summaryrefslogtreecommitdiffstats
path: root/bcprov/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyPairGenerator.java
diff options
context:
space:
mode:
Diffstat (limited to 'bcprov/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyPairGenerator.java')
-rw-r--r--bcprov/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyPairGenerator.java417
1 files changed, 0 insertions, 417 deletions
diff --git a/bcprov/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyPairGenerator.java b/bcprov/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyPairGenerator.java
deleted file mode 100644
index 6b041cf..0000000
--- a/bcprov/src/main/java/org/bouncycastle/pqc/crypto/rainbow/RainbowKeyPairGenerator.java
+++ /dev/null
@@ -1,417 +0,0 @@
-package org.bouncycastle.pqc.crypto.rainbow;
-
-import java.security.SecureRandom;
-
-import org.bouncycastle.crypto.AsymmetricCipherKeyPair;
-import org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator;
-import org.bouncycastle.crypto.KeyGenerationParameters;
-import org.bouncycastle.pqc.crypto.rainbow.util.ComputeInField;
-import org.bouncycastle.pqc.crypto.rainbow.util.GF2Field;
-
-/**
- * This class implements AsymmetricCipherKeyPairGenerator. It is used
- * as a generator for the private and public key of the Rainbow Signature
- * Scheme.
- * <p>
- * Detailed information about the key generation is to be found in the paper of
- * Jintai Ding, Dieter Schmidt: Rainbow, a New Multivariable Polynomial
- * Signature Scheme. ACNS 2005: 164-175 (http://dx.doi.org/10.1007/11496137_12)
- */
-public class RainbowKeyPairGenerator
- implements AsymmetricCipherKeyPairGenerator
-{
- private boolean initialized = false;
- private SecureRandom sr;
- private RainbowKeyGenerationParameters rainbowParams;
-
- /* linear affine map L1: */
- private short[][] A1; // matrix of the lin. affine map L1(n-v1 x n-v1 matrix)
- private short[][] A1inv; // inverted A1
- private short[] b1; // translation element of the lin.affine map L1
-
- /* linear affine map L2: */
- private short[][] A2; // matrix of the lin. affine map (n x n matrix)
- private short[][] A2inv; // inverted A2
- private short[] b2; // translation elemt of the lin.affine map L2
-
- /* components of F: */
- private int numOfLayers; // u (number of sets S)
- private Layer layers[]; // layers of polynomials of F
- private int[] vi; // set of vinegar vars per layer.
-
- /* components of Public Key */
- private short[][] pub_quadratic; // quadratic(mixed) coefficients
- private short[][] pub_singular; // singular coefficients
- private short[] pub_scalar; // scalars
-
- // TODO
-
- /**
- * The standard constructor tries to generate the Rainbow algorithm identifier
- * with the corresponding OID.
- */
- public RainbowKeyPairGenerator()
- {
- }
-
-
- /**
- * This function generates a Rainbow key pair.
- *
- * @return the generated key pair
- */
- public AsymmetricCipherKeyPair genKeyPair()
- {
- RainbowPrivateKeyParameters privKey;
- RainbowPublicKeyParameters pubKey;
-
- if (!initialized)
- {
- initializeDefault();
- }
-
- /* choose all coefficients at random */
- keygen();
-
- /* now marshall them to PrivateKey */
- privKey = new RainbowPrivateKeyParameters(A1inv, b1, A2inv, b2, vi, layers);
-
-
- /* marshall to PublicKey */
- pubKey = new RainbowPublicKeyParameters(vi[vi.length - 1] - vi[0], pub_quadratic, pub_singular, pub_scalar);
-
- return new AsymmetricCipherKeyPair(pubKey, privKey);
- }
-
- // TODO
- public void initialize(
- KeyGenerationParameters param)
- {
- this.rainbowParams = (RainbowKeyGenerationParameters)param;
-
- // set source of randomness
- this.sr = new SecureRandom();
-
- // unmarshalling:
- this.vi = this.rainbowParams.getParameters().getVi();
- this.numOfLayers = this.rainbowParams.getParameters().getNumOfLayers();
-
- this.initialized = true;
- }
-
- private void initializeDefault()
- {
- RainbowKeyGenerationParameters rbKGParams = new RainbowKeyGenerationParameters(new SecureRandom(), new RainbowParameters());
- initialize(rbKGParams);
- }
-
- /**
- * This function calls the functions for the random generation of the coefficients
- * and the matrices needed for the private key and the method for computing the public key.
- */
- private void keygen()
- {
- generateL1();
- generateL2();
- generateF();
- computePublicKey();
- }
-
- /**
- * This function generates the invertible affine linear map L1 = A1*x + b1
- * <p>
- * The translation part b1, is stored in a separate array. The inverse of
- * the matrix-part of L1 A1inv is also computed here.
- * </p><p>
- * This linear map hides the output of the map F. It is on k^(n-v1).
