/* ----------------------------------------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android © Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. All rights reserved. 1. INTRODUCTION The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. This FDK AAC Codec software is intended to be used on a wide variety of Android devices. AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part of the MPEG specifications. Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners individually for the purpose of encoding or decoding bit streams in products that are compliant with the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec software may already be covered under those patent licenses when it is used for those licensed purposes only. Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional applications information and documentation. 2. COPYRIGHT LICENSE Redistribution and use in source and binary forms, with or without modification, are permitted without payment of copyright license fees provided that you satisfy the following conditions: You must retain the complete text of this software license in redistributions of the FDK AAC Codec or your modifications thereto in source code form. You must retain the complete text of this software license in the documentation and/or other materials provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. You must make available free of charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. The name of Fraunhofer may not be used to endorse or promote products derived from this library without prior written permission. You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec software or your modifications thereto. Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software and the date of any change. For modified versions of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 3. NO PATENT LICENSE NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with respect to this software. You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, including but not limited to procurement of substitute goods or services; loss of use, data, or profits, or business interruption, however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence), arising in any way out of the use of this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION Fraunhofer Institute for Integrated Circuits IIS Attention: Audio and Multimedia Departments - FDK AAC LL Am Wolfsmantel 33 91058 Erlangen, Germany www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ----------------------------------------------------------------------------------------------------------- */ /******************************** MPEG Audio Encoder ************************** Initial author: M. Werner contents/description: Scale factor estimation ******************************************************************************/ #include "sf_estim.h" #include "aacEnc_rom.h" #include "quantize.h" #include "bit_cnt.h" #define AS_PE_FAC_SHIFT 7 #define DIST_FAC_SHIFT 3 #define AS_PE_FAC_FLOAT (float)(1 << AS_PE_FAC_SHIFT) static const INT MAX_SCF_DELTA = 60; static const FIXP_DBL PE_C1 = FL2FXCONST_DBL(3.0f/AS_PE_FAC_FLOAT); /* (log(8.0)/log(2)) >> AS_PE_FAC_SHIFT */ static const FIXP_DBL PE_C2 = FL2FXCONST_DBL(1.3219281f/AS_PE_FAC_FLOAT); /* (log(2.5)/log(2)) >> AS_PE_FAC_SHIFT */ static const FIXP_DBL PE_C3 = FL2FXCONST_DBL(0.5593573f); /* 1-C2/C1 */ /* Function; FDKaacEnc_FDKaacEnc_CalcFormFactorChannel Description: Calculates the formfactor sf: scale factor of the mdct spectrum sfbFormFactorLdData is scaled with the factor 1/(((2^sf)^0.5) * (2^FORM_FAC_SHIFT)) */ static void FDKaacEnc_FDKaacEnc_CalcFormFactorChannel(FIXP_DBL *RESTRICT sfbFormFactorLdData, PSY_OUT_CHANNEL *RESTRICT psyOutChan) { INT j, sfb, sfbGrp; FIXP_DBL formFactor; int tmp0 = psyOutChan->sfbCnt; int tmp1 = psyOutChan->maxSfbPerGroup; int step = psyOutChan->sfbPerGroup; for(sfbGrp = 0; sfbGrp < tmp0; sfbGrp += step) { for (sfb = 0; sfb < tmp1; sfb++) { formFactor = FL2FXCONST_DBL(0.0f); /* calc sum of sqrt(spec) */ for(j=psyOutChan->sfbOffsets[sfbGrp+sfb]; jsfbOffsets[sfbGrp+sfb+1]; j++ ) { formFactor += sqrtFixp(fixp_abs(psyOutChan->mdctSpectrum[j]))>>FORM_FAC_SHIFT; } sfbFormFactorLdData[sfbGrp+sfb] = CalcLdData(formFactor); } /* set sfbFormFactor for sfbs with zero spec to zero. Just for debugging. */ for ( ; sfb < psyOutChan->sfbPerGroup; sfb++) { sfbFormFactorLdData[sfbGrp+sfb] = FL2FXCONST_DBL(-1.0f); } } } /* Function: FDKaacEnc_CalcFormFactor Description: Calls FDKaacEnc_FDKaacEnc_CalcFormFactorChannel() for each channel */ void FDKaacEnc_CalcFormFactor(QC_OUT_CHANNEL *qcOutChannel[(2)], PSY_OUT_CHANNEL *psyOutChannel[(2)], const INT nChannels) { INT j; for (j=0; jsfbFormFactorLdData, psyOutChannel[j]); } } /* Function: FDKaacEnc_calcSfbRelevantLines Description: Calculates sfbNRelevantLines sfbNRelevantLines is scaled with the factor 1/((2^FORM_FAC_SHIFT) * 2.0) */ static void FDKaacEnc_calcSfbRelevantLines( const FIXP_DBL *const sfbFormFactorLdData, const FIXP_DBL *const sfbEnergyLdData, const FIXP_DBL *const sfbThresholdLdData, const INT *const sfbOffsets, const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup, FIXP_DBL *sfbNRelevantLines) { INT sfbOffs, sfb; FIXP_DBL sfbWidthLdData; FIXP_DBL asPeFacLdData = FL2FXCONST_DBL(0.109375); /* AS_PE_FAC_SHIFT*ld64(2) */ FIXP_DBL accu; /* sfbNRelevantLines[i] = 2^( (sfbFormFactorLdData[i] - 0.25 * (sfbEnergyLdData[i] - ld64(sfbWidth[i]/(2^7)) - AS_PE_FAC_SHIFT*ld64(2)) * 64); */ FDKmemclear(sfbNRelevantLines, sfbCnt * sizeof(FIXP_DBL)); for (sfbOffs=0; sfbOffs (FIXP_DBL)sfbThresholdLdData[sfbOffs+sfb]) { INT sfbWidth = sfbOffsets[sfbOffs+sfb+1] - sfbOffsets[sfbOffs+sfb]; /* avgFormFactorLdData = sqrtFixp(sqrtFixp(sfbEnergyLdData[sfbOffs+sfb]/sfbWidth)); */ /* sfbNRelevantLines[sfbOffs+sfb] = sfbFormFactor[sfbOffs+sfb] / avgFormFactorLdData; */ sfbWidthLdData = (FIXP_DBL)(sfbWidth << (DFRACT_BITS-1-AS_PE_FAC_SHIFT)); sfbWidthLdData = CalcLdData(sfbWidthLdData); accu = sfbEnergyLdData[sfbOffs+sfb] - sfbWidthLdData - asPeFacLdData; accu = sfbFormFactorLdData[sfbOffs+sfb] - (accu >> 2); sfbNRelevantLines[sfbOffs+sfb] = CalcInvLdData(accu) >> 1; } } } } /* Function: FDKaacEnc_countSingleScfBits Description: scfBitsFract is scaled by 1/(2^(2*AS_PE_FAC_SHIFT)) */ static FIXP_DBL FDKaacEnc_countSingleScfBits(INT scf, INT scfLeft, INT scfRight) { FIXP_DBL scfBitsFract; scfBitsFract = (FIXP_DBL) ( FDKaacEnc_bitCountScalefactorDelta(scfLeft-scf) + FDKaacEnc_bitCountScalefactorDelta(scf-scfRight) ); scfBitsFract = scfBitsFract << (DFRACT_BITS-1-(2*AS_PE_FAC_SHIFT)); return scfBitsFract; /* output scaled by 1/(2^(2*AS_PE_FAC)) */ } /* Function: FDKaacEnc_calcSingleSpecPe specPe is scaled by 1/(2^(2*AS_PE_FAC_SHIFT)) */ static FIXP_DBL FDKaacEnc_calcSingleSpecPe(INT scf, FIXP_DBL sfbConstPePart, FIXP_DBL nLines) { FIXP_DBL specPe = FL2FXCONST_DBL(0.0f); FIXP_DBL ldRatio; FIXP_DBL scfFract; scfFract = (FIXP_DBL)(scf << (DFRACT_BITS-1-AS_PE_FAC_SHIFT)); ldRatio = sfbConstPePart - fMult(FL2FXCONST_DBL(0.375f),scfFract); if (ldRatio >= PE_C1) { specPe = fMult(FL2FXCONST_DBL(0.7f),fMult(nLines,ldRatio)); } else { specPe = fMult(FL2FXCONST_DBL(0.7f),fMult(nLines,(PE_C2 + fMult(PE_C3,ldRatio)))); } return specPe; /* output scaled by 1/(2^(2*AS_PE_FAC)) */ } /* Function: FDKaacEnc_countScfBitsDiff scfBitsDiff is scaled by 1/(2^(2*AS_PE_FAC_SHIFT)) */ static FIXP_DBL FDKaacEnc_countScfBitsDiff(INT *scfOld, INT *scfNew, INT sfbCnt, INT startSfb, INT stopSfb) { FIXP_DBL scfBitsFract; INT scfBitsDiff = 0; INT sfb = 0, sfbLast; INT sfbPrev, sfbNext; /* search for first relevant sfb */ sfbLast = startSfb; while ((sfbLast=0) && (scfOld[sfbPrev]==FDK_INT_MIN)) sfbPrev--; if (sfbPrev>=0) scfBitsDiff += FDKaacEnc_bitCountScalefactorDelta(scfNew[sfbPrev]-scfNew[sfbLast]) - FDKaacEnc_bitCountScalefactorDelta(scfOld[sfbPrev]-scfOld[sfbLast]); /* now loop through all sfbs and count diffs of relevant sfbs */ for (sfb=sfbLast+1; sfbsfbEnergy[sfb] * 6.75f / sfbFormFactor[sfb]) * LOG2_1; */ /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for log2 */ /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */ if (sfbConstPePart[sfb] == (FIXP_DBL)FDK_INT_MIN) sfbConstPePart[sfb] = ((psyOutChan->sfbEnergyLdData[sfb] - sfbFormFactorLdData[sfb] - FL2FXCONST_DBL(0.09375f)) >> 1) + FL2FXCONST_DBL(0.02152255861f); scfFract = (FIXP_DBL) (scfOld[sfb] << (DFRACT_BITS-1-AS_PE_FAC_SHIFT)); ldRatioOld = sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f),scfFract); scfFract = (FIXP_DBL) (scfNew[sfb] << (DFRACT_BITS-1-AS_PE_FAC_SHIFT)); ldRatioNew = sfbConstPePart[sfb] - fMult(FL2FXCONST_DBL(0.375f),scfFract); if (ldRatioOld >= PE_C1) pOld = ldRatioOld; else pOld = PE_C2 + fMult(PE_C3,ldRatioOld); if (ldRatioNew >= PE_C1) pNew = ldRatioNew; else pNew = PE_C2 + fMult(PE_C3,ldRatioNew); specPeDiff += fMult(FL2FXCONST_DBL(0.7f),fMult(sfbNRelevantLines[sfb],(pNew - pOld))); } } return specPeDiff; } /* Function: FDKaacEnc_improveScf Description: Calculate the distortion by quantization and inverse quantization of the spectrum with various scalefactors. The scalefactor which provides the best results will be used. */ static INT FDKaacEnc_improveScf(FIXP_DBL *spec, SHORT *quantSpec, SHORT *quantSpecTmp, INT sfbWidth, FIXP_DBL threshLdData, INT scf, INT minScf, FIXP_DBL *distLdData, INT *minScfCalculated ) { FIXP_DBL sfbDistLdData; INT scfBest = scf; INT k; FIXP_DBL distFactorLdData = FL2FXCONST_DBL(-0.0050301265); /* ld64(1/1.25) */ /* calc real distortion */ sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpec, sfbWidth, scf); *minScfCalculated = scf; /* nmr > 1.25 -> try to improve nmr */ if (sfbDistLdData > (threshLdData-distFactorLdData)) { INT scfEstimated = scf; FIXP_DBL sfbDistBestLdData = sfbDistLdData; INT cnt; /* improve by bigger scf ? */ cnt = 