summaryrefslogtreecommitdiffstats
path: root/src/base/ftbbox.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/base/ftbbox.c')
-rw-r--r--src/base/ftbbox.c659
1 files changed, 659 insertions, 0 deletions
diff --git a/src/base/ftbbox.c b/src/base/ftbbox.c
new file mode 100644
index 0000000..532ab13
--- /dev/null
+++ b/src/base/ftbbox.c
@@ -0,0 +1,659 @@
+/***************************************************************************/
+/* */
+/* ftbbox.c */
+/* */
+/* FreeType bbox computation (body). */
+/* */
+/* Copyright 1996-2001, 2002, 2004, 2006 by */
+/* David Turner, Robert Wilhelm, and Werner Lemberg. */
+/* */
+/* This file is part of the FreeType project, and may only be used */
+/* modified and distributed under the terms of the FreeType project */
+/* license, LICENSE.TXT. By continuing to use, modify, or distribute */
+/* this file you indicate that you have read the license and */
+/* understand and accept it fully. */
+/* */
+/***************************************************************************/
+
+
+ /*************************************************************************/
+ /* */
+ /* This component has a _single_ role: to compute exact outline bounding */
+ /* boxes. */
+ /* */
+ /*************************************************************************/
+
+
+#include <ft2build.h>
+#include FT_BBOX_H
+#include FT_IMAGE_H
+#include FT_OUTLINE_H
+#include FT_INTERNAL_CALC_H
+
+
+ typedef struct TBBox_Rec_
+ {
+ FT_Vector last;
+ FT_BBox bbox;
+
+ } TBBox_Rec;
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* BBox_Move_To */
+ /* */
+ /* <Description> */
+ /* This function is used as a `move_to' and `line_to' emitter during */
+ /* FT_Outline_Decompose(). It simply records the destination point */
+ /* in `user->last'; no further computations are necessary since we */
+ /* use the cbox as the starting bbox which must be refined. */
+ /* */
+ /* <Input> */
+ /* to :: A pointer to the destination vector. */
+ /* */
+ /* <InOut> */
+ /* user :: A pointer to the current walk context. */
+ /* */
+ /* <Return> */
+ /* Always 0. Needed for the interface only. */
+ /* */
+ static int
+ BBox_Move_To( FT_Vector* to,
+ TBBox_Rec* user )
+ {
+ user->last = *to;
+
+ return 0;
+ }
+
+
+#define CHECK_X( p, bbox ) \
+ ( p->x < bbox.xMin || p->x > bbox.xMax )
+
+#define CHECK_Y( p, bbox ) \
+ ( p->y < bbox.yMin || p->y > bbox.yMax )
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* BBox_Conic_Check */
+ /* */
+ /* <Description> */
+ /* Finds the extrema of a 1-dimensional conic Bezier curve and update */
+ /* a bounding range. This version uses direct computation, as it */
+ /* doesn't need square roots. */
+ /* */
+ /* <Input> */
+ /* y1 :: The start coordinate. */
+ /* */
+ /* y2 :: The coordinate of the control point. */
+ /* */
+ /* y3 :: The end coordinate. */
+ /* */
+ /* <InOut> */
+ /* min :: The address of the current minimum. */
+ /* */
+ /* max :: The address of the current maximum. */
+ /* */
+ static void
+ BBox_Conic_Check( FT_Pos y1,
+ FT_Pos y2,
+ FT_Pos y3,
+ FT_Pos* min,
+ FT_Pos* max )
