summaryrefslogtreecommitdiffstats
path: root/bcprov/src/main/java/org/bouncycastle/math/ec/WNafUtil.java
blob: 339689ea4957f336dc48b8bc48346ecf17017f1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
package org.bouncycastle.math.ec;

import java.math.BigInteger;

public abstract class WNafUtil
{
    public static final String PRECOMP_NAME = "bc_wnaf";

    private static final int[] DEFAULT_WINDOW_SIZE_CUTOFFS = new int[]{ 13, 41, 121, 337, 897, 2305 };

    private static final byte[] EMPTY_BYTES = new byte[0];
    private static final int[] EMPTY_INTS = new int[0];
    private static final ECPoint[] EMPTY_POINTS = new ECPoint[0];

    public static int[] generateCompactNaf(BigInteger k)
    {
        if ((k.bitLength() >>> 16) != 0)
        {
            throw new IllegalArgumentException("'k' must have bitlength < 2^16");
        }
        if (k.signum() == 0)
        {
            return EMPTY_INTS;
        }

        BigInteger _3k = k.shiftLeft(1).add(k);

        int bits = _3k.bitLength();
        int[] naf = new int[bits >> 1];

        BigInteger diff = _3k.xor(k);

        int highBit = bits - 1, length = 0, zeroes = 0;
        for (int i = 1; i < highBit; ++i)
        {
            if (!diff.testBit(i))
            {
                ++zeroes;
                continue;
            }

            int digit  = k.testBit(i) ? -1 : 1;
            naf[length++] = (digit << 16) | zeroes;
            zeroes = 1;
            ++i;
        }

        naf[length++] = (1 << 16) | zeroes;

        if (naf.length > length)
        {
            naf = trim(naf, length);
        }

        return naf;
    }

    public static int[] generateCompactWindowNaf(int width, BigInteger k)
    {
        if (width == 2)
        {
            return generateCompactNaf(k);
        }

        if (width < 2 || width > 16)
        {
            throw new IllegalArgumentException("'width' must be in the range [2, 16]");
        }
        if ((k.bitLength() >>> 16) != 0)
        {
            throw new IllegalArgumentException("'k' must have bitlength < 2^16");
        }
        if (k.signum() == 0)
        {
            return EMPTY_INTS;
        }

        int[] wnaf = new int[k.bitLength() / width + 1];

        // 2^width and a mask and sign bit set accordingly
        int pow2 = 1 << width;
        int mask = pow2 - 1;
        int sign = pow2 >>> 1;

        boolean carry = false;
        int length = 0, pos = 0;

        while (pos <= k.bitLength())
        {
            if (k.testBit(pos) == carry)
            {
                ++pos;
                continue;
            }

            k = k.shiftRight(pos);

            int digit = k.intValue() & mask;
            if (carry)
            {
                ++digit;
            }

            carry = (digit & sign) != 0;
            if (carry)
            {
                digit -= pow2;
            }

            int zeroes = length > 0 ? pos - 1 : pos;
            wnaf[length++] = (digit << 16) | zeroes;
            pos = width;
        }

        // Reduce the WNAF array to its actual length
        if (wnaf.length > length)
        {
            wnaf = trim(wnaf, length);
        }

        return wnaf;
    }

    public static byte[] generateJSF(BigInteger g, BigInteger h)
    {
        int digits = Math.max(g.bitLength(), h.bitLength()) + 1;
        byte[] jsf = new byte[digits];

        BigInteger k0 = g, k1 = h;
        int j = 0, d0 = 0, d1 = 0;

        int offset = 0;
        while ((d0 | d1) != 0 || k0.bitLength() > offset || k1.bitLength() > offset)
        {
            int n0 = ((k0.intValue() >>> offset) + d0) & 7, n1 = ((k1.intValue() >>> offset) + d1) & 7;

            int u0 = n0 & 1;
            if (u0 != 0)
            {
                u0 -= (n0 & 2);
                if ((n0 + u0) == 4 && (n1 & 3) == 2)
                {
                    u0 = -u0;
                }
            }

            int u1 = n1 & 1;
            if (u1 != 0)
            {
                u1 -= (n1 & 2);
                if ((n1 + u1) == 4 && (n0 & 3) == 2)
                {
                    u1 = -u1;
                }
            }

            if ((d0 << 1) == 1 + u0)
            {
                d0 ^= 1;
            }
            if ((d1 << 1) == 1 + u1)
            {
                d1 ^= 1;
            }

            if (++offset == 30)
            {
                offset = 0;
                k0 = k0.shiftRight(30);
                k1 = k1.shiftRight(30);
            }

            jsf[j++] = (byte)((u0 << 4) | (u1 & 0xF));
        }

        // Reduce the JSF array to its actual length
        if (jsf.length > j)
        {
            jsf = trim(jsf, j);
        }

        return jsf;
    }

    public static byte[] generateNaf(BigInteger k)
    {
        if (k.signum() == 0)
        {
            return EMPTY_BYTES;
        }

        BigInteger _3k = k.shiftLeft(1).add(k);

        int digits = _3k.bitLength() - 1;
        byte[] naf = new byte[digits];

