1].y = cy;
+ ras.arc[0].x = x; ras.arc[0].y = y;
+
+ do
+ {
+ y1 = ras.arc[2].y;
+ y2 = ras.arc[1].y;
+ y3 = ras.arc[0].y;
+ x3 = ras.arc[0].x;
+
+ /* first, categorize the Bezier arc */
+
+ if ( y1 <= y3 )
+ {
+ ymin = y1;
+ ymax = y3;
+ }
+ else
+ {
+ ymin = y3;
+ ymax = y1;
+ }
+
+ if ( y2 < ymin || y2 > ymax )
+ {
+ /* this arc has no given direction, split it! */
+ Split_Conic( ras.arc );
+ ras.arc += 2;
+ }
+ else if ( y1 == y3 )
+ {
+ /* this arc is flat, ignore it and pop it from the Bezier stack */
+ ras.arc -= 2;
+ }
+ else
+ {
+ /* the arc is y-monotonous, either ascending or descending */
+ /* detect a change of direction */
+ state_bez = y1 < y3 ? Ascending_State : Descending_State;
+ if ( ras.state != state_bez )
+ {
+ /* finalize current profile if any */
+ if ( ras.state != Unknown_State &&
+ End_Profile( RAS_VAR ) )
+ goto Fail;
+
+ /* create a new profile */
+ if ( New_Profile( RAS_VARS state_bez ) )
+ goto Fail;
+ }
+
+ /* now call the appropriate routine */
+ if ( state_bez == Ascending_State )
+ {
+ if ( Bezier_Up( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
+ goto Fail;
+ }
+ else
+ if ( Bezier_Down( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) )
+ goto Fail;
+ }
+
+ } while ( ras.arc >= ras.arcs );
+
+ ras.lastX = x3;
+ ras.lastY = y3;
+
+ return SUCCESS;
+
+ Fail:
+ return FAILURE;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Cubic_To */
+ /* */
+ /* <Description> */
+ /* Injects a new cubic arc and adjusts the profile list. */
+ /* */
+ /* <Input> */
+ /* cx1 :: The x-coordinate of the arc's first new control point. */
+ /* */
+ /* cy1 :: The y-coordinate of the arc's first new control point. */
+ /* */
+ /* cx2 :: The x-coordinate of the arc's second new control point. */
+ /* */
+ /* cy2 :: The y-coordinate of the arc's second new control point. */
+ /* */
+ /* x :: The x-coordinate of the arc's end point (its start point is */
+ /* stored in `lastX'). */
+ /* */
+ /* y :: The y-coordinate of the arc's end point (its start point is */
+ /* stored in `lastY'). */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on render pool overflow or incorrect */
+ /* profile. */
+ /* */
+ static Bool
+ Cubic_To( RAS_ARGS Long cx1,
+ Long cy1,
+ Long cx2,
+ Long cy2,
+ Long x,
+ Long y )
+ {
+ Long y1, y2, y3, y4, x4, ymin1, ymax1, ymin2, ymax2;
+ TStates state_bez;
+
+
+ ras.arc = ras.arcs;
+ ras.arc[3].x = ras.lastX;
+ ras.arc[3].y = ras.lastY;
+ ras.arc[2].x = cx1; ras.arc[2].y = cy1;
+ ras.arc[1].x = cx2; ras.arc[1].y = cy2;
+ ras.arc[0].x = x; ras.arc[0].y = y;
+
+ do
+ {
+ y1 = ras.arc[3].y;
+ y2 = ras.arc[2].y;
+ y3 = ras.arc[1].y;
+ y4 = ras.arc[0].y;
+ x4 = ras.arc[0].x;
+
+ /* first, categorize the Bezier arc */
+
+ if ( y1 <= y4 )
+ {
+ ymin1 = y1;
+ ymax1 = y4;
+ }
+ else
+ {
+ ymin1 = y4;
+ ymax1 = y1;
+ }
+
+ if ( y2 <= y3 )
+ {
+ ymin2 = y2;
+ ymax2 = y3;
+ }
+ else
+ {
+ ymin2 = y3;
+ ymax2 = y2;
+ }
+
+ if ( ymin2 < ymin1 || ymax2 > ymax1 )
+ {
+ /* this arc has no given direction, split it! */
+ Split_Cubic( ras.arc );
+ ras.arc += 3;
+ }
+ else if ( y1 == y4 )
+ {
+ /* this arc is flat, ignore it and pop it from the Bezier stack */
+ ras.arc -= 3;
+ }
+ else
+ {
+ state_bez = ( y1 <= y4 ) ? Ascending_State : Descending_State;
+
+ /* detect a change of direction */
+ if ( ras.state != state_bez )
+ {
+ if ( ras.state != Unknown_State &&
+ End_Profile( RAS_VAR ) )
+ goto Fail;
+
+ if ( New_Profile( RAS_VARS state_bez ) )
+ goto Fail;
+ }
+
+ /* compute intersections */
+ if ( state_bez == Ascending_State )
+ {
+ if ( Bezier_Up( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
+ goto Fail;
+ }
+ else
+ if ( Bezier_Down( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) )
+ goto Fail;
+ }
+
+ } while ( ras.arc >= ras.arcs );
+
+ ras.lastX = x4;
+ ras.lastY = y4;
+
+ return SUCCESS;
+
+ Fail:
+ return FAILURE;
+ }
+
+
+#undef SWAP_
+#define SWAP_( x, y ) do \
+ { \
+ Long swap = x; \
+ \
+ \
+ x = y; \
+ y = swap; \
+ } while ( 0 )
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Decompose_Curve */
+ /* */
+ /* <Description> */
+ /* Scans the outline arrays in order to emit individual segments and */
+ /* Beziers by calling Line_To() and Bezier_To(). It handles all */
+ /* weird cases, like when the first point is off the curve, or when */
+ /* there are simply no `on' points in the contour! */
+ /* */
+ /* <Input> */
+ /* first :: The index of the first point in the contour. */
+ /* */
+ /* last :: The index of the last point in the contour. */
+ /* */
+ /* flipped :: If set, flip the direction of the curve. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE on error. */