+ {
+ if ( y1 <= y3 && y2 == y1 ) /* flat arc */
+ goto Suite;
+
+ if ( y1 < y3 )
+ {
+ if ( y2 >= y1 && y2 <= y3 ) /* ascending arc */
+ goto Suite;
+ }
+ else
+ {
+ if ( y2 >= y3 && y2 <= y1 ) /* descending arc */
+ {
+ y2 = y1;
+ y1 = y3;
+ y3 = y2;
+ goto Suite;
+ }
+ }
+
+ y1 = y3 = y1 - FT_MulDiv( y2 - y1, y2 - y1, y1 - 2*y2 + y3 );
+
+ Suite:
+ if ( y1 < *min ) *min = y1;
+ if ( y3 > *max ) *max = y3;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* BBox_Conic_To */
+ /* */
+ /* <Description> */
+ /* This function is used as a `conic_to' emitter during */
+ /* FT_Raster_Decompose(). It checks a conic Bezier curve with the */
+ /* current bounding box, and computes its extrema if necessary to */
+ /* update it. */
+ /* */
+ /* <Input> */
+ /* control :: A pointer to a control point. */
+ /* */
+ /* to :: A pointer to the destination vector. */
+ /* */
+ /* <InOut> */
+ /* user :: The address of the current walk context. */
+ /* */
+ /* <Return> */
+ /* Always 0. Needed for the interface only. */
+ /* */
+ /* <Note> */
+ /* In the case of a non-monotonous arc, we compute directly the */
+ /* extremum coordinates, as it is sufficiently fast. */
+ /* */
+ static int
+ BBox_Conic_To( FT_Vector* control,
+ FT_Vector* to,
+ TBBox_Rec* user )
+ {
+ /* we don't need to check `to' since it is always an `on' point, thus */
+ /* within the bbox */
+
+ if ( CHECK_X( control, user->bbox ) )
+ BBox_Conic_Check( user->last.x,
+ control->x,
+ to->x,
+ &user->bbox.xMin,
+ &user->bbox.xMax );
+
+ if ( CHECK_Y( control, user->bbox ) )
+ BBox_Conic_Check( user->last.y,
+ control->y,
+ to->y,
+ &user->bbox.yMin,
+ &user->bbox.yMax );
+
+ user->last = *to;
+
+ return 0;
+ }
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* BBox_Cubic_Check */
+ /* */
+ /* <Description> */
+ /* Finds the extrema of a 1-dimensional cubic Bezier curve and */
+ /* updates a bounding range. This version uses splitting because we */
+ /* don't want to use square roots and extra accuracy. */
+ /* */
+ /* <Input> */
+ /* p1 :: The start coordinate. */
+ /* */
+ /* p2 :: The coordinate of the first control point. */
+ /* */
+ /* p3 :: The coordinate of the second control point. */
+ /* */
+ /* p4 :: The end coordinate. */
+ /* */
+ /* <InOut> */
+ /* min :: The address of the current minimum. */
+ /* */
+ /* max :: The address of the current maximum. */
+ /* */
+
+#if 0
+
+ static void
+ BBox_Cubic_Check( FT_Pos p1,
+ FT_Pos p2,
+ FT_Pos p3,
+ FT_Pos p4,
+ FT_Pos* min,
+ FT_Pos* max )
+ {
+ FT_Pos stack[32*3 + 1], *arc;
+
+
+ arc = stack;
+
+ arc[0] = p1;
+ arc[1] = p2;
+ arc[2] = p3;
+ arc[3] = p4;
+
+ do
+ {
+ FT_Pos y1 = arc[0];
+ FT_Pos y2 = arc[1];
+ FT_Pos y3 = arc[2];
+ FT_Pos y4 = arc[3];
+
+
+ if ( y1 == y4 )
+ {
+ if ( y1 == y2 && y1 == y3 ) /* flat */
+ goto Test;
+ }
+ else if ( y1 < y4 )
+ {
+ if ( y2 >= y1 && y2 <= y4 && y3 >= y1 && y3 <= y4 ) /* ascending */
+ goto Test;
+ }
+ else
+ {
+ if ( y2 >= y4 && y2 <= y1 && y3 >= y4 && y3 <= y1 ) /* descending */
+ {
+ y2 = y1;
+ y1 = y4;
+ y4 = y2;
+ goto Test;
+ }
+ }
+
+ /* unknown direction -- split the arc in two */
