summaryrefslogtreecommitdiffstats
path: root/bcprov/src/main/java/org/bouncycastle/pqc/math/linearalgebra/GF2nONBField.java
diff options
context:
space:
mode:
Diffstat (limited to 'bcprov/src/main/java/org/bouncycastle/pqc/math/linearalgebra/GF2nONBField.java')
-rw-r--r--bcprov/src/main/java/org/bouncycastle/pqc/math/linearalgebra/GF2nONBField.java546
1 files changed, 0 insertions, 546 deletions
diff --git a/bcprov/src/main/java/org/bouncycastle/pqc/math/linearalgebra/GF2nONBField.java b/bcprov/src/main/java/org/bouncycastle/pqc/math/linearalgebra/GF2nONBField.java
deleted file mode 100644
index 1e4c8b2..0000000
--- a/bcprov/src/main/java/org/bouncycastle/pqc/math/linearalgebra/GF2nONBField.java
+++ /dev/null
@@ -1,546 +0,0 @@
-package org.bouncycastle.pqc.math.linearalgebra;
-
-
-import java.util.Random;
-import java.util.Vector;
-
-
-/**
- * This class implements the abstract class <tt>GF2nField</tt> for ONB
- * representation. It computes the fieldpolynomial, multiplication matrix and
- * one of its roots mONBRoot, (see for example <a
- * href=http://www2.certicom.com/ecc/intro.htm>Certicoms Whitepapers</a>).
- * GF2nField is used by GF2nONBElement which implements the elements of this
- * field.
- *
- * @see GF2nField
- * @see GF2nONBElement
- */
-public class GF2nONBField
- extends GF2nField
-{
-
- // ///////////////////////////////////////////////////////////////////
- // Hashtable for irreducible normal polynomials //
- // ///////////////////////////////////////////////////////////////////
-
- // i*5 + 0 i*5 + 1 i*5 + 2 i*5 + 3 i*5 + 4
- /*
- * private static int[][] mNB = {{0, 0, 0}, {0, 0, 0}, {1, 0, 0}, {1, 0, 0},
- * {1, 0, 0}, // i = 0 {2, 0, 0}, {1, 0, 0}, {1, 0, 0}, {4, 3, 1}, {1, 0,
- * 0}, // i = 1 {3, 0, 0}, {2, 0, 0}, {3, 0, 0}, {4, 3, 1}, {5, 0, 0}, // i =
- * 2 {1, 0, 0}, {5, 3, 1}, {3, 0, 0}, {3, 0, 0}, {5, 2, 1}, // i = 3 {3, 0,
- * 0}, {2, 0, 0}, {1, 0, 0}, {5, 0, 0}, {4, 3, 1}, // i = 4 {3, 0, 0}, {4,
- * 3, 1}, {5, 2, 1}, {1, 0, 0}, {2, 0, 0}, // i = 5 {1, 0, 0}, {3, 0, 0},
- * {7, 3, 2}, {10, 0, 0}, {7, 0, 0}, // i = 6 {2, 0, 0}, {9, 0, 0}, {6, 4,
- * 1}, {6, 5, 1}, {4, 0, 0}, // i = 7 {5, 4, 3}, {3, 0, 0}, {7, 0, 0}, {6,
- * 4, 3}, {5, 0, 0}, // i = 8 {4, 3, 1}, {1, 0, 0}, {5, 0, 0}, {5, 3, 2},
- * {9, 0, 0}, // i = 9 {4, 3, 2}, {6, 3, 1}, {3, 0, 0}, {6, 2, 1}, {9, 0,
- * 0}, // i = 10 {7, 0, 0}, {7, 4, 2}, {4, 0, 0}, {19, 0, 0}, {7, 4, 2}, //
- * i = 11 {1, 0, 0}, {5, 2, 1}, {29, 0, 0}, {1, 0, 0}, {4, 3, 1}, // i = 12