        BigInteger diff = _3k.xor(k);

        for (int i = 1; i < digits; ++i)
        {
            if (diff.testBit(i))
            {
                naf[i - 1] = (byte)(k.testBit(i) ? -1 : 1);
                ++i;
            }
        }

        naf[digits - 1] = 1;

        return naf;
    }

    /**
     * Computes the Window NAF (non-adjacent Form) of an integer.
     * @param width The width <code>w</code> of the Window NAF. The width is
     * defined as the minimal number <code>w</code>, such that for any
     * <code>w</code> consecutive digits in the resulting representation, at
     * most one is non-zero.
     * @param k The integer of which the Window NAF is computed.
     * @return The Window NAF of the given width, such that the following holds:
     * <code>k = &sum;<sub>i=0</sub><sup>l-1</sup> k<sub>i</sub>2<sup>i</sup>
     * </code>, where the <code>k<sub>i</sub></code> denote the elements of the
     * returned <code>byte[]</code>.
     */
    public static byte[] generateWindowNaf(int width, BigInteger k)
    {
        if (width == 2)
        {
            return generateNaf(k);
        }

        if (width < 2 || width > 8)
        {
            throw new IllegalArgumentException("'width' must be in the range [2, 8]");
        }
        if (k.signum() == 0)
        {
            return EMPTY_BYTES;
        }

        byte[] wnaf = new byte[k.bitLength() + 1];

        // 2^width and a mask and sign bit set accordingly
        int pow2 = 1 << width;
        int mask = pow2 - 1;
        int sign = pow2 >>> 1;

        boolean carry = false;
        int length = 0, pos = 0;

        while (pos <= k.bitLength())
        {
            if (k.testBit(pos) == carry)
            {
                ++pos;
                continue;
            }

            k = k.shiftRight(pos);

            int digit = k.intValue() & mask;
            if (carry)
            {
                ++digit;
            }

            carry = (digit & sign) != 0;
            if (carry)
            {
                digit -= pow2;
            }

            length += (length > 0) ? pos - 1 : pos;
            wnaf[length++] = (byte)digit;
            pos = width;
        }

        // Reduce the WNAF array to its actual length
        if (wnaf.length > length)
        {
            wnaf = trim(wnaf, length);
        }
        
        return wnaf;
    }

    public static int getNafWeight(BigInteger k)
    {
        if (k.signum() == 0)
        {
            return 0;
        }

        BigInteger _3k = k.shiftLeft(1).add(k);
        BigInteger diff = _3k.xor(k);

        return diff.bitCount();
    }

    public static WNafPreCompInfo getWNafPreCompInfo(ECPoint p)
    {
        return getWNafPreCompInfo(p.getCurve().getPreCompInfo(p, PRECOMP_NAME));
    }

    public static WNafPreCompInfo getWNafPreCompInfo(PreCompInfo preCompInfo)
    {
        if ((preCompInfo != null) && (preCompInfo instanceof WNafPreCompInfo))
        {
            return (WNafPreCompInfo)preCompInfo;
        }

        return new WNafPreCompInfo();
    }

    /**
     * Determine window width to use for a scalar multiplication of the given size.
     * 
     * @param bits the bit-length of the scalar to multiply by
     * @return the window size to use
     */
    public static int getWindowSize(int bits)
    {
        return getWindowSize(bits, DEFAULT_WINDOW_SIZE_CUTOFFS);
    }

    /**
     * Determine window width to use for a scalar multiplication of the given size.
     * 
     * @param bits the bit-length of the scalar to multiply by
     * @param windowSizeCutoffs a monotonically increasing list of bit sizes at which to increment the window width
     * @return the window size to use
     */
    public static int getWindowSize(int bits, int[] windowSizeCutoffs)
    {
        int w = 0;
        for (; w < windowSizeCutoffs.length; ++w)
        {
            if (bits < windowSizeCutoffs[w])
            {
                break;
            }
        }
        return w + 2;
    }

    public static ECPoint mapPointWithPrecomp(ECPoint p, int width, boolean includeNegated,
        ECPointMap pointMap)
    {
        ECCurve c = p.getCurve();
        WNafPreCompInfo wnafPreCompP = precompute(p, width, includeNegated);

        ECPoint q = pointMap.map(p);
        WNafPreCompInfo wnafPreCompQ = getWNafPreCompInfo(c.getPreCompInfo(q, PRECOMP_NAME));

        ECPoint twiceP = wnafPreCompP.getTwice();
        if (twiceP != null)
        {
            ECPoint twiceQ = pointMap.map(twiceP);
            wnafPreCompQ.setTwice(twiceQ);
        }