+ /* */
+ static Bool
+ Decompose_Curve( RAS_ARGS UShort first,
+ UShort last,
+ int flipped )
+ {
+ FT_Vector v_last;
+ FT_Vector v_control;
+ FT_Vector v_start;
+
+ FT_Vector* points;
+ FT_Vector* point;
+ FT_Vector* limit;
+ char* tags;
+
+ unsigned tag; /* current point's state */
+
+
+ points = ras.outline.points;
+ limit = points + last;
+
+ v_start.x = SCALED( points[first].x );
+ v_start.y = SCALED( points[first].y );
+ v_last.x = SCALED( points[last].x );
+ v_last.y = SCALED( points[last].y );
+
+ if ( flipped )
+ {
+ SWAP_( v_start.x, v_start.y );
+ SWAP_( v_last.x, v_last.y );
+ }
+
+ v_control = v_start;
+
+ point = points + first;
+ tags = ras.outline.tags + first;
+ tag = FT_CURVE_TAG( tags[0] );
+
+ /* A contour cannot start with a cubic control point! */
+ if ( tag == FT_CURVE_TAG_CUBIC )
+ goto Invalid_Outline;
+
+ /* check first point to determine origin */
+ if ( tag == FT_CURVE_TAG_CONIC )
+ {
+ /* first point is conic control. Yes, this happens. */
+ if ( FT_CURVE_TAG( ras.outline.tags[last] ) == FT_CURVE_TAG_ON )
+ {
+ /* start at last point if it is on the curve */
+ v_start = v_last;
+ limit--;
+ }
+ else
+ {
+ /* if both first and last points are conic, */
+ /* start at their middle and record its position */
+ /* for closure */
+ v_start.x = ( v_start.x + v_last.x ) / 2;
+ v_start.y = ( v_start.y + v_last.y ) / 2;
+
+ v_last = v_start;
+ }
+ point--;
+ tags--;
+ }
+
+ ras.lastX = v_start.x;
+ ras.lastY = v_start.y;
+
+ while ( point < limit )
+ {
+ point++;
+ tags++;
+
+ tag = FT_CURVE_TAG( tags[0] );
+
+ switch ( tag )
+ {
+ case FT_CURVE_TAG_ON: /* emit a single line_to */
+ {
+ Long x, y;
+
+
+ x = SCALED( point->x );
+ y = SCALED( point->y );
+ if ( flipped )
+ SWAP_( x, y );
+
+ if ( Line_To( RAS_VARS x, y ) )
+ goto Fail;
+ continue;
+ }
+
+ case FT_CURVE_TAG_CONIC: /* consume conic arcs */
+ v_control.x = SCALED( point[0].x );
+ v_control.y = SCALED( point[0].y );
+
+ if ( flipped )
+ SWAP_( v_control.x, v_control.y );
+
+ Do_Conic:
+ if ( point < limit )
+ {
+ FT_Vector v_middle;
+ Long x, y;
+
+
+ point++;
+ tags++;
+ tag = FT_CURVE_TAG( tags[0] );
+
+ x = SCALED( point[0].x );
+ y = SCALED( point[0].y );
+
+ if ( flipped )
+ SWAP_( x, y );
+
+ if ( tag == FT_CURVE_TAG_ON )
+ {
+ if ( Conic_To( RAS_VARS v_control.x, v_control.y, x, y ) )
+ goto Fail;
+ continue;
+ }
+
+ if ( tag != FT_CURVE_TAG_CONIC )
+ goto Invalid_Outline;
+
+ v_middle.x = ( v_control.x + x ) / 2;
+ v_middle.y = ( v_control.y + y ) / 2;
+
+ if ( Conic_To( RAS_VARS v_control.x, v_control.y,
+ v_middle.x, v_middle.y ) )
+ goto Fail;
+
+ v_control.x = x;
+ v_control.y = y;
+
+ goto Do_Conic;
+ }
+
+ if ( Conic_To( RAS_VARS v_control.x, v_control.y,
+ v_start.x, v_start.y ) )
+ goto Fail;
+
+ goto Close;
+
+ default: /* FT_CURVE_TAG_CUBIC */
+ {
+ Long x1, y1, x2, y2, x3, y3;
+
+
+ if ( point + 1 > limit ||
+ FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
+ goto Invalid_Outline;
+
+ point += 2;
+ tags += 2;
+
+ x1 = SCALED( point[-2].x );
+ y1 = SCALED( point[-2].y );
+ x2 = SCALED( point[-1].x );
+ y2 = SCALED( point[-1].y );
+ x3 = SCALED( point[ 0].x );
+ y3 = SCALED( point[ 0].y );
+
+ if ( flipped )
+ {
+ SWAP_( x1, y1 );
+ SWAP_( x2, y2 );
+ SWAP_( x3, y3 );
+ }
+
+ if ( point <= limit )
+ {
+ if ( Cubic_To( RAS_VARS x1, y1, x2, y2, x3, y3 ) )
+ goto Fail;
+ continue;
+ }
+
+ if ( Cubic_To( RAS_VARS x1, y1, x2, y2, v_start.x, v_start.y ) )
+ goto Fail;
+ goto Close;
+ }
+ }
+ }
+
+ /* close the contour with a line segment */
+ if ( Line_To( RAS_VARS v_start.x, v_start.y ) )
+ goto Fail;
+
+ Close:
+ return SUCCESS;
+
+ Invalid_Outline:
+ ras.error = Raster_Err_Invalid;
+
+ Fail:
+ return FAILURE;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Convert_Glyph */
+ /* */
+ /* <Description> */
+ /* Converts a glyph into a series of segments and arcs and makes a */
+ /* profiles list with them. */
+ /* */
+ /* <Input> */
+ /* flipped :: If set, flip the direction of curve. */
+ /* */
+ /* <Return> */
+ /* SUCCESS on success, FAILURE if any error was encountered during */
+ /* rendering. */
+ /* */
+ static Bool
+ Convert_Glyph( RAS_ARGS int flipped )
+ {
+ int i;
+ unsigned start;
+
+ PProfile lastProfile;
+
+
+ ras.fProfile = NULL;
+ ras.joint = FALSE;
+ ras.fresh = FALSE;
+
+ ras.maxBuff = ras.sizeBuff - AlignProfileSize;
+
+ ras.numTurns = 0;
+
+ ras.cProfile = (PProfile)ras.top;
+ ras.cProfile->offset = ras.top;
+ ras.num_Profs = 0;
+
+ start = 0;
+
+ for ( i = 0; i < ras.outline.n_contours; i++ )
+ {
+ ras.state = Unknown_State;
+ ras.gProfile = NULL;
+
+ if ( Decompose_Curve( RAS_VARS (unsigned short)start,
+ ras.outline.contours[i],
