/* ----------------------------------------------------------------------------------------------------------- Software License for The Fraunhofer FDK AAC Codec Library for Android © Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. All rights reserved. 1. INTRODUCTION The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. This FDK AAC Codec software is intended to be used on a wide variety of Android devices. AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part of the MPEG specifications. Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners individually for the purpose of encoding or decoding bit streams in products that are compliant with the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec software may already be covered under those patent licenses when it is used for those licensed purposes only. Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional applications information and documentation. 2. COPYRIGHT LICENSE Redistribution and use in source and binary forms, with or without modification, are permitted without payment of copyright license fees provided that you satisfy the following conditions: You must retain the complete text of this software license in redistributions of the FDK AAC Codec or your modifications thereto in source code form. You must retain the complete text of this software license in the documentation and/or other materials provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. You must make available free of charge copies of the complete source code of the FDK AAC Codec and your modifications thereto to recipients of copies in binary form. The name of Fraunhofer may not be used to endorse or promote products derived from this library without prior written permission. You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec software or your modifications thereto. Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software and the date of any change. For modified versions of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 3. NO PATENT LICENSE NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with respect to this software. You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized by appropriate patent licenses. 4. DISCLAIMER This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, including but not limited to procurement of substitute goods or services; loss of use, data, or profits, or business interruption, however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence), arising in any way out of the use of this software, even if advised of the possibility of such damage. 5. CONTACT INFORMATION Fraunhofer Institute for Integrated Circuits IIS Attention: Audio and Multimedia Departments - FDK AAC LL Am Wolfsmantel 33 91058 Erlangen, Germany www.iis.fraunhofer.de/amm amm-info@iis.fraunhofer.de ----------------------------------------------------------------------------------------------------------- */ /******************************** MPEG Audio Encoder ************************** Initial author: A. Horndasch (code originally from lwr) / Josef Hoepfl (FDK) contents/description: intensity stereo processing ******************************************************************************/ #include "intensity.h" #include "interface.h" #include "psy_configuration.h" #include "psy_const.h" #include "qc_main.h" #include "bit_cnt.h" /* only set an IS seed it left/right channel correlation is above IS_CORR_THRESH */ #define IS_CORR_THRESH FL2FXCONST_DBL(0.95f) /* when expanding the IS region to more SFBs only accept an error that is * not more than IS_TOTAL_ERROR_THRESH overall and * not more than IS_LOCAL_ERROR_THRESH for the current SFB */ #define IS_TOTAL_ERROR_THRESH FL2FXCONST_DBL(0.04f) #define IS_LOCAL_ERROR_THRESH FL2FXCONST_DBL(0.01f) /* the maximum allowed change of the intensity direction (unit: IS scale) - scaled with factor 0.25 - */ #define IS_DIRECTION_DEVIATION_THRESH_SF 2 #define IS_DIRECTION_DEVIATION_THRESH FL2FXCONST_DBL(2.0f/(1< no IS if the panning angle is not far from the middle, MS will do */ /* this is equivalent to a scale of +/-1.02914634566 */ #define IS_LEFT_RIGHT_RATIO_THRESH FL2FXCONST_DBL(0.7f) /* scalefactor of realScale */ #define REAL_SCALE_SF 1 /* scalefactor overallLoudness */ #define OVERALL_LOUDNESS_SF 6 /* scalefactor for sum over max samples per goup */ #define MAX_SFB_PER_GROUP_SF 6 /* scalefactor for sum of mdct spectrum */ #define MDCT_SPEC_SF 6 typedef struct { FIXP_DBL corr_thresh; /*!