summaryrefslogtreecommitdiffstats
path: root/libSBRdec/src/transcendent.h
blob: f0ee21edacc40622796e182b265ddfa4f6925593 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

/* -----------------------------------------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
  All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
This FDK AAC Codec software is intended to be used on a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
of the MPEG specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
individually for the purpose of encoding or decoding bit streams in products that are compliant with
the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
software may already be covered under those patent licenses when it is used for those licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
applications information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification, are permitted without
payment of copyright license fees provided that you satisfy the following conditions:

You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation and/or other materials
provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived from this library without
prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
and the date of any change. For modified versions of the FDK AAC Codec, the term
"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
respect to this software.

You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
or business interruption, however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of this software, even if
advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------------------------------------- */

/*!
  \file
  \brief  FDK Fixed Point Arithmetic Library Interface  
*/

#ifndef __TRANSCENDENT_H
#define __TRANSCENDENT_H

#include "sbrdecoder.h"
#include "sbr_rom.h"

/************************************************************************/
/*!
  \brief   Get number of octaves between frequencies a and b

  The Result is scaled with 1/8.
  The valid range for a and b is 1 to LOG_DUALIS_TABLE_SIZE.

  \return   ld(a/b) / 8
*/
/************************************************************************/
static inline FIXP_SGL FDK_getNumOctavesDiv8(INT a, /*!< lower band */
                                             INT b) /*!< upper band */
{
  return ( (SHORT)((LONG)(CalcLdInt(b) - CalcLdInt(a))>>(FRACT_BITS-3)) );
}


/************************************************************************/
/*!
  \brief   Add two values given by mantissa and exponent.

  Mantissas are in fract format with values between 0 and 1. <br>
  The base for exponents is 2.  Example:  \f$  a = a\_m * 2^{a\_e}  \f$<br>
*/
/************************************************************************/
inline void FDK_add_MantExp(FIXP_SGL a_m, /*!< Mantissa of 1st operand a */
                     SCHAR     a_e,       /*!< Exponent of 1st operand a */
                     FIXP_SGL  b_m,       /*!< Mantissa of 2nd operand b */
                     SCHAR     b_e,       /*!< Exponent of 2nd operand b */
                     FIXP_SGL *ptrSum_m,  /*!< Mantissa of result */
                     SCHAR    *ptrSum_e)  /*!< Exponent of result */
{
  FIXP_DBL accu;
  int   shift;
  int   shiftAbs;

  FIXP_DBL shiftedMantissa;
  FIXP_DBL otherMantissa;

  /* Equalize exponents of the summands.
     For the smaller summand, the exponent is adapted and
     for compensation, the mantissa is shifted right. */

  shift = (int)(a_e - b_e);

  shiftAbs = (shift>0)? shift : -shift;
  shiftAbs = (shiftAbs < DFRACT_BITS-1)? shiftAbs : DFRACT_BITS-1;
  shiftedMantissa = (shift>0)? (FX_SGL2FX_DBL(b_m) >> shiftAbs) : (FX_SGL2FX_DBL(a_m) >> shiftAbs);
  otherMantissa = (shift>0)? FX_SGL2FX_DBL(a_m) : FX_SGL2FX_DBL(b_m);
  *ptrSum_e = (shift>0)? a_e : b_e;

  accu = (shiftedMantissa >> 1) + (otherMantissa >> 1);
  /* shift by 1 bit to avoid overflow */

  if ( (accu >= (FL2FXCONST_DBL(0.5f) - (FIXP_DBL)1)) || (accu <= FL2FXCONST_DBL(-0.5f)) )
    *ptrSum_e += 1;
  else
    accu = (shiftedMantissa + otherMantissa);

  *ptrSum_m = FX_DBL2FX_SGL(accu);