+ flipped ) )
+ return FAILURE;
+
+ start = ras.outline.contours[i] + 1;
+
+ /* We must now see whether the extreme arcs join or not */
+ if ( FRAC( ras.lastY ) == 0 &&
+ ras.lastY >= ras.minY &&
+ ras.lastY <= ras.maxY )
+ if ( ras.gProfile && ras.gProfile->flow == ras.cProfile->flow )
+ ras.top--;
+ /* Note that ras.gProfile can be nil if the contour was too small */
+ /* to be drawn. */
+
+ lastProfile = ras.cProfile;
+ if ( End_Profile( RAS_VAR ) )
+ return FAILURE;
+
+ /* close the `next profile in contour' linked list */
+ if ( ras.gProfile )
+ lastProfile->next = ras.gProfile;
+ }
+
+ if ( Finalize_Profile_Table( RAS_VAR ) )
+ return FAILURE;
+
+ return (Bool)( ras.top < ras.maxBuff ? SUCCESS : FAILURE );
+ }
+
+
+ /*************************************************************************/
+ /*************************************************************************/
+ /** **/
+ /** SCAN-LINE SWEEPS AND DRAWING **/
+ /** **/
+ /*************************************************************************/
+ /*************************************************************************/
+
+
+ /*************************************************************************/
+ /* */
+ /* Init_Linked */
+ /* */
+ /* Initializes an empty linked list. */
+ /* */
+ static void
+ Init_Linked( TProfileList* l )
+ {
+ *l = NULL;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* InsNew */
+ /* */
+ /* Inserts a new profile in a linked list. */
+ /* */
+ static void
+ InsNew( PProfileList list,
+ PProfile profile )
+ {
+ PProfile *old, current;
+ Long x;
+
+
+ old = list;
+ current = *old;
+ x = profile->X;
+
+ while ( current )
+ {
+ if ( x < current->X )
+ break;
+ old = &current->link;
+ current = *old;
+ }
+
+ profile->link = current;
+ *old = profile;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* DelOld */
+ /* */
+ /* Removes an old profile from a linked list. */
+ /* */
+ static void
+ DelOld( PProfileList list,
+ PProfile profile )
+ {
+ PProfile *old, current;
+
+
+ old = list;
+ current = *old;
+
+ while ( current )
+ {
+ if ( current == profile )
+ {
+ *old = current->link;
+ return;
+ }
+
+ old = &current->link;
+ current = *old;
+ }
+
+ /* we should never get there, unless the profile was not part of */
+ /* the list. */
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Sort */
+ /* */
+ /* Sorts a trace list. In 95%, the list is already sorted. We need */
+ /* an algorithm which is fast in this case. Bubble sort is enough */
+ /* and simple. */
+ /* */
+ static void
+ Sort( PProfileList list )
+ {
+ PProfile *old, current, next;
+
+
+ /* First, set the new X coordinate of each profile */
+ current = *list;
+ while ( current )
+ {
+ current->X = *current->offset;
+ current->offset += current->flow;
+ current->height--;
+ current = current->link;
+ }
+
+ /* Then sort them */
+ old = list;
+ current = *old;
+
+ if ( !current )
+ return;
+
+ next = current->link;
+
+ while ( next )
+ {
+ if ( current->X <= next->X )
+ {
+ old = &current->link;
+ current = *old;
+
+ if ( !current )
+ return;
+ }
+ else
+ {
+ *old = next;
+ current->link = next->link;
+ next->link = current;
+
+ old = list;
+ current = *old;
+ }
+
+ next = current->link;
+ }
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* Vertical Sweep Procedure Set */
+ /* */
+ /* These four routines are used during the vertical black/white sweep */
+ /* phase by the generic Draw_Sweep() function. */
+ /* */
+ /*************************************************************************/
+
+ static void
+ Vertical_Sweep_Init( RAS_ARGS Short* min,
+ Short* max )
+ {
+ Long pitch = ras.target.pitch;
+
+ FT_UNUSED( max );
+
+
+ ras.traceIncr = (Short)-pitch;
+ ras.traceOfs = -*min * pitch;
+ if ( pitch > 0 )
+ ras.traceOfs += ( ras.target.rows - 1 ) * pitch;
+
+ ras.gray_min_x = 0;
+ ras.gray_max_x = 0;
+ }
+
+
+ static void
+ Vertical_Sweep_Span( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ Long e1, e2;
+ int c1, c2;
+ Byte f1, f2;
+ Byte* target;
+
+ FT_UNUSED( y );
+ FT_UNUSED( left );
+ FT_UNUSED( right );
+
+
+ /* Drop-out control */
+
+ e1 = TRUNC( CEILING( x1 ) );
+
+ if ( x2 - x1 - ras.precision <= ras.precision_jitter )
+ e2 = e1;
+ else
+ e2 = TRUNC( FLOOR( x2 ) );
+
+ if ( e2 >= 0 && e1 < ras.bWidth )
+ {
+ if ( e1 < 0 )
+ e1 = 0;
+ if ( e2 >= ras.bWidth )
+ e2 = ras.bWidth - 1;
+
+ c1 = (Short)( e1 >> 3 );
+ c2 = (Short)( e2 >> 3 );
+
+ f1 = (Byte) ( 0xFF >> ( e1 & 7 ) );
+ f2 = (Byte) ~( 0x7F >> ( e2 & 7 ) );
+
+ if ( ras.gray_min_x > c1 ) ras.gray_min_x = (short)c1;
+ if ( ras.gray_max_x < c2 ) ras.gray_max_x = (short)c2;
+
+ target = ras.bTarget + ras.traceOfs + c1;