0; while ((sfbDistLdData > (threshLdData-distFactorLdData)) && (cnt++ < 3)) { scf++; sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf); if (sfbDistLdData < sfbDistBestLdData) { scfBest = scf; sfbDistBestLdData = sfbDistLdData; for (k=0; k (threshLdData-distFactorLdData)) && (cnt++ < 1) && (scf > minScf)) { scf--; sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf); if (sfbDistLdData < sfbDistBestLdData) { scfBest = scf; sfbDistBestLdData = sfbDistLdData; for (k=0; k try to find bigger scf to use less bits */ FIXP_DBL sfbDistBestLdData = sfbDistLdData; FIXP_DBL sfbDistAllowedLdData = fixMin(sfbDistLdData-distFactorLdData,threshLdData); int cnt; for (cnt=0; cnt<3; cnt++) { scf++; sfbDistLdData = FDKaacEnc_calcSfbDist(spec, quantSpecTmp, sfbWidth, scf); if (sfbDistLdData < sfbDistAllowedLdData) { *minScfCalculated = scfBest+1; scfBest = scf; sfbDistBestLdData = sfbDistLdData; for (k=0; ksfbCnt; i++) { prevScfLast[i] = FDK_INT_MAX; prevScfNext[i] = FDK_INT_MAX; deltaPeLast[i] = (FIXP_DBL)FDK_INT_MAX; } sfbLast = -1; sfbAct = -1; sfbNext = -1; scfLast = 0; scfNext = 0; scfMin = FDK_INT_MAX; scfMax = FDK_INT_MAX; do { /* search for new relevant sfb */ sfbNext++; while ((sfbNext < psyOutChan->sfbCnt) && (scf[sfbNext] == FDK_INT_MIN)) sfbNext++; if ((sfbLast>=0) && (sfbAct>=0) && (sfbNextsfbCnt)) { /* relevant scfs to the left and to the right */ scfAct = scf[sfbAct]; scfLast = scf + sfbLast; scfNext = scf + sfbNext; scfMin = fixMin(*scfLast, *scfNext); scfMax = fixMax(*scfLast, *scfNext); } else if ((sfbLast==-1) && (sfbAct>=0) && (sfbNextsfbCnt)) { /* first relevant scf */ scfAct = scf[sfbAct]; scfLast = &scfAct; scfNext = scf + sfbNext; scfMin = *scfNext; scfMax = *scfNext; } else if ((sfbLast>=0) && (sfbAct>=0) && (sfbNext==psyOutChan->sfbCnt)) { /* last relevant scf */ scfAct = scf[sfbAct]; scfLast = scf + sfbLast; scfNext = &scfAct; scfMin = *scfLast; scfMax = *scfLast; } if (sfbAct>=0) scfMin = fixMax(scfMin, minScf[sfbAct]); if ((sfbAct >= 0) && (sfbLast>=0 || sfbNextsfbCnt) && (scfAct > scfMin) && (scfAct <= scfMin+MAX_SCF_DELTA) && (scfAct >= scfMax-MAX_SCF_DELTA) && (*scfLast != prevScfLast[sfbAct] || *scfNext != prevScfNext[sfbAct] || deltaPe < deltaPeLast[sfbAct])) { /* bigger than neighbouring scf found, try to use smaller scf */ success = 0; sfbWidth = psyOutChan->sfbOffsets[sfbAct+1] - psyOutChan->sfbOffsets[sfbAct]; sfbOffs = psyOutChan->sfbOffsets[sfbAct]; /* estimate required bits for actual scf */ enLdData = qcOutChannel->sfbEnergyLdData[sfbAct]; /* sfbConstPePart[sfbAct] = (float)log(6.75f*en/sfbFormFactor[sfbAct]) * LOG2_1; */ /* 0.02152255861f = log(6.75)/log(2)/AS_PE_FAC_FLOAT; LOG2_1 is 1.0 for log2 */ /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */ if (sfbConstPePart[sfbAct] == (FIXP_DBL)FDK_INT_MIN) { sfbConstPePart[sfbAct] = ((enLdData - sfbFormFactorLdData[sfbAct] - FL2FXCONST_DBL(0.09375f)) >> 1) + FL2FXCONST_DBL(0.02152255861f); } sfbPeOld = FDKaacEnc_calcSingleSpecPe(scfAct,sfbConstPePart[sfbAct],sfbNRelevantLines[sfbAct]) +FDKaacEnc_countSingleScfBits(scfAct, *scfLast, *scfNext); deltaPeNew = deltaPe; updateMinScfCalculated = 1; do { /* estimate required bits for smaller scf */ scfAct--; /* check only if the same check was not done before */ if (scfAct < minScfCalculated[sfbAct] && scfAct>=scfMax-MAX_SCF_DELTA){ /* estimate required bits for new scf */ sfbPeNew = FDKaacEnc_calcSingleSpecPe(scfAct,sfbConstPePart[sfbAct],sfbNRelevantLines[sfbAct]) +FDKaacEnc_countSingleScfBits(scfAct,*scfLast, *scfNext); /* use new scf if no increase in pe and quantization error is smaller */ deltaPeTmp = deltaPe + sfbPeNew - sfbPeOld; /* 0.0006103515625f = 10.0f/(2^(2*AS_PE_FAC_SHIFT)) */ if (deltaPeTmp < FL2FXCONST_DBL(0.0006103515625f)) { /* distortion of new scf */ sfbDistNew = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs, quantSpecTmp+sfbOffs, sfbWidth, scfAct); if (sfbDistNew < sfbDist[sfbAct]) { /* success, replace scf by new one */ scf[sfbAct] = scfAct; sfbDist[sfbAct] = sfbDistNew; for (k=0; k scfMin); deltaPe = deltaPeNew; /* save parameters to avoid multiple computations of the same sfb */ prevScfLast[sfbAct] = *scfLast; prevScfNext[sfbAct] = *scfNext; deltaPeLast[sfbAct] = deltaPe; } if (success && restartOnSuccess) { /* start again at first sfb */ sfbLast = -1; sfbAct = -1; sfbNext = -1; scfLast = 0; scfNext = 0; scfMin = FDK_INT_MAX; scfMax = FDK_INT_MAX; success = 0; } else { /* shift sfbs for next band */ sfbLast = sfbAct; sfbAct = sfbNext; } } while (sfbNext < psyOutChan->sfbCnt); } /* Function: FDKaacEnc_assimilateMultipleScf */ static void FDKaacEnc_assimilateMultipleScf(PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, SHORT *quantSpec, SHORT *quantSpecTmp, INT *scf, INT *minScf, FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData, FIXP_DBL *sfbNRelevantLines) { INT sfb, startSfb, stopSfb; INT scfTmp[MAX_GROUPED_SFB], scfMin, scfMax, scfAct; INT possibleRegionFound; INT sfbWidth, sfbOffs, i, k; FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], distOldSum, distNewSum; INT deltaScfBits; FIXP_DBL deltaSpecPe; FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f); FIXP_DBL deltaPeNew; INT sfbCnt = psyOutChan->sfbCnt; /* calc min and max scalfactors */ scfMin = FDK_INT_MAX; scfMax = FDK_INT_MIN; for (sfb=0; sfb scfAct)) sfb++; stopSfb = sfb; /* check if in all sfb of a valid region scfAct >= minScf[sfb] */ possibleRegionFound = 0; if (startSfb < sfbCnt) { possibleRegionFound = 1; for (sfb=startSfb; sfb> DIST_FAC_SHIFT; sfbWidth = psyOutChan->sfbOffsets[sfb+1] - psyOutChan->sfbOffsets[sfb]; sfbOffs = psyOutChan->sfbOffsets[sfb]; sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs, quantSpecTmp+sfbOffs, sfbWidth, scfAct); if (sfbDistNew[sfb] >qcOutChannel->sfbThresholdLdData[sfb]) { /* no improvement, skip further dist. calculations */ distNewSum = distOldSum << 1; break; } distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT; } } /* distortion smaller ? -> use new scalefactors */ if (distNewSum < distOldSum) { deltaPe = deltaPeNew; for (sfb=startSfb; sfbsfbOffsets[sfb+1] - psyOutChan->sfbOffsets[sfb]; sfbOffs = psyOutChan->sfbOffsets[sfb]; scf[sfb] = scfAct; sfbDist[sfb] = sfbDistNew[sfb]; for (k=0; k scfMin); } } /* Function: FDKaacEnc_FDKaacEnc_assimilateMultipleScf2 */ static void FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(PSY_OUT_CHANNEL *psyOutChan, QC_OUT_CHANNEL *qcOutChannel, SHORT *quantSpec, SHORT *quantSpecTmp, INT *scf, INT *minScf, FIXP_DBL *sfbDist, FIXP_DBL *sfbConstPePart, FIXP_DBL *sfbFormFactorLdData, FIXP_DBL *sfbNRelevantLines) { INT sfb, startSfb, stopSfb; INT scfTmp[MAX_GROUPED_SFB], scfAct, scfNew; INT scfPrev, scfNext, scfPrevNextMin, scfPrevNextMax, scfLo, scfHi; INT scfMin, scfMax; INT *sfbOffs = psyOutChan->sfbOffsets; FIXP_DBL sfbDistNew[MAX_GROUPED_SFB], sfbDistMax[MAX_GROUPED_SFB]; FIXP_DBL distOldSum, distNewSum; INT deltaScfBits; FIXP_DBL deltaSpecPe; FIXP_DBL deltaPe = FL2FXCONST_DBL(0.0f); FIXP_DBL deltaPeNew = FL2FXCONST_DBL(0.0f); INT sfbCnt = psyOutChan->sfbCnt; INT bSuccess, bCheckScf; INT i,k; /* calc min and max scalfactors */ scfMin = FDK_INT_MAX; scfMax = FDK_INT_MIN; for (sfb=0; sfb= scfAct) scfLo = fixMin(scfAct, scfPrevNextMin); else scfLo = scfPrevNextMax; if (startSfb < sfbCnt && scfHi-scfLo <= MAX_SCF_DELTA) { /* region found */ /* 1. try to save bits by coarser quantization */ if (scfHi > scf[startSfb]) { /* calculate the allowed distortion */ for (sfb=startSfb; sfbsfbThreshold[sfb]*sfbDist[sfb]*sfbDist[sfb],1.0f/3.0f); */ /* sfbDistMax[sfb] = fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergy[sfb]*FL2FXCONST_DBL(1.e-3f)); */ /* -0.15571537944 = ld64(1.e-3f)*/ sfbDistMax[sfb] = fMult(FL2FXCONST_DBL(1.0f/3.0f),qcOutChannel->sfbThresholdLdData[sfb])+fMult(FL2FXCONST_DBL(1.0f/3.0f),sfbDist[sfb])+fMult(FL2FXCONST_DBL(1.0f/3.0f),sfbDist[sfb]); sfbDistMax[sfb] = fixMax(sfbDistMax[sfb],qcOutChannel->sfbEnergyLdData[sfb]-FL2FXCONST_DBL(0.15571537944)); sfbDistMax[sfb] = fixMin(sfbDistMax[sfb],qcOutChannel->sfbThresholdLdData[sfb]); } } /* loop over all possible scf values for this region */ bCheckScf = 1; for (scfNew=scf[startSfb]+1; scfNew<=scfHi; scfNew++) { for (k=0; kmdctSpectrum+sfbOffs[sfb], quantSpecTmp+sfbOffs[sfb], sfbOffs[sfb+1]-sfbOffs[sfb], scfNew); if (sfbDistNew[sfb] > sfbDistMax[sfb]) { /* no improvement, skip further dist. calculations */ bSuccess = 0; if (sfbDistNew[sfb] == qcOutChannel->sfbEnergyLdData[sfb]) { /* if whole sfb is already quantized to 0, further checks with even coarser quant. are useless*/ bCheckScf = 0; } break; } } } if (bCheckScf==0) /* further calculations useless ? */ break; /* distortion small enough ? -> use new scalefactors */ if (bSuccess) { deltaPe = deltaPeNew; for (sfb=startSfb; sfb= minScf[sfb] */ for (sfb=startSfb; sfb> DIST_FAC_SHIFT; sfbDistNew[sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+sfbOffs[sfb], quantSpecTmp+sfbOffs[sfb], sfbOffs[sfb+1]-sfbOffs[sfb], scfNew); if (sfbDistNew[sfb] > qcOutChannel->sfbThresholdLdData[sfb]) { /* no improvement, skip further dist. calculations */ distNewSum = distOldSum << 1; break; } distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT; } } /* distortion smaller ? -> use new scalefactors */ if (distNewSum < fMult(FL2FXCONST_DBL(0.8f),distOldSum)) { deltaPe = deltaPeNew; for (sfb=startSfb; sfbmdctSpectrum+sfbOffs[sfb], quantSpec+sfbOffs[sfb], sfbOffs[sfb+1]-sfbOffs[sfb], scfNew, &sfbEnQ, &sfbDistNew[sfb]); distOldSum += CalcInvLdData(sfbDist[sfb]) >> DIST_FAC_SHIFT; distNewSum += CalcInvLdData(sfbDistNew[sfb]) >> DIST_FAC_SHIFT; /* 0.00259488556167 = ld64(1.122f) */ /* -0.00778722686652 = ld64(0.7079f) */ if ((sfbDistNew[sfb] > (sfbDist[sfb]+FL2FXCONST_DBL(0.00259488556167f))) || (sfbEnQ < (qcOutChannel->sfbEnergyLdData[sfb] - FL2FXCONST_DBL(0.00778722686652f)))){ bSuccess = 0; break; } } } /* distortion