- * </p>
- */
- private void generateL1()
- {
-
- // dimension = n-v1 = vi[last] - vi[first]
- int dim = vi[vi.length - 1] - vi[0];
- this.A1 = new short[dim][dim];
- this.A1inv = null;
- ComputeInField c = new ComputeInField();
-
- /* generation of A1 at random */
- while (A1inv == null)
- {
- for (int i = 0; i < dim; i++)
- {
- for (int j = 0; j < dim; j++)
- {
- A1[i][j] = (short)(sr.nextInt() & GF2Field.MASK);
- }
- }
- A1inv = c.inverse(A1);
- }
-
- /* generation of the translation vector at random */
- b1 = new short[dim];
- for (int i = 0; i < dim; i++)
- {
- b1[i] = (short)(sr.nextInt() & GF2Field.MASK);
- }
- }
-
- /**
- * This function generates the invertible affine linear map L2 = A2*x + b2
- * <p>
- * The translation part b2, is stored in a separate array. The inverse of
- * the matrix-part of L2 A2inv is also computed here.
- * </p><p>
- * This linear map hides the output of the map F. It is on k^(n).
- * </p>
- */
- private void generateL2()
- {
-
- // dimension = n = vi[last]
- int dim = vi[vi.length - 1];
- this.A2 = new short[dim][dim];
- this.A2inv = null;
- ComputeInField c = new ComputeInField();
-
- /* generation of A2 at random */
- while (this.A2inv == null)
- {
- for (int i = 0; i < dim; i++)
- {
- for (int j = 0; j < dim; j++)
- { // one col extra for b
- A2[i][j] = (short)(sr.nextInt() & GF2Field.MASK);
- }
- }
- this.A2inv = c.inverse(A2);
- }
- /* generation of the translation vector at random */
- b2 = new short[dim];
- for (int i = 0; i < dim; i++)
- {
- b2[i] = (short)(sr.nextInt() & GF2Field.MASK);
- }
-
- }
-
- /**
- * This function generates the private map F, which consists of u-1 layers.
- * Each layer consists of oi polynomials where oi = vi[i+1]-vi[i].
- * <p>
- * The methods for the generation of the coefficients of these polynomials
- * are called here.
- * </p>
- */
- private void generateF()
- {
-
- this.layers = new Layer[this.numOfLayers];
- for (int i = 0; i < this.numOfLayers; i++)
- {
- layers[i] = new Layer(this.vi[i], this.vi[i + 1], sr);
- }
- }
-
- /**
- * This function computes the public key from the private key.
- * <p>
- * The composition of F with L2 is computed, followed by applying L1 to the
- * composition's result. The singular and scalar values constitute to the
- * public key as is, the quadratic terms are compacted in
- * <tt>compactPublicKey()</tt>
- * </p>
- */
- private void computePublicKey()
- {
-
- ComputeInField c = new ComputeInField();
- int rows = this.vi[this.vi.length - 1] - this.vi[0];
- int vars = this.vi[this.vi.length - 1];
- // Fpub
- short[][][] coeff_quadratic_3dim = new short[rows][vars][vars];
- this.pub_singular = new short[rows][vars];
- this.pub_scalar = new short[rows];
-
- // Coefficients of layers of Private Key F
- short[][][] coeff_alpha;
- short[][][] coeff_beta;
- short[][] coeff_gamma;
- short[] coeff_eta;
-
- // Needed for counters;
- int oils = 0;
- int vins = 0;
- int crnt_row = 0; // current row (polynomial)
-
- short vect_tmp[] = new short[vars]; // vector tmp;
- short sclr_tmp = 0;
-
- // Composition of F and L2: Insert L2 = A2*x+b2 in F
- for (int l = 0; l < this.layers.length; l++)
- {
- // get coefficients of current layer
- coeff_alpha = this.layers[l].getCoeffAlpha();
- coeff_beta = this.layers[l].getCoeffBeta();
- coeff_gamma = this.layers[l].getCoeffGamma();
- coeff_eta = this.layers[l].getCoeffEta();
- oils = coeff_alpha[0].length;// this.layers[l].getOi();
- vins = coeff_beta[0].length;// this.layers[l].getVi();
- // compute polynomials of layer
- for (int p = 0; p < oils; p++)
- {
- // multiply alphas
- for (int x1 = 0; x1 < oils; x1++)
- {
- for (int x2 = 0; x2 < vins; x2++)
- {
- // multiply polynomial1 with polynomial2
- vect_tmp = c.multVect(coeff_alpha[p][x1][x2],
- this.A2[x1 + vins]);
- coeff_quadratic_3dim[crnt_row + p] = c.addSquareMatrix(
- coeff_quadratic_3dim[crnt_row + p], c
- .multVects(vect_tmp, this.A2[x2]));
- // mul poly1 with scalar2
- vect_tmp = c.multVect(this.b2[x2], vect_tmp);
- this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
- this.pub_singular[crnt_row + p]);
- // mul scalar1 with poly2
- vect_tmp = c.multVect(coeff_alpha[p][x1][x2],
- this.A2[x2]);