+ c2 -= c1;
+
+ if ( c2 > 0 )
+ {
+ target[0] |= f1;
+
+ /* memset() is slower than the following code on many platforms. */
+ /* This is due to the fact that, in the vast majority of cases, */
+ /* the span length in bytes is relatively small. */
+ c2--;
+ while ( c2 > 0 )
+ {
+ *(++target) = 0xFF;
+ c2--;
+ }
+ target[1] |= f2;
+ }
+ else
+ *target |= ( f1 & f2 );
+ }
+ }
+
+
+ static void
+ Vertical_Sweep_Drop( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ Long e1, e2;
+ Short c1, f1;
+
+
+ /* Drop-out control */
+
+ e1 = CEILING( x1 );
+ e2 = FLOOR ( x2 );
+
+ if ( e1 > e2 )
+ {
+ if ( e1 == e2 + ras.precision )
+ {
+ switch ( ras.dropOutControl )
+ {
+ case 1:
+ e1 = e2;
+ break;
+
+ case 4:
+ e1 = CEILING( (x1 + x2 + 1) / 2 );
+ break;
+
+ case 2:
+ case 5:
+ /* Drop-out Control Rule #4 */
+
+ /* The spec is not very clear regarding rule #4. It */
+ /* presents a method that is way too costly to implement */
+ /* while the general idea seems to get rid of `stubs'. */
+ /* */
+ /* Here, we only get rid of stubs recognized if: */
+ /* */
+ /* upper stub: */
+ /* */
+ /* - P_Left and P_Right are in the same contour */
+ /* - P_Right is the successor of P_Left in that contour */
+ /* - y is the top of P_Left and P_Right */
+ /* */
+ /* lower stub: */
+ /* */
+ /* - P_Left and P_Right are in the same contour */
+ /* - P_Left is the successor of P_Right in that contour */
+ /* - y is the bottom of P_Left */
+ /* */
+
+ /* FIXXXME: uncommenting this line solves the disappearing */
+ /* bit problem in the `7' of verdana 10pts, but */
+ /* makes a new one in the `C' of arial 14pts */
+
+#if 0
+ if ( x2 - x1 < ras.precision_half )
+#endif
+ {
+ /* upper stub test */
+ if ( left->next == right && left->height <= 0 )
+ return;
+
+ /* lower stub test */
+ if ( right->next == left && left->start == y )
+ return;
+ }
+
+ /* check that the rightmost pixel isn't set */
+
+ e1 = TRUNC( e1 );
+
+ c1 = (Short)( e1 >> 3 );
+ f1 = (Short)( e1 & 7 );
+
+ if ( e1 >= 0 && e1 < ras.bWidth &&
+ ras.bTarget[ras.traceOfs + c1] & ( 0x80 >> f1 ) )
+ return;
+
+ if ( ras.dropOutControl == 2 )
+ e1 = e2;
+ else
+ e1 = CEILING( ( x1 + x2 + 1 ) / 2 );
+
+ break;
+
+ default:
+ return; /* unsupported mode */
+ }
+ }
+ else
+ return;
+ }
+
+ e1 = TRUNC( e1 );
+
+ if ( e1 >= 0 && e1 < ras.bWidth )
+ {
+ c1 = (Short)( e1 >> 3 );
+ f1 = (Short)( e1 & 7 );
+
+ if ( ras.gray_min_x > c1 ) ras.gray_min_x = c1;
+ if ( ras.gray_max_x < c1 ) ras.gray_max_x = c1;
+
+ ras.bTarget[ras.traceOfs + c1] |= (char)( 0x80 >> f1 );
+ }
+ }
+
+
+ static void
+ Vertical_Sweep_Step( RAS_ARG )
+ {
+ ras.traceOfs += ras.traceIncr;
+ }
+
+
+ /***********************************************************************/
+ /* */
+ /* Horizontal Sweep Procedure Set */
+ /* */
+ /* These four routines are used during the horizontal black/white */
+ /* sweep phase by the generic Draw_Sweep() function. */
+ /* */
+ /***********************************************************************/
+
+ static void
+ Horizontal_Sweep_Init( RAS_ARGS Short* min,
+ Short* max )
+ {
+ /* nothing, really */
+ FT_UNUSED_RASTER;
+ FT_UNUSED( min );
+ FT_UNUSED( max );
+ }
+
+
+ static void
+ Horizontal_Sweep_Span( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ Long e1, e2;
+ PByte bits;
+ Byte f1;
+
+ FT_UNUSED( left );
+ FT_UNUSED( right );
+
+
+ if ( x2 - x1 < ras.precision )
+ {
+ e1 = CEILING( x1 );
+ e2 = FLOOR ( x2 );
+
+ if ( e1 == e2 )
+ {
+ bits = ras.bTarget + ( y >> 3 );
+ f1 = (Byte)( 0x80 >> ( y & 7 ) );
+
+ e1 = TRUNC( e1 );
+
+ if ( e1 >= 0 && e1 < ras.target.rows )
+ {
+ PByte p;
+
+
+ p = bits - e1*ras.target.pitch;
+ if ( ras.target.pitch > 0 )
+ p += ( ras.target.rows - 1 ) * ras.target.pitch;
+
+ p[0] |= f1;
+ }
+ }
+ }
+ }
+
+
+ static void
+ Horizontal_Sweep_Drop( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ Long e1, e2;
+ PByte bits;
+ Byte f1;
+
+
+ /* During the horizontal sweep, we only take care of drop-outs */
+
+ e1 = CEILING( x1 );
+ e2 = FLOOR ( x2 );
+
+ if ( e1 > e2 )
+ {
+ if ( e1 == e2 + ras.precision )
+ {
+ switch ( ras.dropOutControl )
+ {
+ case 1:
+ e1 = e2;
+ break;
+
+ case 4:
+ e1 = CEILING( ( x1 + x2 + 1 ) / 2 );
+ break;
+
+ case 2:
+ case 5:
+
+ /* Drop-out Control Rule #4 */
+
+ /* The spec is not very clear regarding rule #4. It */
+ /* presents a method that is way too costly to implement */
+ /* while the general idea seems to get rid of `stubs'. */
+ /* */
+
+ /* rightmost stub test */
+ if ( left->next == right && left->height <= 0 )
+ return;
+
+ /* leftmost stub test */
+ if ( right->next == left && left->start == y )
+ return;
+