}

inline void FDK_add_MantExp(FIXP_DBL a,   /*!< Mantissa of 1st operand a */
                     SCHAR     a_e,       /*!< Exponent of 1st operand a */
                     FIXP_DBL  b,         /*!< Mantissa of 2nd operand b */
                     SCHAR     b_e,       /*!< Exponent of 2nd operand b */
                     FIXP_DBL *ptrSum,    /*!< Mantissa of result */
                     SCHAR    *ptrSum_e)  /*!< Exponent of result */
{
  FIXP_DBL accu;
  int   shift;
  int   shiftAbs;

  FIXP_DBL shiftedMantissa;
  FIXP_DBL otherMantissa;

  /* Equalize exponents of the summands.
     For the smaller summand, the exponent is adapted and
     for compensation, the mantissa is shifted right. */

  shift = (int)(a_e - b_e);

  shiftAbs = (shift>0)? shift : -shift;
  shiftAbs = (shiftAbs < DFRACT_BITS-1)? shiftAbs : DFRACT_BITS-1;
  shiftedMantissa = (shift>0)? (b >> shiftAbs) : (a >> shiftAbs);
  otherMantissa = (shift>0)? a : b;
  *ptrSum_e = (shift>0)? a_e : b_e;

  accu = (shiftedMantissa >> 1) + (otherMantissa >> 1);
  /* shift by 1 bit to avoid overflow */

  if ( (accu >= (FL2FXCONST_DBL(0.5f) - (FIXP_DBL)1)) || (accu <= FL2FXCONST_DBL(-0.5f)) )
    *ptrSum_e += 1;
  else
    accu = (shiftedMantissa + otherMantissa);

  *ptrSum = accu;

}

/************************************************************************/
/*!
  \brief   Divide two values given by mantissa and exponent.

  Mantissas are in fract format with values between 0 and 1. <br>
  The base for exponents is 2.  Example:  \f$  a = a\_m * 2^{a\_e}  \f$<br>

  For performance reasons, the division is based on a table lookup
  which limits accuracy.
*/
/************************************************************************/
static inline void FDK_divide_MantExp(FIXP_SGL a_m,           /*!< Mantissa of dividend a */
                                      SCHAR     a_e,          /*!< Exponent of dividend a */
                                      FIXP_SGL  b_m,          /*!< Mantissa of divisor b */
                                      SCHAR     b_e,          /*!< Exponent of divisor b */
                                      FIXP_SGL *ptrResult_m,  /*!< Mantissa of quotient a/b */
                                      SCHAR    *ptrResult_e)  /*!< Exponent of quotient a/b */

{
  int preShift, postShift, index, shift;
  FIXP_DBL ratio_m;
  FIXP_SGL  bInv_m = FL2FXCONST_SGL(0.0f);

  preShift = CntLeadingZeros(FX_SGL2FX_DBL(b_m));

  /*
    Shift b into the range from 0..INV_TABLE_SIZE-1,

    E.g. 10 bits must be skipped for INV_TABLE_BITS 8:
    - leave 8 bits as index for table
    - skip sign bit,
    - skip first bit of mantissa, because this is always the same (>0.5)

    We are dealing with energies, so we need not care
    about negative numbers
  */

  /*
    The first interval has half width so the lowest bit of the index is
    needed for a doubled resolution.
  */
  shift = (FRACT_BITS - 2 - INV_TABLE_BITS - preShift);

  index = (shift<0)? (LONG)b_m << (-shift) : (LONG)b_m >> shift;


  /* The index has INV_TABLE_BITS +1 valid bits here. Clear the other bits. */
  index &= (1 << (INV_TABLE_BITS+1)) - 1;

    /* Remove offset of half an interval */
  index--;

    /* Now the lowest bit is shifted out */
  index = index >> 1;

    /* Fetch inversed mantissa from table: */
  bInv_m = (index<0)? bInv_m : FDK_sbrDecoder_invTable[index];