+ arc[6] = y4;
+ arc[1] = y1 = ( y1 + y2 ) / 2;
+ arc[5] = y4 = ( y4 + y3 ) / 2;
+ y2 = ( y2 + y3 ) / 2;
+ arc[2] = y1 = ( y1 + y2 ) / 2;
+ arc[4] = y4 = ( y4 + y2 ) / 2;
+ arc[3] = ( y1 + y4 ) / 2;
+
+ arc += 3;
+ goto Suite;
+
+ Test:
+ if ( y1 < *min ) *min = y1;
+ if ( y4 > *max ) *max = y4;
+ arc -= 3;
+
+ Suite:
+ ;
+ } while ( arc >= stack );
+ }
+
+#else
+
+ static void
+ test_cubic_extrema( FT_Pos y1,
+ FT_Pos y2,
+ FT_Pos y3,
+ FT_Pos y4,
+ FT_Fixed u,
+ FT_Pos* min,
+ FT_Pos* max )
+ {
+ /* FT_Pos a = y4 - 3*y3 + 3*y2 - y1; */
+ FT_Pos b = y3 - 2*y2 + y1;
+ FT_Pos c = y2 - y1;
+ FT_Pos d = y1;
+ FT_Pos y;
+ FT_Fixed uu;
+
+ FT_UNUSED ( y4 );
+
+
+ /* The polynomial is */
+ /* */
+ /* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */
+ /* */
+ /* dP/dx = 3a*x^2 + 6b*x + 3c . */
+ /* */
+ /* However, we also have */
+ /* */
+ /* dP/dx(u) = 0 , */
+ /* */
+ /* which implies by subtraction that */
+ /* */
+ /* P(u) = b*u^2 + 2c*u + d . */
+
+ if ( u > 0 && u < 0x10000L )
+ {
+ uu = FT_MulFix( u, u );
+ y = d + FT_MulFix( c, 2*u ) + FT_MulFix( b, uu );
+
+ if ( y < *min ) *min = y;
+ if ( y > *max ) *max = y;
+ }
+ }
+
+
+ static void
+ BBox_Cubic_Check( FT_Pos y1,
+ FT_Pos y2,
+ FT_Pos y3,
+ FT_Pos y4,
+ FT_Pos* min,
+ FT_Pos* max )
+ {
+ /* always compare first and last points */
+ if ( y1 < *min ) *min = y1;
+ else if ( y1 > *max ) *max = y1;
+
+ if ( y4 < *min ) *min = y4;
+ else if ( y4 > *max ) *max = y4;
+
+ /* now, try to see if there are split points here */
+ if ( y1 <= y4 )
+ {
+ /* flat or ascending arc test */
+ if ( y1 <= y2 && y2 <= y4 && y1 <= y3 && y3 <= y4 )
+ return;
+ }
+ else /* y1 > y4 */
+ {
+ /* descending arc test */
+ if ( y1 >= y2 && y2 >= y4 && y1 >= y3 && y3 >= y4 )
+ return;
+ }
+
+ /* There are some split points. Find them. */
+ {
+ FT_Pos a = y4 - 3*y3 + 3*y2 - y1;
+ FT_Pos b = y3 - 2*y2 + y1;
+ FT_Pos c = y2 - y1;
+ FT_Pos d;
+ FT_Fixed t;
+
+
+ /* We need to solve `ax^2+2bx+c' here, without floating points! */
+ /* The trick is to normalize to a different representation in order */
+ /* to use our 16.16 fixed point routines. */
+ /* */
+ /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
+ /* These values must fit into a single 16.16 value. */
+ /* */
+ /* We normalize a, b, and c to `8.16' fixed float values to ensure */
+ /* that its product is held in a `16.16' value. */
+
+ {
+ FT_ULong t1, t2;
+ int shift = 0;
+
+
+ /* The following computation is based on the fact that for */
+ /* any value `y', if `n' is the position of the most */
+ /* significant bit of `abs(y)' (starting from 0 for the */
+ /* least significant bit), then `y' is in the range */
+ /* */
+ /* -2^n..2^n-1 */
+ /* */
+ /* We want to shift `a', `b', and `c' concurrently in order */
+ /* to ensure that they all fit in 8.16 values, which maps */
+ /* to the integer range `-2^23..2^23-1'. */
+ /* */
+ /* Necessarily, we need to shift `a', `b', and `c' so that */
+ /* the most significant bit of its absolute values is at */
+ /* _most_ at position 23. */
+ /* */