- * {18, 0, 0}, {3, 0, 0}, {5, 2, 1}, {9, 0, 0}, {6, 5, 2}, // i = 13 {5, 3,
- * 1}, {6, 0, 0}, {10, 9, 3}, {25, 0, 0}, {35, 0, 0}, // i = 14 {6, 3, 1},
- * {21, 0, 0}, {6, 5, 2}, {6, 5, 3}, {9, 0, 0}, // i = 15 {9, 4, 2}, {4, 0,
- * 0}, {8, 3, 1}, {7, 4, 2}, {5, 0, 0}, // i = 16 {8, 2, 1}, {21, 0, 0},
- * {13, 0, 0}, {7, 6, 2}, {38, 0, 0}, // i = 17 {27, 0, 0}, {8, 5, 1}, {21,
- * 0, 0}, {2, 0, 0}, {21, 0, 0}, // i = 18 {11, 0, 0}, {10, 9, 6}, {6, 0,
- * 0}, {11, 0, 0}, {6, 3, 1}, // i = 19 {15, 0, 0}, {7, 6, 1}, {29, 0, 0},
- * {9, 0, 0}, {4, 3, 1}, // i = 20 {4, 0, 0}, {15, 0, 0}, {9, 7, 4}, {17, 0,
- * 0}, {5, 4, 2}, // i = 21 {33, 0, 0}, {10, 0, 0}, {5, 4, 3}, {9, 0, 0},
- * {5, 3, 2}, // i = 22 {8, 7, 5}, {4, 2, 1}, {5, 2, 1}, {33, 0, 0}, {8, 0,
- * 0}, // i = 23 {4, 3, 1}, {18, 0, 0}, {6, 2, 1}, {2, 0, 0}, {19, 0, 0}, //
- * i = 24 {7, 6, 5}, {21, 0, 0}, {1, 0, 0}, {7, 2, 1}, {5, 0, 0}, // i = 25
- * {3, 0, 0}, {8, 3, 2}, {17, 0, 0}, {9, 8, 2}, {57, 0, 0}, // i = 26 {11,
- * 0, 0}, {5, 3, 2}, {21, 0, 0}, {8, 7, 1}, {8, 5, 3}, // i = 27 {15, 0, 0},
- * {10, 4, 1}, {21, 0, 0}, {5, 3, 2}, {7, 4, 2}, // i = 28 {52, 0, 0}, {71,
- * 0, 0}, {14, 0, 0}, {27, 0, 0}, {10, 9, 7}, // i = 29 {53, 0, 0}, {3, 0,
- * 0}, {6, 3, 2}, {1, 0, 0}, {15, 0, 0}, // i = 30 {62, 0, 0}, {9, 0, 0},
- * {6, 5, 2}, {8, 6, 5}, {31, 0, 0}, // i = 31 {5, 3, 2}, {18, 0, 0 }, {27,
- * 0, 0}, {7, 6, 3}, {10, 8, 7}, // i = 32 {9, 8, 3}, {37, 0, 0}, {6, 0, 0},
- * {15, 3, 2}, {34, 0, 0}, // i = 33 {11, 0, 0}, {6, 5, 2}, {1, 0, 0}, {8,
- * 5, 2}, {13, 0, 0}, // i = 34 {6, 0, 0}, {11, 3, 2}, {8, 0, 0}, {31, 0,
- * 0}, {4, 2, 1}, // i = 35 {3, 0, 0}, {7, 6, 1}, {81, 0, 0}, {56, 0, 0},
- * {9, 8, 7}, // i = 36 {24, 0, 0}, {11, 0, 0}, {7, 6, 5}, {6, 5, 2}, {6, 5,
- * 2}, // i = 37 {8, 7, 6}, {9, 0, 0}, {7, 2, 1}, {15, 0, 0}, {87, 0, 0}, //
- * i = 38 {8, 3, 2}, {3, 0, 0}, {9, 4, 2}, {9, 0, 0}, {34, 0, 0}, // i = 39
- * {5, 3, 2}, {14, 0, 0}, {55, 0, 0}, {8, 7, 1}, {27, 0, 0}, // i = 40 {9,
- * 5, 2}, {10, 9, 5}, {43, 0, 0}, {8, 6, 2}, {6, 0, 0}, // i = 41 {7, 0, 0},
- * {11, 10, 8}, {105, 0, 0}, {6, 5, 2}, {73, 0, 0}}; // i = 42
- */
- // /////////////////////////////////////////////////////////////////////
- // member variables
- // /////////////////////////////////////////////////////////////////////
- private static final int MAXLONG = 64;
-
- /**
- * holds the length of the array-representation of degree mDegree.