+ /* check that the rightmost pixel isn't set */
+
+ e1 = TRUNC( e1 );
+
+ bits = ras.bTarget + ( y >> 3 );
+ f1 = (Byte)( 0x80 >> ( y & 7 ) );
+
+ bits -= e1 * ras.target.pitch;
+ if ( ras.target.pitch > 0 )
+ bits += ( ras.target.rows - 1 ) * ras.target.pitch;
+
+ if ( e1 >= 0 &&
+ e1 < ras.target.rows &&
+ *bits & f1 )
+ return;
+
+ if ( ras.dropOutControl == 2 )
+ e1 = e2;
+ else
+ e1 = CEILING( ( x1 + x2 + 1 ) / 2 );
+
+ break;
+
+ default:
+ return; /* unsupported mode */
+ }
+ }
+ else
+ return;
+ }
+
+ bits = ras.bTarget + ( y >> 3 );
+ f1 = (Byte)( 0x80 >> ( y & 7 ) );
+
+ e1 = TRUNC( e1 );
+
+ if ( e1 >= 0 && e1 < ras.target.rows )
+ {
+ bits -= e1 * ras.target.pitch;
+ if ( ras.target.pitch > 0 )
+ bits += ( ras.target.rows - 1 ) * ras.target.pitch;
+
+ bits[0] |= f1;
+ }
+ }
+
+
+ static void
+ Horizontal_Sweep_Step( RAS_ARG )
+ {
+ /* Nothing, really */
+ FT_UNUSED_RASTER;
+ }
+
+
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+
+
+ /*************************************************************************/
+ /* */
+ /* Vertical Gray Sweep Procedure Set */
+ /* */
+ /* These two routines are used during the vertical gray-levels sweep */
+ /* phase by the generic Draw_Sweep() function. */
+ /* */
+ /* NOTES */
+ /* */
+ /* - The target pixmap's width *must* be a multiple of 4. */
+ /* */
+ /* - You have to use the function Vertical_Sweep_Span() for the gray */
+ /* span call. */
+ /* */
+ /*************************************************************************/
+
+ static void
+ Vertical_Gray_Sweep_Init( RAS_ARGS Short* min,
+ Short* max )
+ {
+ Long pitch, byte_len;
+
+
+ *min = *min & -2;
+ *max = ( *max + 3 ) & -2;
+
+ ras.traceOfs = 0;
+ pitch = ras.target.pitch;
+ byte_len = -pitch;
+ ras.traceIncr = (Short)byte_len;
+ ras.traceG = ( *min / 2 ) * byte_len;
+
+ if ( pitch > 0 )
+ {
+ ras.traceG += ( ras.target.rows - 1 ) * pitch;
+ byte_len = -byte_len;
+ }
+
+ ras.gray_min_x = (Short)byte_len;
+ ras.gray_max_x = -(Short)byte_len;
+ }
+
+
+ static void
+ Vertical_Gray_Sweep_Step( RAS_ARG )
+ {
+ Int c1, c2;
+ PByte pix, bit, bit2;
+ char* count = (char*)count_table;
+ Byte* grays;
+
+
+ ras.traceOfs += ras.gray_width;
+
+ if ( ras.traceOfs > ras.gray_width )
+ {
+ pix = ras.gTarget + ras.traceG + ras.gray_min_x * 4;
+ grays = ras.grays;
+
+ if ( ras.gray_max_x >= 0 )
+ {
+ Long last_pixel = ras.target.width - 1;
+ Int last_cell = last_pixel >> 2;
+ Int last_bit = last_pixel & 3;
+ Bool over = 0;
+
+
+ if ( ras.gray_max_x >= last_cell && last_bit != 3 )
+ {
+ ras.gray_max_x = last_cell - 1;
+ over = 1;
+ }
+
+ if ( ras.gray_min_x < 0 )
+ ras.gray_min_x = 0;
+
+ bit = ras.bTarget + ras.gray_min_x;
+ bit2 = bit + ras.gray_width;
+
+ c1 = ras.gray_max_x - ras.gray_min_x;
+
+ while ( c1 >= 0 )
+ {
+ c2 = count[*bit] + count[*bit2];
+
+ if ( c2 )
+ {
+ pix[0] = grays[(c2 >> 12) & 0x000F];
+ pix[1] = grays[(c2 >> 8 ) & 0x000F];
+ pix[2] = grays[(c2 >> 4 ) & 0x000F];
+ pix[3] = grays[ c2 & 0x000F];
+
+ *bit = 0;
+ *bit2 = 0;
+ }
+
+ bit++;
+ bit2++;
+ pix += 4;
+ c1--;
+ }
+
+ if ( over )
+ {
+ c2 = count[*bit] + count[*bit2];
+ if ( c2 )
+ {
+ switch ( last_bit )
+ {
+ case 2:
+ pix[2] = grays[(c2 >> 4 ) & 0x000F];
+ case 1:
+ pix[1] = grays[(c2 >> 8 ) & 0x000F];
+ default:
+ pix[0] = grays[(c2 >> 12) & 0x000F];
+ }
+
+ *bit = 0;
+ *bit2 = 0;
+ }
+ }
+ }
+
+ ras.traceOfs = 0;
+ ras.traceG += ras.traceIncr;
+
+ ras.gray_min_x = 32000;
+ ras.gray_max_x = -32000;
+ }
+ }
+
+
+ static void
+ Horizontal_Gray_Sweep_Span( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ /* nothing, really */
+ FT_UNUSED_RASTER;
+ FT_UNUSED( y );
+ FT_UNUSED( x1 );
+ FT_UNUSED( x2 );
+ FT_UNUSED( left );
+ FT_UNUSED( right );
+ }
+
+
+ static void
+ Horizontal_Gray_Sweep_Drop( RAS_ARGS Short y,
+ FT_F26Dot6 x1,
+ FT_F26Dot6 x2,
+ PProfile left,
+ PProfile right )
+ {
+ Long e1, e2;
+ PByte pixel;
+ Byte color;
+
+
+ /* During the horizontal sweep, we only take care of drop-outs */
+ e1 = CEILING( x1 );
+ e2 = FLOOR ( x2 );
+
+ if ( e1 > e2 )
+ {
+ if ( e1 == e2 + ras.precision )
+ {
+ switch ( ras.dropOutControl )
+ {
+ case 1:
+ e1 = e2;
+ break;
+
+ case 4:
+ e1 = CEILING( ( x1 + x2 + 1 ) / 2 );
+ break;
+
+ case 2:
+ case 5:
+
+ /* Drop-out Control Rule #4 */
+
+ /* The spec is not very clear regarding rule #4. It */
+ /* presents a method that is way too costly to implement */
+ /* while the general idea seems to get rid of `stubs'. */
+ /* */
+
+ /* rightmost stub test */
+ if ( left->next == right && left->height <= 0 )
+ return;
+
+ /* leftmost stub test */
+ if ( right->next == left && left->start == y )
+ return;
+
+ if ( ras.dropOutControl == 2 )