    /* Multiply a with the inverse of b: */
  ratio_m = (index<0)? FX_SGL2FX_DBL(a_m >> 1) : fMultDiv2(bInv_m,a_m);

  postShift = CntLeadingZeros(ratio_m)-1;

  *ptrResult_m = FX_DBL2FX_SGL(ratio_m << postShift);
  *ptrResult_e = a_e - b_e + 1 + preShift - postShift;
}

static inline void FDK_divide_MantExp(FIXP_DBL a_m,           /*!< Mantissa of dividend a */
                                      SCHAR     a_e,          /*!< Exponent of dividend a */
                                      FIXP_DBL  b_m,          /*!< Mantissa of divisor b */
                                      SCHAR     b_e,          /*!< Exponent of divisor b */
                                      FIXP_DBL *ptrResult_m,  /*!< Mantissa of quotient a/b */
                                      SCHAR    *ptrResult_e)  /*!< Exponent of quotient a/b */

{
  int preShift, postShift, index, shift;
  FIXP_DBL ratio_m;
  FIXP_SGL  bInv_m = FL2FXCONST_SGL(0.0f);

  preShift = CntLeadingZeros(b_m);

  /*
    Shift b into the range from 0..INV_TABLE_SIZE-1,

    E.g. 10 bits must be skipped for INV_TABLE_BITS 8:
    - leave 8 bits as index for table
    - skip sign bit,
    - skip first bit of mantissa, because this is always the same (>0.5)

    We are dealing with energies, so we need not care
    about negative numbers
  */

  /*
    The first interval has half width so the lowest bit of the index is
    needed for a doubled resolution.
  */
  shift = (DFRACT_BITS - 2 - INV_TABLE_BITS - preShift);

  index = (shift<0)? (LONG)b_m << (-shift) : (LONG)b_m >> shift;


  /* The index has INV_TABLE_BITS +1 valid bits here. Clear the other bits. */
  index &= (1 << (INV_TABLE_BITS+1)) - 1;

    /* Remove offset of half an interval */
  index--;

    /* Now the lowest bit is shifted out */
  index = index >> 1;

    /* Fetch inversed mantissa from table: */
  bInv_m = (index<0)? bInv_m : FDK_sbrDecoder_invTable[index];

    /* Multiply a with the inverse of b: */
  ratio_m = (index<0)? (a_m >> 1) : fMultDiv2(bInv_m,a_m);

  postShift = CntLeadingZeros(ratio_m)-1;

  *ptrResult_m = ratio_m << postShift;
  *ptrResult_e = a_e - b_e + 1 + preShift - postShift;
}

/*!
  \brief   Calculate the squareroot of a number given by mantissa and exponent

  Mantissa is in fract format with values between 0 and 1. <br>
  The base for the exponent is 2.  Example:  \f$  a = a\_m * 2^{a\_e}  \f$<br>
  The operand is addressed via pointers and will be overwritten with the result.

  For performance reasons, the square root is based on a table lookup
  which limits accuracy.
*/
static inline void FDK_sqrt_MantExp(FIXP_DBL *mantissa,    /*!< Pointer to mantissa */
                                    SCHAR    *exponent,
                                    const SCHAR *destScale)
{
  FIXP_DBL input_m = *mantissa;
  int   input_e = (int) *exponent;
  FIXP_DBL result = FL2FXCONST_DBL(0.0f);
  int    result_e = -FRACT_BITS;

  /* Call lookup square root, which does internally normalization. */
  result   = sqrtFixp_lookup(input_m, &input_e);
  result_e = input_e;

  /* Write result */
  if (exponent==destScale) {
    *mantissa = result;
    *exponent = result_e;
  } else {
    int shift = result_e - *destScale;
    *mantissa = (shift>=0) ? result << (INT)fixMin(DFRACT_BITS-1,shift)
                           : result >> (INT)fixMin(DFRACT_BITS-1,-shift);
    *exponent = *destScale;
  }
}


#endif