+ /* We begin by computing `t1' as the bitwise `OR' of the */
+ /* absolute values of `a', `b', `c'. */
+
+ t1 = (FT_ULong)( ( a >= 0 ) ? a : -a );
+ t2 = (FT_ULong)( ( b >= 0 ) ? b : -b );
+ t1 |= t2;
+ t2 = (FT_ULong)( ( c >= 0 ) ? c : -c );
+ t1 |= t2;
+
+ /* Now we can be sure that the most significant bit of `t1' */
+ /* is the most significant bit of either `a', `b', or `c', */
+ /* depending on the greatest integer range of the particular */
+ /* variable. */
+ /* */
+ /* Next, we compute the `shift', by shifting `t1' as many */
+ /* times as necessary to move its MSB to position 23. This */
+ /* corresponds to a value of `t1' that is in the range */
+ /* 0x40_0000..0x7F_FFFF. */
+ /* */
+ /* Finally, we shift `a', `b', and `c' by the same amount. */
+ /* This ensures that all values are now in the range */
+ /* -2^23..2^23, i.e., they are now expressed as 8.16 */
+ /* fixed-float numbers. This also means that we are using */
+ /* 24 bits of precision to compute the zeros, independently */
+ /* of the range of the original polynomial coefficients. */
+ /* */
+ /* This algorithm should ensure reasonably accurate values */
+ /* for the zeros. Note that they are only expressed with */
+ /* 16 bits when computing the extrema (the zeros need to */
+ /* be in 0..1 exclusive to be considered part of the arc). */
+
+ if ( t1 == 0 ) /* all coefficients are 0! */
+ return;
+
+ if ( t1 > 0x7FFFFFUL )
+ {
+ do
+ {
+ shift++;
+ t1 >>= 1;
+
+ } while ( t1 > 0x7FFFFFUL );
+
+ /* this loses some bits of precision, but we use 24 of them */
+ /* for the computation anyway */
+ a >>= shift;
+ b >>= shift;
+ c >>= shift;
+ }
+ else if ( t1 < 0x400000UL )
+ {
+ do
+ {
+ shift++;
+ t1 <<= 1;
+
+ } while ( t1 < 0x400000UL );
+
+ a <<= shift;
+ b <<= shift;
+ c <<= shift;
+ }
+ }
+
+ /* handle a == 0 */
+ if ( a == 0 )
+ {
+ if ( b != 0 )
+ {
+ t = - FT_DivFix( c, b ) / 2;
+ test_cubic_extrema( y1, y2, y3, y4, t, min, max );
+ }
+ }
+ else
+ {
+ /* solve the equation now */
+ d = FT_MulFix( b, b ) - FT_MulFix( a, c );
+ if ( d < 0 )
+ return;
+
+ if ( d == 0 )
+ {
+ /* there is a single split point at -b/a */
+ t = - FT_DivFix( b, a );
+ test_cubic_extrema( y1, y2, y3, y4, t, min, max );
+ }
+ else
+ {
+ /* there are two solutions; we need to filter them */
+ d = FT_SqrtFixed( (FT_Int32)d );
+ t = - FT_DivFix( b - d, a );
+ test_cubic_extrema( y1, y2, y3, y4, t, min, max );
+
+ t = - FT_DivFix( b + d, a );
+ test_cubic_extrema( y1, y2, y3, y4, t, min, max );
+ }
+ }
+ }
+ }
+
+#endif
+
+
+ /*************************************************************************/
+ /* */
+ /* <Function> */
+ /* BBox_Cubic_To */
+ /* */
+ /* <Description> */
+ /* This function is used as a `cubic_to' emitter during */
+ /* FT_Raster_Decompose(). It checks a cubic Bezier curve with the */
+ /* current bounding box, and computes its extrema if necessary to */
+ /* update it. */
+ /* */
+ /* <Input> */
+ /* control1 :: A pointer to the first control point. */
+ /* */
+ /* control2 :: A pointer to the second control point. */
+ /* */
+ /* to :: A pointer to the destination vector. */