+ e1 = e2;
+ else
+ e1 = CEILING( ( x1 + x2 + 1 ) / 2 );
+
+ break;
+
+ default:
+ return; /* unsupported mode */
+ }
+ }
+ else
+ return;
+ }
+
+ if ( e1 >= 0 )
+ {
+ if ( x2 - x1 >= ras.precision_half )
+ color = ras.grays[2];
+ else
+ color = ras.grays[1];
+
+ e1 = TRUNC( e1 ) / 2;
+ if ( e1 < ras.target.rows )
+ {
+ pixel = ras.gTarget - e1 * ras.target.pitch + y / 2;
+ if ( ras.target.pitch > 0 )
+ pixel += ( ras.target.rows - 1 ) * ras.target.pitch;
+
+ if ( pixel[0] == ras.grays[0] )
+ pixel[0] = color;
+ }
+ }
+ }
+
+
+#endif /* FT_RASTER_OPTION_ANTI_ALIASING */
+
+
+ /*************************************************************************/
+ /* */
+ /* Generic Sweep Drawing routine */
+ /* */
+ /*************************************************************************/
+
+ static Bool
+ Draw_Sweep( RAS_ARG )
+ {
+ Short y, y_change, y_height;
+
+ PProfile P, Q, P_Left, P_Right;
+
+ Short min_Y, max_Y, top, bottom, dropouts;
+
+ Long x1, x2, xs, e1, e2;
+
+ TProfileList waiting;
+ TProfileList draw_left, draw_right;
+
+
+ /* Init empty linked lists */
+
+ Init_Linked( &waiting );
+
+ Init_Linked( &draw_left );
+ Init_Linked( &draw_right );
+
+ /* first, compute min and max Y */
+
+ P = ras.fProfile;
+ max_Y = (Short)TRUNC( ras.minY );
+ min_Y = (Short)TRUNC( ras.maxY );
+
+ while ( P )
+ {
+ Q = P->link;
+
+ bottom = (Short)P->start;
+ top = (Short)( P->start + P->height - 1 );
+
+ if ( min_Y > bottom ) min_Y = bottom;
+ if ( max_Y < top ) max_Y = top;
+
+ P->X = 0;
+ InsNew( &waiting, P );
+
+ P = Q;
+ }
+
+ /* Check the Y-turns */
+ if ( ras.numTurns == 0 )
+ {
+ ras.error = Raster_Err_Invalid;
+ return FAILURE;
+ }
+
+ /* Now inits the sweep */
+
+ ras.Proc_Sweep_Init( RAS_VARS &min_Y, &max_Y );
+
+ /* Then compute the distance of each profile from min_Y */
+
+ P = waiting;
+
+ while ( P )
+ {
+ P->countL = (UShort)( P->start - min_Y );
+ P = P->link;
+ }
+
+ /* Let's go */
+
+ y = min_Y;
+ y_height = 0;
+
+ if ( ras.numTurns > 0 &&
+ ras.sizeBuff[-ras.numTurns] == min_Y )
+ ras.numTurns--;
+
+ while ( ras.numTurns > 0 )
+ {
+ /* look in the waiting list for new activations */
+
+ P = waiting;
+
+ while ( P )
+ {
+ Q = P->link;
+ P->countL -= y_height;
+ if ( P->countL == 0 )
+ {
+ DelOld( &waiting, P );
+
+ switch ( P->flow )
+ {
+ case Flow_Up:
+ InsNew( &draw_left, P );
+ break;
+
+ case Flow_Down:
+ InsNew( &draw_right, P );
+ break;
+ }
+ }
+
+ P = Q;
+ }
+
+ /* Sort the drawing lists */
+
+ Sort( &draw_left );
+ Sort( &draw_right );
+
+ y_change = (Short)ras.sizeBuff[-ras.numTurns--];
+ y_height = (Short)( y_change - y );
+
+ while ( y < y_change )
+ {
+ /* Let's trace */
+
+ dropouts = 0;
+
+ P_Left = draw_left;
+ P_Right = draw_right;
+
+ while ( P_Left )
+ {
+ x1 = P_Left ->X;
+ x2 = P_Right->X;
+
+ if ( x1 > x2 )
+ {
+ xs = x1;
+ x1 = x2;
+ x2 = xs;
+ }
+
+ if ( x2 - x1 <= ras.precision )
+ {
+ e1 = FLOOR( x1 );
+ e2 = CEILING( x2 );
+
+ if ( ras.dropOutControl != 0 &&
+ ( e1 > e2 || e2 == e1 + ras.precision ) )
+ {
+ /* a drop out was detected */
+
+ P_Left ->X = x1;
+ P_Right->X = x2;
+
+ /* mark profile for drop-out processing */
+ P_Left->countL = 1;
+ dropouts++;
+
+ goto Skip_To_Next;
+ }
+ }
+
+ ras.Proc_Sweep_Span( RAS_VARS y, x1, x2, P_Left, P_Right );
+
+ Skip_To_Next:
+
+ P_Left = P_Left->link;
+ P_Right = P_Right->link;
+ }
+
+ /* now perform the dropouts _after_ the span drawing -- */
+ /* drop-outs processing has been moved out of the loop */
+ /* for performance tuning */
+ if ( dropouts > 0 )
+ goto Scan_DropOuts;
+
+ Next_Line:
+
+ ras.Proc_Sweep_Step( RAS_VAR );
+
+ y++;
+
+ if ( y < y_change )
+ {
+ Sort( &draw_left );
+ Sort( &draw_right );
+ }
+ }
+
+ /* Now finalize the profiles that needs it */
+
+ P = draw_left;
+ while ( P )
+ {
+ Q = P->link;
+ if ( P->height == 0 )
+ DelOld( &draw_left, P );
+ P = Q;
+ }
+
+ P = draw_right;
+ while ( P )
+ {
+ Q = P->link;
+ if ( P->height == 0 )
+ DelOld( &draw_right, P );
+ P = Q;
+ }
+ }
+
+ /* for gray-scaling, flushes the bitmap scanline cache */
+ while ( y <= max_Y )
+ {
+ ras.Proc_Sweep_Step( RAS_VAR );
+ y++;
+ }
+
+ return SUCCESS;
+
+ Scan_DropOuts:
+
+ P_Left = draw_left;
+ P_Right = draw_right;
+
+ while ( P_Left )
+ {
+ if ( P_Left->countL )
+ {
+ P_Left->countL = 0;
+#if 0
+ dropouts--; /* -- this is useful when debugging only */
+#endif
+ ras.Proc_Sweep_Drop( RAS_VARS y,
+ P_Left->X,
+ P_Right->X,
+ P_Left,
+ P_Right );
+ }
+
+ P_Left = P_Left->link;
+ P_Right = P_Right->link;
+ }
+
+ goto Next_Line;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Render_Single_Pass */
+ /* */
+ /* <Description> */
+ /* Performs one sweep with sub-banding. */