- */
- private int mLength;
-
- /**
- * holds the number of relevant bits in mONBPol[mLength-1].
- */
- private int mBit;
-
- /**
- * holds the type of mONB
- */
- private int mType;
-
- /**
- * holds the multiplication matrix
- */
- int[][] mMult;
-
- // /////////////////////////////////////////////////////////////////////
- // constructors
- // /////////////////////////////////////////////////////////////////////
-
- /**
- * constructs an instance of the finite field with 2<sup>deg</sup>
- * elements and characteristic 2.
- *
- * @param deg -
- * the extention degree of this field
- * @throws NoSuchBasisException if an ONB-implementation other than type 1 or type 2 is
- * requested.
- */
- public GF2nONBField(int deg)
- throws RuntimeException
- {
- if (deg < 3)
- {
- throw new IllegalArgumentException("k must be at least 3");
- }
-
- mDegree = deg;
- mLength = mDegree / MAXLONG;
- mBit = mDegree & (MAXLONG - 1);
- if (mBit == 0)
- {
- mBit = MAXLONG;
- }
- else
- {
- mLength++;
- }
-
- computeType();
-
- // only ONB-implementations for type 1 and type 2
- //
- if (mType < 3)
- {
- mMult = new int[mDegree][2];
- for (int i = 0; i < mDegree; i++)
- {
- mMult[i][0] = -1;
- mMult[i][1] = -1;
- }
- computeMultMatrix();
- }
- else
- {
- throw new RuntimeException("\nThe type of this field is "
- + mType);
- }
- computeFieldPolynomial();
- fields = new Vector();
- matrices = new Vector();
- }
-
- // /////////////////////////////////////////////////////////////////////
- // access
- // /////////////////////////////////////////////////////////////////////
-
- int getONBLength()
- {
- return mLength;
- }
-
- int getONBBit()
- {
- return mBit;
- }
-
- // /////////////////////////////////////////////////////////////////////
- // arithmetic
- // /////////////////////////////////////////////////////////////////////
-
- /**
- * Computes a random root of the given polynomial.
- *
- * @param polynomial a polynomial
- * @return a random root of the polynomial
- * @see "P1363 A.5.6, p103f"
- */
- protected GF2nElement getRandomRoot(GF2Polynomial polynomial)
- {
- // We are in B1!!!
- GF2nPolynomial c;
- GF2nPolynomial ut;
- GF2nElement u;
- GF2nPolynomial h;
- int hDegree;
- // 1. Set g(t) <- f(t)
- GF2nPolynomial g = new GF2nPolynomial(polynomial, this);
- int gDegree = g.getDegree();
- int i;
-
- // 2. while deg(g) > 1
- while (gDegree > 1)
- {
- do
- {
- // 2.1 choose random u (element of) GF(2^m)
- u = new GF2nONBElement(this, new Random());
- ut = new GF2nPolynomial(2, GF2nONBElement.ZERO(this));
- // 2.2 Set c(t) <- ut
- ut.set(1, u);
- c = new GF2nPolynomial(ut);
- // 2.3 For i from 1 to m-1 do
- for (i = 1; i <= mDegree - 1; i++)
- {
- // 2.3.1 c(t) <- (c(t)^2 + ut) mod g(t)
- c = c.multiplyAndReduce(c, g);
- c = c.add(ut);
- }
- // 2.4 set h(t) <- GCD(c(t), g(t))
- h = c.gcd(g);
- // 2.5 if h(t) is constant or deg(g) = deg(h) then go to
- // step 2.1
- hDegree = h.getDegree();
- gDegree = g.getDegree();
- }
- while ((hDegree == 0) || (hDegree == gDegree));
- // 2.6 If 2deg(h) > deg(g) then set g(t) <- g(t)/h(t) ...