+ /* */
+ /* <InOut> */
+ /* user :: The address of the current walk context. */
+ /* */
+ /* <Return> */
+ /* Always 0. Needed for the interface only. */
+ /* */
+ /* <Note> */
+ /* In the case of a non-monotonous arc, we don't compute directly */
+ /* extremum coordinates, we subdivide instead. */
+ /* */
+ static int
+ BBox_Cubic_To( FT_Vector* control1,
+ FT_Vector* control2,
+ FT_Vector* to,
+ TBBox_Rec* user )
+ {
+ /* we don't need to check `to' since it is always an `on' point, thus */
+ /* within the bbox */
+
+ if ( CHECK_X( control1, user->bbox ) ||
+ CHECK_X( control2, user->bbox ) )
+ BBox_Cubic_Check( user->last.x,
+ control1->x,
+ control2->x,
+ to->x,
+ &user->bbox.xMin,
+ &user->bbox.xMax );
+
+ if ( CHECK_Y( control1, user->bbox ) ||
+ CHECK_Y( control2, user->bbox ) )
+ BBox_Cubic_Check( user->last.y,
+ control1->y,
+ control2->y,
+ to->y,
+ &user->bbox.yMin,
+ &user->bbox.yMax );
+
+ user->last = *to;
+
+ return 0;
+ }
+
+
+ /* documentation is in ftbbox.h */
+
+ FT_EXPORT_DEF( FT_Error )
+ FT_Outline_Get_BBox( FT_Outline* outline,
+ FT_BBox *abbox )
+ {
+ FT_BBox cbox;
+ FT_BBox bbox;
+ FT_Vector* vec;
+ FT_UShort n;
+
+
+ if ( !abbox )
+ return FT_Err_Invalid_Argument;
+
+ if ( !outline )
+ return FT_Err_Invalid_Outline;
+
+ /* if outline is empty, return (0,0,0,0) */
+ if ( outline->n_points == 0 || outline->n_contours <= 0 )
+ {
+ abbox->xMin = abbox->xMax = 0;
+ abbox->yMin = abbox->yMax = 0;
+ return 0;
+ }
+
+ /* We compute the control box as well as the bounding box of */
+ /* all `on' points in the outline. Then, if the two boxes */
+ /* coincide, we exit immediately. */
+
+ vec = outline->points;
+ bbox.xMin = bbox.xMax = cbox.xMin = cbox.xMax = vec->x;
+ bbox.yMin = bbox.yMax = cbox.yMin = cbox.yMax = vec->y;
+ vec++;
+
+ for ( n = 1; n < outline->n_points; n++ )
+ {
+ FT_Pos x = vec->x;
+ FT_Pos y = vec->y;
+
+
+ /* update control box */
+ if ( x < cbox.xMin ) cbox.xMin = x;
+ if ( x > cbox.xMax ) cbox.xMax = x;
+
+ if ( y < cbox.yMin ) cbox.yMin = y;
+ if ( y > cbox.yMax ) cbox.yMax = y;
+
+ if ( FT_CURVE_TAG( outline->tags[n] ) == FT_CURVE_TAG_ON )
+ {
+ /* update bbox for `on' points only */
+ if ( x < bbox.xMin ) bbox.xMin = x;
+ if ( x > bbox.xMax ) bbox.xMax = x;
+
+ if ( y < bbox.yMin ) bbox.yMin = y;
+ if ( y > bbox.yMax ) bbox.yMax = y;
+ }
+
+ vec++;
+ }
+
+ /* test two boxes for equality */
+ if ( cbox.xMin < bbox.xMin || cbox.xMax > bbox.xMax ||
+ cbox.yMin < bbox.yMin || cbox.yMax > bbox.yMax )
+ {
+ /* the two boxes are different, now walk over the outline to */
+ /* get the Bezier arc extrema. */
+
+ static const FT_Outline_Funcs bbox_interface =
+ {
+ (FT_Outline_MoveTo_Func) BBox_Move_To,
+ (FT_Outline_LineTo_Func) BBox_Move_To,
+ (FT_Outline_ConicTo_Func)BBox_Conic_To,
+ (FT_Outline_CubicTo_Func)BBox_Cubic_To,
+ 0, 0
+ };
+
+ FT_Error error;
+ TBBox_Rec user;
+
+
+ user.bbox = bbox;
+
+ error = FT_Outline_Decompose( outline, &bbox_interface, &user );
+ if ( error )
+ return error;
+
+ *abbox = user.bbox;
+ }
+ else
+ *abbox = bbox;
+
+ return FT_Err_Ok;
+ }
+
+
+/* END */