+ /* */
+ /* <Input> */
+ /* flipped :: If set, flip the direction of the outline. */
+ /* */
+ /* <Return> */
+ /* Renderer error code. */
+ /* */
+ static int
+ Render_Single_Pass( RAS_ARGS Bool flipped )
+ {
+ Short i, j, k;
+
+
+ while ( ras.band_top >= 0 )
+ {
+ ras.maxY = (Long)ras.band_stack[ras.band_top].y_max * ras.precision;
+ ras.minY = (Long)ras.band_stack[ras.band_top].y_min * ras.precision;
+
+ ras.top = ras.buff;
+
+ ras.error = Raster_Err_None;
+
+ if ( Convert_Glyph( RAS_VARS flipped ) )
+ {
+ if ( ras.error != Raster_Err_Overflow )
+ return FAILURE;
+
+ ras.error = Raster_Err_None;
+
+ /* sub-banding */
+
+#ifdef DEBUG_RASTER
+ ClearBand( RAS_VARS TRUNC( ras.minY ), TRUNC( ras.maxY ) );
+#endif
+
+ i = ras.band_stack[ras.band_top].y_min;
+ j = ras.band_stack[ras.band_top].y_max;
+
+ k = (Short)( ( i + j ) / 2 );
+
+ if ( ras.band_top >= 7 || k < i )
+ {
+ ras.band_top = 0;
+ ras.error = Raster_Err_Invalid;
+
+ return ras.error;
+ }
+
+ ras.band_stack[ras.band_top + 1].y_min = k;
+ ras.band_stack[ras.band_top + 1].y_max = j;
+
+ ras.band_stack[ras.band_top].y_max = (Short)( k - 1 );
+
+ ras.band_top++;
+ }
+ else
+ {
+ if ( ras.fProfile )
+ if ( Draw_Sweep( RAS_VAR ) )
+ return ras.error;
+ ras.band_top--;
+ }
+ }
+
+ return SUCCESS;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Render_Glyph */
+ /* */
+ /* <Description> */
+ /* Renders a glyph in a bitmap. Sub-banding if needed. */
+ /* */
+ /* <Return> */
+ /* FreeType error code. 0 means success. */
+ /* */
+ FT_LOCAL_DEF( FT_Error )
+ Render_Glyph( RAS_ARG )
+ {
+ FT_Error error;
+
+
+ Set_High_Precision( RAS_VARS ras.outline.flags &
+ FT_OUTLINE_HIGH_PRECISION );
+ ras.scale_shift = ras.precision_shift;
+ /* Drop-out mode 2 is hard-coded since this is the only mode used */
+ /* on Windows platforms. Using other modes, as specified by the */
+ /* font, results in misplaced pixels. */
+ ras.dropOutControl = 2;
+ ras.second_pass = (FT_Byte)( !( ras.outline.flags &
+ FT_OUTLINE_SINGLE_PASS ) );
+
+ /* Vertical Sweep */
+ ras.Proc_Sweep_Init = Vertical_Sweep_Init;
+ ras.Proc_Sweep_Span = Vertical_Sweep_Span;
+ ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
+ ras.Proc_Sweep_Step = Vertical_Sweep_Step;
+
+ ras.band_top = 0;
+ ras.band_stack[0].y_min = 0;
+ ras.band_stack[0].y_max = (short)( ras.target.rows - 1 );
+
+ ras.bWidth = (unsigned short)ras.target.width;
+ ras.bTarget = (Byte*)ras.target.buffer;
+
+ if ( ( error = Render_Single_Pass( RAS_VARS 0 ) ) != 0 )
+ return error;
+
+ /* Horizontal Sweep */
+ if ( ras.second_pass && ras.dropOutControl != 0 )
+ {
+ ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
+ ras.Proc_Sweep_Span = Horizontal_Sweep_Span;
+ ras.Proc_Sweep_Drop = Horizontal_Sweep_Drop;
+ ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
+
+ ras.band_top = 0;
+ ras.band_stack[0].y_min = 0;
+ ras.band_stack[0].y_max = (short)( ras.target.width - 1 );
+
+ if ( ( error = Render_Single_Pass( RAS_VARS 1 ) ) != 0 )
+ return error;
+ }
+
+ return Raster_Err_None;
+ }
+
+
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* Render_Gray_Glyph */
+ /* */
+ /* <Description> */
+ /* Renders a glyph with grayscaling. Sub-banding if needed. */
+ /* */
+ /* <Return> */
+ /* FreeType error code. 0 means success. */
+ /* */
+ FT_LOCAL_DEF( FT_Error )
+ Render_Gray_Glyph( RAS_ARG )
+ {
+ Long pixel_width;
+ FT_Error error;
+
+
+ Set_High_Precision( RAS_VARS ras.outline.flags &
+ FT_OUTLINE_HIGH_PRECISION );
+ ras.scale_shift = ras.precision_shift + 1;
+ /* Drop-out mode 2 is hard-coded since this is the only mode used */
+ /* on Windows platforms. Using other modes, as specified by the */
+ /* font, results in misplaced pixels. */
+ ras.dropOutControl = 2;
+ ras.second_pass = !( ras.outline.flags & FT_OUTLINE_SINGLE_PASS );
+
+ /* Vertical Sweep */
+
+ ras.band_top = 0;
+ ras.band_stack[0].y_min = 0;
+ ras.band_stack[0].y_max = 2 * ras.target.rows - 1;
+
+ ras.bWidth = ras.gray_width;
+ pixel_width = 2 * ( ( ras.target.width + 3 ) >> 2 );
+
+ if ( ras.bWidth > pixel_width )
+ ras.bWidth = pixel_width;
+
+ ras.bWidth = ras.bWidth * 8;
+ ras.bTarget = (Byte*)ras.gray_lines;
+ ras.gTarget = (Byte*)ras.target.buffer;
+
+ ras.Proc_Sweep_Init = Vertical_Gray_Sweep_Init;
+ ras.Proc_Sweep_Span = Vertical_Sweep_Span;
+ ras.Proc_Sweep_Drop = Vertical_Sweep_Drop;
+ ras.Proc_Sweep_Step = Vertical_Gray_Sweep_Step;
+
+ error = Render_Single_Pass( RAS_VARS 0 );
+ if ( error )
+ return error;
+
+ /* Horizontal Sweep */
+ if ( ras.second_pass && ras.dropOutControl != 0 )
+ {
+ ras.Proc_Sweep_Init = Horizontal_Sweep_Init;
+ ras.Proc_Sweep_Span = Horizontal_Gray_Sweep_Span;