        ECPoint[] preCompP = wnafPreCompP.getPreComp();
        ECPoint[] preCompQ = new ECPoint[preCompP.length];
        for (int i = 0; i < preCompP.length; ++i)
        {
            preCompQ[i] = pointMap.map(preCompP[i]);
        }
        wnafPreCompQ.setPreComp(preCompQ);

        if (includeNegated)
        {
            ECPoint[] preCompNegQ = new ECPoint[preCompQ.length];
            for (int i = 0; i < preCompNegQ.length; ++i)
            {
                preCompNegQ[i] = preCompQ[i].negate();
            }
            wnafPreCompQ.setPreCompNeg(preCompNegQ);
        }

        c.setPreCompInfo(q, PRECOMP_NAME, wnafPreCompQ);

        return q;
    }

    public static WNafPreCompInfo precompute(ECPoint p, int width, boolean includeNegated)
    {
        ECCurve c = p.getCurve();
        WNafPreCompInfo wnafPreCompInfo = getWNafPreCompInfo(c.getPreCompInfo(p, PRECOMP_NAME));

        int iniPreCompLen = 0, reqPreCompLen = 1 << Math.max(0, width - 2);

        ECPoint[] preComp = wnafPreCompInfo.getPreComp();
        if (preComp == null)
        {
            preComp = EMPTY_POINTS;
        }
        else
        {
            iniPreCompLen = preComp.length;
        }

        if (iniPreCompLen < reqPreCompLen)
        {
            preComp = resizeTable(preComp, reqPreCompLen);

            if (reqPreCompLen == 1)
            {
                preComp[0] = p.normalize();
            }
            else
            {
                int curPreCompLen = iniPreCompLen;
                if (curPreCompLen == 0)
                {
                    preComp[0] = p;
                    curPreCompLen = 1;
                }

                ECFieldElement iso = null;

                if (reqPreCompLen == 2)
                {
                    preComp[1] = p.threeTimes();
                }
                else
                {
                    ECPoint twiceP = wnafPreCompInfo.getTwice(), last = preComp[curPreCompLen - 1];
                    if (twiceP == null)
                    {
                        twiceP = preComp[0].twice();
                        wnafPreCompInfo.setTwice(twiceP);

                        /*
                         * For Fp curves with Jacobian projective coordinates, use a (quasi-)isomorphism
                         * where 'twiceP' is "affine", so that the subsequent additions are cheaper. This
                         * also requires scaling the initial point's X, Y coordinates, and reversing the
                         * isomorphism as part of the subsequent normalization.
                         * 
                         *  NOTE: The correctness of this optimization depends on:
                         *      1) additions do not use the curve's A, B coefficients.
                         *      2) no special cases (i.e. Q +/- Q) when calculating 1P, 3P, 5P, ...
                         */
                        if (ECAlgorithms.isFpCurve(c) && c.getFieldSize() >= 64)
                        {
                            switch (c.getCoordinateSystem())
                            {
                            case ECCurve.COORD_JACOBIAN:
                            case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
                            case ECCurve.COORD_JACOBIAN_MODIFIED:
                            {
                                iso = twiceP.getZCoord(0);
                                twiceP = c.createPoint(twiceP.getXCoord().toBigInteger(), twiceP.getYCoord()
                                    .toBigInteger());

                                ECFieldElement iso2 = iso.square(), iso3 = iso2.multiply(iso);
                                last = last.scaleX(iso2).scaleY(iso3);

                                if (iniPreCompLen == 0)
                                {
                                    preComp[0] = last;
                                }
                                break;
                            }
                            }
                        }
                    }

                    while (curPreCompLen < reqPreCompLen)
                    {
                        /*
                         * Compute the new ECPoints for the precomputation array. The values 1, 3,
                         * 5, ..., 2^(width-1)-1 times p are computed
                         */
                        preComp[curPreCompLen++] = last = last.add(twiceP);
                    }
                }

                /*
                 * Having oft-used operands in affine form makes operations faster.
                 */
                c.normalizeAll(preComp, iniPreCompLen, reqPreCompLen - iniPreCompLen, iso);
            }
        }

        wnafPreCompInfo.setPreComp(preComp);

        if (includeNegated)
        {
            ECPoint[] preCompNeg = wnafPreCompInfo.getPreCompNeg();
            
            int pos;
            if (preCompNeg == null)
            {
                pos = 0;
                preCompNeg = new ECPoint[reqPreCompLen]; 
            }
            else
            {
                pos = preCompNeg.length;
                if (pos < reqPreCompLen)
                {
                    preCompNeg = resizeTable(preCompNeg, reqPreCompLen);
                }
            }

            while (pos < reqPreCompLen)
            {
                preCompNeg[pos] = preComp[pos].negate();
                ++pos;
            }

            wnafPreCompInfo.setPreCompNeg(preCompNeg);
        }

        c.setPreCompInfo(p, PRECOMP_NAME, wnafPreCompInfo);

        return wnafPreCompInfo;
    }

    private static byte[] trim(byte[] a, int length)
    {
        byte[] result = new byte[length];
        System.arraycopy(a, 0, result, 0, result.length);
        return result;
    }

    private static int[] trim(int[] a, int length)
    {
        int[] result = new int[length];
        System.arraycopy(a, 0, result, 0, result.length);
        return result;
    }

    private static ECPoint[] resizeTable(ECPoint[] a, int length)
    {
        ECPoint[] result = new ECPoint[length];
        System.arraycopy(a, 0, result, 0, a.length);
        return result;
    }
}