- if ((hDegree << 1) > gDegree)
- {
- g = g.quotient(h);
- }
- else
- {
- // ... else g(t) <- h(t)
- g = new GF2nPolynomial(h);
- }
- gDegree = g.getDegree();
- }
- // 3. Output g(0)
- return g.at(0);
-
- }
-
- /**
- * Computes the change-of-basis matrix for basis conversion according to
- * 1363. The result is stored in the lists fields and matrices.
- *
- * @param B1 the GF2nField to convert to
- * @see "P1363 A.7.3, p111ff"
- */
- protected void computeCOBMatrix(GF2nField B1)
- {
- // we are in B0 here!
- if (mDegree != B1.mDegree)
- {
- throw new IllegalArgumentException(
- "GF2nField.computeCOBMatrix: B1 has a "
- + "different degree and thus cannot be coverted to!");
- }
- int i, j;
- GF2nElement[] gamma;
- GF2nElement u;
- GF2Polynomial[] COBMatrix = new GF2Polynomial[mDegree];
- for (i = 0; i < mDegree; i++)
- {
- COBMatrix[i] = new GF2Polynomial(mDegree);
- }
-
- // find Random Root
- do
- {
- // u is in representation according to B1
- u = B1.getRandomRoot(fieldPolynomial);
- }
- while (u.isZero());
-
- gamma = new GF2nPolynomialElement[mDegree];
- // build gamma matrix by squaring
- gamma[0] = (GF2nElement)u.clone();
- for (i = 1; i < mDegree; i++)
- {
- gamma[i] = gamma[i - 1].square();
- }
- // convert horizontal gamma matrix by vertical Bitstrings
- for (i = 0; i < mDegree; i++)
- {
- for (j = 0; j < mDegree; j++)
- {
- if (gamma[i].testBit(j))
- {
- COBMatrix[mDegree - j - 1].setBit(mDegree - i - 1);
- }
- }
- }
-
- fields.addElement(B1);
- matrices.addElement(COBMatrix);
- B1.fields.addElement(this);
- B1.matrices.addElement(invertMatrix(COBMatrix));
- }
-
- /**
- * Computes the field polynomial for a ONB according to IEEE 1363 A.7.2
- * (p110f).
- *
- * @see "P1363 A.7.2, p110f"
- */
- protected void computeFieldPolynomial()
- {
- if (mType == 1)
- {
- fieldPolynomial = new GF2Polynomial(mDegree + 1, "ALL");
- }
- else if (mType == 2)
- {
- // 1. q = 1
- GF2Polynomial q = new GF2Polynomial(mDegree + 1, "ONE");
- // 2. p = t+1
- GF2Polynomial p = new GF2Polynomial(mDegree + 1, "X");
- p.addToThis(q);
- GF2Polynomial r;
- int i;
- // 3. for i = 1 to (m-1) do
- for (i = 1; i < mDegree; i++)
- {
- // r <- q
- r = q;
- // q <- p
- q = p;
- // p = tq+r
- p = q.shiftLeft();
- p.addToThis(r);
- }
- fieldPolynomial = p;
- }
- }
-
- /**
- * Compute the inverse of a matrix <tt>a</tt>.