+ ras.Proc_Sweep_Drop = Horizontal_Gray_Sweep_Drop;
+ ras.Proc_Sweep_Step = Horizontal_Sweep_Step;
+
+ ras.band_top = 0;
+ ras.band_stack[0].y_min = 0;
+ ras.band_stack[0].y_max = ras.target.width * 2 - 1;
+
+ error = Render_Single_Pass( RAS_VARS 1 );
+ if ( error )
+ return error;
+ }
+
+ return Raster_Err_None;
+ }
+
+#else /* !FT_RASTER_OPTION_ANTI_ALIASING */
+
+ FT_LOCAL_DEF( FT_Error )
+ Render_Gray_Glyph( RAS_ARG )
+ {
+ FT_UNUSED_RASTER;
+
+ return Raster_Err_Unsupported;
+ }
+
+#endif /* !FT_RASTER_OPTION_ANTI_ALIASING */
+
+
+ static void
+ ft_black_init( PRaster raster )
+ {
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+ FT_UInt n;
+
+
+ /* set default 5-levels gray palette */
+ for ( n = 0; n < 5; n++ )
+ raster->grays[n] = n * 255 / 4;
+
+ raster->gray_width = RASTER_GRAY_LINES / 2;
+
+#else
+ FT_UNUSED( raster );
+#endif
+ }
+
+
+ /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/
+ /**** a static object. *****/
+
+
+#ifdef _STANDALONE_
+
+
+ static int
+ ft_black_new( void* memory,
+ FT_Raster *araster )
+ {
+ static TRaster the_raster;
+
+
+ *araster = (FT_Raster)&the_raster;
+ FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
+ ft_black_init( &the_raster );
+
+ return 0;
+ }
+
+
+ static void
+ ft_black_done( FT_Raster raster )
+ {
+ /* nothing */
+ FT_UNUSED( raster );
+ }
+
+
+#else /* _STANDALONE_ */
+
+
+ static int
+ ft_black_new( FT_Memory memory,
+ PRaster *araster )
+ {
+ FT_Error error;
+ PRaster raster;
+
+
+ *araster = 0;
+ if ( !FT_NEW( raster ) )
+ {
+ raster->memory = memory;
+ ft_black_init( raster );
+
+ *araster = raster;
+ }
+
+ return error;
+ }
+
+
+ static void
+ ft_black_done( PRaster raster )
+ {
+ FT_Memory memory = (FT_Memory)raster->memory;
+ FT_FREE( raster );
+ }
+
+
+#endif /* _STANDALONE_ */
+
+
+ static void
+ ft_black_reset( PRaster raster,
+ char* pool_base,
+ long pool_size )
+ {
+ if ( raster )
+ {
+ if ( pool_base && pool_size >= (long)sizeof(TWorker) + 2048 )
+ {
+ PWorker worker = (PWorker)pool_base;
+
+
+ raster->buffer = pool_base + ( (sizeof ( *worker ) + 7 ) & ~7 );
+ raster->buffer_size = ( ( pool_base + pool_size ) -
+ (char*)raster->buffer ) / sizeof ( Long );
+ raster->worker = worker;
+ }
+ else
+ {
+ raster->buffer = NULL;
+ raster->buffer_size = 0;
+ raster->worker = NULL;
+ }
+ }
+ }
+
+
+ static void
+ ft_black_set_mode( PRaster raster,
+ unsigned long mode,
+ const char* palette )
+ {
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+
+ if ( mode == FT_MAKE_TAG( 'p', 'a', 'l', '5' ) )
+ {
+ /* set 5-levels gray palette */
+ raster->grays[0] = palette[0];
+ raster->grays[1] = palette[1];
+ raster->grays[2] = palette[2];
+ raster->grays[3] = palette[3];
+ raster->grays[4] = palette[4];
+ }
+
+#else
+
+ FT_UNUSED( raster );
+ FT_UNUSED( mode );
+ FT_UNUSED( palette );
+
+#endif
+ }
+
+
+ static int
+ ft_black_render( PRaster raster,
+ const FT_Raster_Params* params )
+ {
+ const FT_Outline* outline = (const FT_Outline*)params->source;
+ const FT_Bitmap* target_map = params->target;
+ PWorker worker;
+
+
+ if ( !raster || !raster->buffer || !raster->buffer_size )
+ return Raster_Err_Not_Ini;
+
+ if ( !outline )
+ return Raster_Err_Invalid;
+
+ /* return immediately if the outline is empty */
+ if ( outline->n_points == 0 || outline->n_contours <= 0 )
+ return Raster_Err_None;
+
+ if ( !outline->contours || !outline->points )
+ return Raster_Err_Invalid;
+
+ if ( outline->n_points !=
+ outline->contours[outline->n_contours - 1] + 1 )
+ return Raster_Err_Invalid;
+
+ worker = raster->worker;
+
+ /* this version of the raster does not support direct rendering, sorry */
+ if ( params->flags & FT_RASTER_FLAG_DIRECT )
+ return Raster_Err_Unsupported;
+
+ if ( !target_map )
+ return Raster_Err_Invalid;
+
+ /* nothing to do */
+ if ( !target_map->width || !target_map->rows )
+ return Raster_Err_None;
+
+ if ( !target_map->buffer )
+ return Raster_Err_Invalid;
+
+ ras.outline = *outline;
+ ras.target = *target_map;
+
+ worker->buff = (PLong) raster->buffer;
+ worker->sizeBuff = worker->buff +
+ raster->buffer_size / sizeof ( Long );
+#ifdef FT_RASTER_OPTION_ANTI_ALIASING
+ worker->grays = raster->grays;
+ worker->gray_width = raster->gray_width;
+#endif
+
+ return ( ( params->flags & FT_RASTER_FLAG_AA )
+ ? Render_Gray_Glyph( RAS_VAR )
+ : Render_Glyph( RAS_VAR ) );
+ }
+
+
+ const FT_Raster_Funcs ft_standard_raster =
+ {
+ FT_GLYPH_FORMAT_OUTLINE,
+ (FT_Raster_New_Func) ft_black_new,
+ (FT_Raster_Reset_Func) ft_black_reset,
+ (FT_Raster_Set_Mode_Func)ft_black_set_mode,
+ (FT_Raster_Render_Func) ft_black_render,
+ (FT_Raster_Done_Func) ft_black_done
+ };
+
+
+/* END */