smaller ? -> use new scalefactors */ if (distNewSum < distOldSum && bSuccess) { deltaPe = deltaPeNew; for (sfb=startSfb; sfb C1/2^8 */ if (invQuant>0) { FDKmemclear(quantSpec, (1024)*sizeof(SHORT)); } /* scfs without energy or with thresh>energy are marked with FDK_INT_MIN */ for(i=0; isfbCnt; i++) { scf[i] = FDK_INT_MIN; } for (i=0; isfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) { for(sfb=0; sfbmaxSfbPerGroup; sfb++) { threshLdData = qcOutChannel->sfbThresholdLdData[sfbOffs+sfb]; energyLdData = qcOutChannel->sfbEnergyLdData[sfbOffs+sfb]; sfbDistLdData[sfbOffs+sfb] = energyLdData; if (energyLdData > threshLdData) { FIXP_DBL tmp; /* energyPart = (float)log10(sfbFormFactor[sfbOffs+sfb]); */ /* 0.09375f = log(64.0)/log(2.0)/64.0 = scale of sfbFormFactorLdData */ energyPartLdData = sfbFormFactorLdData[sfbOffs+sfb] + FL2FXCONST_DBL(0.09375f); /* influence of allowed distortion */ /* thresholdPart = (float)log10(6.75*thresh+FLT_MIN); */ thresholdPartLdData = threshConstLdData + threshLdData; /* scf calc */ /* scfFloat = 8.8585f * (thresholdPart - energyPart); */ scfFract = thresholdPartLdData - energyPartLdData; /* conversion from log2 to log10 */ scfFract = fMult(convConst,scfFract); /* (8.8585f * scfFract)/8 = 8/8 * scfFract + 0.8585 * scfFract/8 */ scfFract = scfFract + fMult(FL2FXCONST_DBL(0.8585f),scfFract >> 3); /* integer scalefactor */ /* scfInt = (int)floor(scfFloat); */ scfInt = (INT)(scfFract>>((DFRACT_BITS-1)-3-LD_DATA_SHIFT)); /* 3 bits => scfFract/8.0; 6 bits => ld64 */ /* maximum of spectrum */ maxSpec = FL2FXCONST_DBL(0.0f); for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; jsfbOffsets[sfbOffs+sfb+1]; j++ ){ absSpec = fixp_abs(qcOutChannel->mdctSpectrum[j]); maxSpec = (absSpec > maxSpec) ? absSpec : maxSpec; } /* lower scf limit to avoid quantized values bigger than MAX_QUANT */ /* C1 = -69.33295f, C2 = 5.77078f = 4/log(2) */ /* minSfMaxQuant[sfbOffs+sfb] = (int)ceil(C1 + C2*log(maxSpec)); */ /* C1/2^8 + 4/log(2.0)*log(maxSpec)/2^8 => C1/2^8 + log(maxSpec)/log(2.0)*4/2^8 => C1/2^8 + log(maxSpec)/log(2.0)/64.0 */ //minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + CalcLdData(maxSpec)) >> ((DFRACT_BITS-1)-8))) + 1; tmp = CalcLdData(maxSpec); if (c1Const>FL2FXCONST_DBL(-1.f)-tmp) { minSfMaxQuant[sfbOffs+sfb] = ((INT) ((c1Const + tmp) >> ((DFRACT_BITS-1)-8))) + 1; } else { minSfMaxQuant[sfbOffs+sfb] = ((INT) (FL2FXCONST_DBL(-1.f) >> ((DFRACT_BITS-1)-8))) + 1; } scfInt = fixMax(scfInt, minSfMaxQuant[sfbOffs+sfb]); /* find better scalefactor with analysis by synthesis */ if (invQuant>0) { scfInt = FDKaacEnc_improveScf(qcOutChannel->mdctSpectrum+psyOutChannel->sfbOffsets[sfbOffs+sfb], quantSpec+psyOutChannel->sfbOffsets[sfbOffs+sfb], quantSpecTmp+psyOutChannel->sfbOffsets[sfbOffs+sfb], psyOutChannel->sfbOffsets[sfbOffs+sfb+1]-psyOutChannel->sfbOffsets[sfbOffs+sfb], threshLdData, scfInt, minSfMaxQuant[sfbOffs+sfb], &sfbDistLdData[sfbOffs+sfb], &minScfCalculated[sfbOffs+sfb] ); } scf[sfbOffs+sfb] = scfInt; } } } if (invQuant>1) { /* try to decrease scf differences */ FIXP_DBL sfbConstPePart[MAX_GROUPED_SFB]; FIXP_DBL sfbNRelevantLines[MAX_GROUPED_SFB]; for (i=0; isfbCnt; i++) sfbConstPePart[i] = (FIXP_DBL)FDK_INT_MIN; FDKaacEnc_calcSfbRelevantLines( sfbFormFactorLdData, qcOutChannel->sfbEnergyLdData, qcOutChannel->sfbThresholdLdData, psyOutChannel->sfbOffsets, psyOutChannel->sfbCnt, psyOutChannel->sfbPerGroup, psyOutChannel->maxSfbPerGroup, sfbNRelevantLines); FDKaacEnc_assimilateSingleScf(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart, sfbFormFactorLdData, sfbNRelevantLines, minScfCalculated, 1); FDKaacEnc_assimilateMultipleScf(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart, sfbFormFactorLdData, sfbNRelevantLines); FDKaacEnc_FDKaacEnc_assimilateMultipleScf2(psyOutChannel, qcOutChannel, quantSpec, quantSpecTmp, scf, minSfMaxQuant, sfbDistLdData, sfbConstPePart, sfbFormFactorLdData, sfbNRelevantLines); } /* get min scalefac */ minSf = FDK_INT_MAX; for (sfbOffs=0; sfbOffssfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) { for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { if (scf[sfbOffs+sfb]!=FDK_INT_MIN) minSf = fixMin(minSf,scf[sfbOffs+sfb]); } } /* limit scf delta */ for (sfbOffs=0; sfbOffssfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) { for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { if ((scf[sfbOffs+sfb] != FDK_INT_MIN) && (minSf+MAX_SCF_DELTA) < scf[sfbOffs+sfb]) { scf[sfbOffs+sfb] = minSf + MAX_SCF_DELTA; if (invQuant > 0) { /* changed bands need to be quantized again */ sfbDistLdData[sfbOffs+sfb] = FDKaacEnc_calcSfbDist(qcOutChannel->mdctSpectrum+psyOutChannel->sfbOffsets[sfbOffs+sfb], quantSpec+psyOutChannel->sfbOffsets[sfbOffs+sfb], psyOutChannel->sfbOffsets[sfbOffs+sfb+1]-psyOutChannel->sfbOffsets[sfbOffs+sfb], scf[sfbOffs+sfb] ); } } } } /* get max scalefac for global gain */ maxSf = FDK_INT_MIN; for (sfbOffs=0; sfbOffssfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) { for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { maxSf = fixMax(maxSf,scf[sfbOffs+sfb]); } } /* calc loop scalefactors, if spec is not all zero (i.e. maxSf == -99) */ if( maxSf > FDK_INT_MIN ) { *globalGain = maxSf; for (sfbOffs=0; sfbOffssfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) { for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { if( scf[sfbOffs+sfb] == FDK_INT_MIN ) { scf[sfbOffs+sfb] = 0; /* set band explicitely to zero */ for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; jsfbOffsets[sfbOffs+sfb+1]; j++ ) { qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f); } } else { scf[sfbOffs+sfb] = maxSf - scf[sfbOffs+sfb]; } } } } else{ *globalGain = 0; /* set spectrum explicitely to zero */ for (sfbOffs=0; sfbOffssfbCnt; sfbOffs+=psyOutChannel->sfbPerGroup) { for (sfb = 0; sfb < psyOutChannel->maxSfbPerGroup; sfb++) { scf[sfbOffs+sfb] = 0; /* set band explicitely to zero */ for(j=psyOutChannel->sfbOffsets[sfbOffs+sfb]; jsfbOffsets[sfbOffs+sfb+1]; j++ ) { qcOutChannel->mdctSpectrum[j] = FL2FXCONST_DBL(0.0f); } } } } /* free quantSpecTmp from scratch */ C_ALLOC_SCRATCH_END(quantSpecTmp, SHORT, (1024)); } void FDKaacEnc_EstimateScaleFactors(PSY_OUT_CHANNEL *psyOutChannel[], QC_OUT_CHANNEL* qcOutChannel[], const int invQuant, const int nChannels) { int ch; for (ch = 0; ch < nChannels; ch++) { FDKaacEnc_FDKaacEnc_EstimateScaleFactorsChannel(qcOutChannel[ch], psyOutChannel[ch], qcOutChannel[ch]->scf, &qcOutChannel[ch]->globalGain, qcOutChannel[ch]->sfbFormFactorLdData ,invQuant, qcOutChannel[ch]->quantSpec ); } }