- *
- * @param a the matrix
- * @return <tt>a<sup>-1</sup></tt>
- */
- int[][] invMatrix(int[][] a)
- {
-
- int[][] A = new int[mDegree][mDegree];
- A = a;
- int[][] inv = new int[mDegree][mDegree];
-
- for (int i = 0; i < mDegree; i++)
- {
- inv[i][i] = 1;
- }
-
- for (int i = 0; i < mDegree; i++)
- {
- for (int j = i; j < mDegree; j++)
- {
- A[mDegree - 1 - i][j] = A[i][i];
- }
- }
- return null;
- }
-
- private void computeType()
- throws RuntimeException
- {
- if ((mDegree & 7) == 0)
- {
- throw new RuntimeException(
- "The extension degree is divisible by 8!");
- }
- // checking for the type
- int s = 0;
- int k = 0;
- mType = 1;
- for (int d = 0; d != 1; mType++)
- {
- s = mType * mDegree + 1;
- if (IntegerFunctions.isPrime(s))
- {
- k = IntegerFunctions.order(2, s);
- d = IntegerFunctions.gcd(mType * mDegree / k, mDegree);
- }
- }
- mType--;
- if (mType == 1)
- {
- s = (mDegree << 1) + 1;
- if (IntegerFunctions.isPrime(s))
- {
- k = IntegerFunctions.order(2, s);
- int d = IntegerFunctions.gcd((mDegree << 1) / k, mDegree);
- if (d == 1)
- {
- mType++;
- }
- }
- }
- }
-
- private void computeMultMatrix()
- {
-
- if ((mType & 7) != 0)
- {
- int p = mType * mDegree + 1;
-
- // compute sequence F[1] ... F[p-1] via A.3.7. of 1363.
- // F[0] will not be filled!
- //
- int[] F = new int[p];
-
- int u;
- if (mType == 1)
- {
- u = 1;
- }
- else if (mType == 2)
- {
- u = p - 1;
- }
- else
- {
- u = elementOfOrder(mType, p);
- }
-
- int w = 1;
- int n;
- for (int j = 0; j < mType; j++)
- {
- n = w;
-
- for (int i = 0; i < mDegree; i++)
- {
- F[n] = i;
- n = (n << 1) % p;
- if (n < 0)
- {
- n += p;
- }
- }
- w = u * w % p;
- if (w < 0)
- {
- w += p;
- }
- }
-
- // building the matrix (mDegree * 2)
- //
- if (mType == 1)
- {
- for (int k = 1; k < p - 1; k++)
- {
- if (mMult[F[k + 1]][0] == -1)
- {
- mMult[F[k + 1]][0] = F[p - k];
- }
- else
- {
- mMult[F[k + 1]][1] = F[p - k];
- }
- }
-
- int m_2 = mDegree >> 1;
- for (int k = 1; k <= m_2; k++)
- {
-
- if (mMult[k - 1][0] == -1)
- {
- mMult[k - 1][0] = m_2 + k - 1;
- }
- else
- {
- mMult[k - 1][1] = m_2 + k - 1;
- }
-
- if (mMult[m_2 + k - 1][0] == -1)
- {
- mMult[m_2 + k - 1][0] = k - 1;
- }
- else
- {
- mMult[m_2 + k - 1][1] = k - 1;
- }
- }
- }
- else if (mType == 2)
- {
- for (int k = 1; k < p - 1; k++)
- {
- if (mMult[F[k + 1]][0] == -1)
- {
- mMult[F[k + 1]][0] = F[p - k];
- }
- else
- {
- mMult[F[k + 1]][1] = F[p - k];
- }
- }
- }
- else
- {
- throw new RuntimeException("only type 1 or type 2 implemented");
- }
- }
- else
- {
- throw new RuntimeException("bisher nur fuer Gausssche Normalbasen"
- + " implementiert");
- }
- }
-
- private int elementOfOrder(int k, int p)
- {
- Random random = new Random();
- int m = 0;
- while (m == 0)
- {
- m = random.nextInt();
- m %= p - 1;
- if (m < 0)
- {
- m += p - 1;
- }
- }
-
- int l = IntegerFunctions.order(m, p);
-
- while (l % k != 0 || l == 0)
- {
- while (m == 0)
- {
- m = random.nextInt();
- m %= p - 1;
- if (m < 0)
- {
- m += p - 1;
- }
- }
- l = IntegerFunctions.order(m, p);
- }
- int r = m;
-
- l = k / l;
-
- for (int i = 2; i <= l; i++)
- {
- r *= m;
- }
-
- return r;
- }
-
-}