- vect_tmp = c.multVect(b2[x1 + vins], vect_tmp);
- this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
- this.pub_singular[crnt_row + p]);
- // mul scalar1 with scalar2
- sclr_tmp = GF2Field.multElem(coeff_alpha[p][x1][x2],
- this.b2[x1 + vins]);
- this.pub_scalar[crnt_row + p] = GF2Field.addElem(
- this.pub_scalar[crnt_row + p], GF2Field
- .multElem(sclr_tmp, this.b2[x2]));
- }
- }
- // multiply betas
- for (int x1 = 0; x1 < vins; x1++)
- {
- for (int x2 = 0; x2 < vins; x2++)
- {
- // multiply polynomial1 with polynomial2
- vect_tmp = c.multVect(coeff_beta[p][x1][x2],
- this.A2[x1]);
- coeff_quadratic_3dim[crnt_row + p] = c.addSquareMatrix(
- coeff_quadratic_3dim[crnt_row + p], c
- .multVects(vect_tmp, this.A2[x2]));
- // mul poly1 with scalar2
- vect_tmp = c.multVect(this.b2[x2], vect_tmp);
- this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
- this.pub_singular[crnt_row + p]);
- // mul scalar1 with poly2
- vect_tmp = c.multVect(coeff_beta[p][x1][x2],
- this.A2[x2]);
- vect_tmp = c.multVect(this.b2[x1], vect_tmp);
- this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
- this.pub_singular[crnt_row + p]);
- // mul scalar1 with scalar2
- sclr_tmp = GF2Field.multElem(coeff_beta[p][x1][x2],
- this.b2[x1]);
- this.pub_scalar[crnt_row + p] = GF2Field.addElem(
- this.pub_scalar[crnt_row + p], GF2Field
- .multElem(sclr_tmp, this.b2[x2]));
- }
- }
- // multiply gammas
- for (int n = 0; n < vins + oils; n++)
- {
- // mul poly with scalar
- vect_tmp = c.multVect(coeff_gamma[p][n], this.A2[n]);
- this.pub_singular[crnt_row + p] = c.addVect(vect_tmp,
- this.pub_singular[crnt_row + p]);
- // mul scalar with scalar
- this.pub_scalar[crnt_row + p] = GF2Field.addElem(
- this.pub_scalar[crnt_row + p], GF2Field.multElem(
- coeff_gamma[p][n], this.b2[n]));
- }
- // add eta
- this.pub_scalar[crnt_row + p] = GF2Field.addElem(
- this.pub_scalar[crnt_row + p], coeff_eta[p]);
- }
- crnt_row = crnt_row + oils;
- }
-
- // Apply L1 = A1*x+b1 to composition of F and L2
- {
- // temporary coefficient arrays
- short[][][] tmp_c_quad = new short[rows][vars][vars];
- short[][] tmp_c_sing = new short[rows][vars];
- short[] tmp_c_scal = new short[rows];
- for (int r = 0; r < rows; r++)
- {
- for (int q = 0; q < A1.length; q++)
- {
- tmp_c_quad[r] = c.addSquareMatrix(tmp_c_quad[r], c
- .multMatrix(A1[r][q], coeff_quadratic_3dim[q]));
- tmp_c_sing[r] = c.addVect(tmp_c_sing[r], c.multVect(
- A1[r][q], this.pub_singular[q]));
- tmp_c_scal[r] = GF2Field.addElem(tmp_c_scal[r], GF2Field
- .multElem(A1[r][q], this.pub_scalar[q]));
- }
- tmp_c_scal[r] = GF2Field.addElem(tmp_c_scal[r], b1[r]);
- }
- // set public key
- coeff_quadratic_3dim = tmp_c_quad;
- this.pub_singular = tmp_c_sing;
- this.pub_scalar = tmp_c_scal;
- }
- compactPublicKey(coeff_quadratic_3dim);
- }
-
- /**
- * The quadratic (or mixed) terms of the public key are compacted from a n x
- * n matrix per polynomial to an upper diagonal matrix stored in one integer
- * array of n (n + 1) / 2 elements per polynomial. The ordering of elements
- * is lexicographic and the result is updating <tt>this.pub_quadratic</tt>,
- * which stores the quadratic elements of the public key.
- *
- * @param coeff_quadratic_to_compact 3-dimensional array containing a n x n Matrix for each of the
- * n - v1 polynomials
- */
- private void compactPublicKey(short[][][] coeff_quadratic_to_compact)
- {
- int polynomials = coeff_quadratic_to_compact.length;
- int n = coeff_quadratic_to_compact[0].length;
- int entries = n * (n + 1) / 2;// the small gauss
- this.pub_quadratic = new short[polynomials][entries];
- int offset = 0;
-
- for (int p = 0; p < polynomials; p++)
- {
- offset = 0;
- for (int x = 0; x < n; x++)
- {
- for (int y = x; y < n; y++)
- {
- if (y == x)
- {
- this.pub_quadratic[p][offset] = coeff_quadratic_to_compact[p][x][y];
- }
- else
- {
- this.pub_quadratic[p][offset] = GF2Field.addElem(
- coeff_quadratic_to_compact[p][x][y],
- coeff_quadratic_to_compact[p][y][x]);
- }
- offset++;
- }
- }
- }
- }
-
- public void init(KeyGenerationParameters param)
- {
- this.initialize(param);
- }
-
- public AsymmetricCipherKeyPair generateKeyPair()
- {
- return genKeyPair();
- }
-}