< Only set an IS seed it left/right channel correlation is above corr_thresh */ FIXP_DBL total_error_thresh; /*!< When expanding the IS region to more SFBs only accept an error that is not more than 'total_error_thresh' overall. */ FIXP_DBL local_error_thresh; /*!< When expanding the IS region to more SFBs only accept an error that is not more than 'local_error_thresh' for the current SFB. */ FIXP_DBL direction_deviation_thresh; /*!< The maximum allowed change of the intensity direction (unit: IS scale) */ FIXP_DBL is_region_min_loudness; /*!< IS regions need to have a minimal percentage of the overall loudness, e.g. 0.06 == 6% */ INT min_is_sfbs; /*!< Only perform IS if 'min_is_sfbs' neighboring SFBs can be processed */ FIXP_DBL left_right_ratio_threshold; /*!< No IS if the panning angle is not far from the middle, MS will do */ } INTENSITY_PARAMETERS; /***************************************************************************** functionname: calcSfbMaxScale description: Calc max value in scalefactor band input: *mdctSpectrum l1 l2 output: none returns: scalefactor *****************************************************************************/ static INT calcSfbMaxScale(const FIXP_DBL *mdctSpectrum, const INT l1, const INT l2) { INT i; INT sfbMaxScale; FIXP_DBL maxSpc; maxSpc = FL2FXCONST_DBL(0.0); for (i=l1; icorr_thresh = IS_CORR_THRESH; isParams->total_error_thresh = IS_TOTAL_ERROR_THRESH; isParams->local_error_thresh = IS_LOCAL_ERROR_THRESH; isParams->direction_deviation_thresh = IS_DIRECTION_DEVIATION_THRESH; isParams->is_region_min_loudness = IS_REGION_MIN_LOUDNESS; isParams->min_is_sfbs = IS_MIN_SFBS; isParams->left_right_ratio_threshold = IS_LEFT_RIGHT_RATIO_THRESH; } /***************************************************************************** functionname: FDKaacEnc_prepareIntensityDecision description: Prepares intensity decision input: sfbEnergyLeft sfbEnergyRight sfbEnergyLdDataLeft sfbEnergyLdDataRight mdctSpectrumLeft sfbEnergyLdDataRight isParams output: hrrErr scale: none isMask scale: none realScale scale: LD_DATA_SHIFT + REAL_SCALE_SF normSfbLoudness scale: none returns: none *****************************************************************************/ static void FDKaacEnc_prepareIntensityDecision(const FIXP_DBL *sfbEnergyLeft, const FIXP_DBL *sfbEnergyRight, const FIXP_DBL *sfbEnergyLdDataLeft, const FIXP_DBL *sfbEnergyLdDataRight, const FIXP_DBL *mdctSpectrumLeft, const FIXP_DBL *mdctSpectrumRight, const INTENSITY_PARAMETERS *isParams, FIXP_DBL *hrrErr, INT *isMask, FIXP_DBL *realScale, FIXP_DBL *normSfbLoudness, const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup, const INT *sfbOffset) { INT j,sfb,sfboffs; INT grpCounter; /* temporary variables to compute loudness */ FIXP_DBL overallLoudness[MAX_NO_OF_GROUPS]; /* temporary variables to compute correlation */ FIXP_DBL channelCorr[MAX_GROUPED_SFB]; FIXP_DBL ml, mr; FIXP_DBL prod_lr; FIXP_DBL square_l, square_r; FIXP_DBL tmp_l, tmp_r; FIXP_DBL inv_n; FDKmemclear(channelCorr, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); FDKmemclear(normSfbLoudness, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); FDKmemclear(overallLoudness, MAX_NO_OF_GROUPS*sizeof(FIXP_DBL)); FDKmemclear(realScale, MAX_GROUPED_SFB*sizeof(FIXP_DBL)); for (grpCounter = 0, sfboffs = 0; sfboffs < sfbCnt; sfboffs += sfbPerGroup, grpCounter++) { overallLoudness[grpCounter] = FL2FXCONST_DBL(0.0f); for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { INT sL,sR,s; FIXP_DBL isValue = sfbEnergyLdDataLeft[sfb+sfboffs]-sfbEnergyLdDataRight[sfb+sfboffs]; /* delimitate intensity scale value to representable range */ realScale[sfb + sfboffs] = fixMin(FL2FXCONST_DBL(60.f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT))), fixMax(FL2FXCONST_DBL(-60.f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT))), isValue)); sL = fixMax(0,(CntLeadingZeros(sfbEnergyLeft[sfb + sfboffs])-1)); sR = fixMax(0,(CntLeadingZeros(sfbEnergyRight[sfb + sfboffs])-1)); s = (fixMin(sL,sR)>>2)<<2; normSfbLoudness[sfb + sfboffs] = sqrtFixp(sqrtFixp(((sfbEnergyLeft[sfb + sfboffs]<> 1) + ((sfbEnergyRight[sfb + sfboffs]<> 1))) >> (s>>2); overallLoudness[grpCounter] += normSfbLoudness[sfb + sfboffs] >> OVERALL_LOUDNESS_SF; /* don't do intensity if * - panning angle is too close to the middle or * - one channel is non-existent or * - if it is dual mono */ if( (sfbEnergyLeft[sfb + sfboffs] >= fMult(isParams->left_right_ratio_threshold,sfbEnergyRight[sfb + sfboffs])) && (fMult(isParams->left_right_ratio_threshold,sfbEnergyLeft[sfb + sfboffs]) <= sfbEnergyRight[sfb + sfboffs]) ) { /* this will prevent post processing from considering this SFB for merging */ hrrErr[sfb + sfboffs] = FL2FXCONST_DBL(1.0/8.0); } } } for (grpCounter = 0, sfboffs = 0; sfboffs < sfbCnt; sfboffs += sfbPerGroup, grpCounter++) { INT invOverallLoudnessSF; FIXP_DBL invOverallLoudness; if (overallLoudness[grpCounter] == FL2FXCONST_DBL(0.0)) { invOverallLoudness = FL2FXCONST_DBL(0.0); invOverallLoudnessSF = 0; } else { invOverallLoudness = fDivNorm((FIXP_DBL)MAXVAL_DBL, overallLoudness[grpCounter],&invOverallLoudnessSF); invOverallLoudnessSF = invOverallLoudnessSF - OVERALL_LOUDNESS_SF + 1; /* +1: compensate fMultDiv2() in subsequent loop */ } invOverallLoudnessSF = fixMin(fixMax(invOverallLoudnessSF,-(DFRACT_BITS-1)),DFRACT_BITS-1); for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { FIXP_DBL tmp; tmp = fMultDiv2((normSfbLoudness[sfb + sfboffs]>>OVERALL_LOUDNESS_SF)<= 49); /* max width of scalefactorband is 96; width's are always even */ /* inv_n is scaled with factor 2 to compensate fMultDiv2() in subsequent loops */ inv_n = GetInvInt((sfbOffset[sfb + sfboffs + 1] - sfbOffset[sfb + sfboffs])>>1); if (inv_n > FL2FXCONST_DBL(0.0f)) { INT s,sL,sR; /* correlation := Pearson's product-moment coefficient */ /* compute correlation between channels and check if it is over threshold */ ml = FL2FXCONST_DBL(0.0f); mr = FL2FXCONST_DBL(0.0f); prod_lr = FL2FXCONST_DBL(0.0f); square_l = FL2FXCONST_DBL(0.0f); square_r = FL2FXCONST_DBL(0.0f); sL = calcSfbMaxScale(mdctSpectrumLeft,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); sR = calcSfbMaxScale(mdctSpectrumRight,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); s = fixMin(sL,sR); for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1]; j++) { ml += fMultDiv2((mdctSpectrumLeft[j] << s),inv_n); // scaled with mdctScale - s + inv_n mr += fMultDiv2((mdctSpectrumRight[j] << s),inv_n); // scaled with mdctScale - s + inv_n } ml = fMultDiv2(ml,inv_n); // scaled with mdctScale - s + inv_n mr = fMultDiv2(mr,inv_n); // scaled with mdctScale - s + inv_n for (j = sfbOffset[sfb + sfboffs]; j < sfbOffset[sfb + sfboffs + 1]; j++) { tmp_l = fMultDiv2((mdctSpectrumLeft[j] << s),inv_n) - ml; // scaled with mdctScale - s + inv_n tmp_r = fMultDiv2((mdctSpectrumRight[j] << s),inv_n) - mr; // scaled with mdctScale - s + inv_n prod_lr += fMultDiv2(tmp_l,tmp_r); // scaled with 2*(mdctScale - s + inv_n) + 1 square_l += fPow2Div2(tmp_l); // scaled with 2*(mdctScale - s + inv_n) + 1 square_r += fPow2Div2(tmp_r); // scaled with 2*(mdctScale - s + inv_n) + 1 } prod_lr = prod_lr << 1; // scaled with 2*(mdctScale - s + inv_n) square_l = square_l << 1; // scaled with 2*(mdctScale - s + inv_n) square_r = square_r << 1; // scaled with 2*(mdctScale - s + inv_n) if (square_l > FL2FXCONST_DBL(0.0f) && square_r > FL2FXCONST_DBL(0.0f)) { INT channelCorrSF = 0; /* local scaling of square_l and square_r is compensated after sqrt calculation */ sL = fixMax(0,(CntLeadingZeros(square_l)-1)); sR = fixMax(0,(CntLeadingZeros(square_r)-1)); s = ((sL + sR)>>1)<<1; sL = fixMin(sL,s); sR = s-sL; tmp = fMult(square_l< FL2FXCONST_DBL(0.0f)); /* numerator and denominator have the same scaling */ if (prod_lr < FL2FXCONST_DBL(0.0f) ) { channelCorr[sfb + sfboffs] = -(fDivNorm(-prod_lr,tmp,&channelCorrSF)); } else { channelCorr[sfb + sfboffs] = (fDivNorm( prod_lr,tmp,&channelCorrSF)); } channelCorrSF = fixMin(fixMax(( channelCorrSF + ((sL+sR)>>1)),-(DFRACT_BITS-1)),DFRACT_BITS-1); if (channelCorrSF < 0) { channelCorr[sfb + sfboffs] = channelCorr[sfb + sfboffs] >> (-channelCorrSF); } else { /* avoid overflows due to limited computational accuracy */ if ( fAbs(channelCorr[sfb + sfboffs]) > (((FIXP_DBL)MAXVAL_DBL)>>channelCorrSF) ) { if (channelCorr[sfb + sfboffs] < FL2FXCONST_DBL(0.0f)) channelCorr[sfb + sfboffs] = -(FIXP_DBL) MAXVAL_DBL; else channelCorr[sfb + sfboffs] = (FIXP_DBL) MAXVAL_DBL; } else { channelCorr[sfb + sfboffs] = channelCorr[sfb + sfboffs] << channelCorrSF; } } } } /* for post processing: hrrErr is the error in terms of (too little) correlation * weighted with the loudness of the SFB; SFBs with small hrrErr can be merged */ if (hrrErr[sfb + sfboffs] == FL2FXCONST_DBL(1.0/8.0)) { continue; } hrrErr[sfb + sfboffs] = fMultDiv2((FL2FXCONST_DBL(0.25f)-(channelCorr[sfb + sfboffs]>>2)),normSfbLoudness[sfb + sfboffs]); /* set IS mask/vector to 1, if correlation is high enough */ if (fAbs(channelCorr[sfb + sfboffs]) >= isParams->corr_thresh) { isMask[sfb + sfboffs] = 1; } } } } /***************************************************************************** functionname: FDKaacEnc_finalizeIntensityDecision description: Finalizes intensity decision input: isParams scale: none hrrErr scale: none realIsScale scale: LD_DATA_SHIFT + REAL_SCALE_SF normSfbLoudness scale: none output: isMask scale: none returns: none *****************************************************************************/ static void FDKaacEnc_finalizeIntensityDecision(const FIXP_DBL *hrrErr, INT *isMask, const FIXP_DBL *realIsScale, const FIXP_DBL *normSfbLoudness, const INTENSITY_PARAMETERS *isParams, const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup) { INT sfb,sfboffs, j; INT startIsSfb = 0; INT inIsBlock; INT currentIsSfbCount; FIXP_DBL overallHrrError; FIXP_DBL isScaleLast = FL2FXCONST_DBL(0.0f); FIXP_DBL isRegionLoudness; for (sfboffs = 0; sfboffs < sfbCnt; sfboffs += sfbPerGroup) { inIsBlock = 0; currentIsSfbCount = 0; overallHrrError = FL2FXCONST_DBL(0.0f); isRegionLoudness = FL2FXCONST_DBL(0.0f); for (sfb = 0; sfb < maxSfbPerGroup; sfb++) { if (isMask[sfboffs + sfb] == 1) { if (currentIsSfbCount == 0) { startIsSfb = sfboffs + sfb; isScaleLast = realIsScale[sfboffs + sfb]; } inIsBlock = 1; currentIsSfbCount++; overallHrrError += hrrErr[sfboffs + sfb] >> (MAX_SFB_PER_GROUP_SF-3); isRegionLoudness += normSfbLoudness[sfboffs + sfb] >> MAX_SFB_PER_GROUP_SF; } else { /* based on correlation, IS should not be used * -> use it anyway, if overall error is below threshold * and if local error does not exceed threshold * otherwise: check if there are enough IS SFBs */ if (inIsBlock) { overallHrrError += hrrErr[sfboffs + sfb] >> (MAX_SFB_PER_GROUP_SF-3); isRegionLoudness += normSfbLoudness[sfboffs + sfb] >> MAX_SFB_PER_GROUP_SF; if ( (hrrErr[sfboffs + sfb] < (isParams->local_error_thresh>>3)) && (overallHrrError < (isParams->total_error_thresh>>MAX_SFB_PER_GROUP_SF)) ) { currentIsSfbCount++; /* overwrite correlation based decision */ isMask[sfboffs + sfb] = 1; } else { inIsBlock = 0; } } } /* check for large direction deviation */ if (inIsBlock) { if( fAbs(isScaleLast-realIsScale[sfboffs + sfb]) < (isParams->direction_deviation_thresh>>(REAL_SCALE_SF+LD_DATA_SHIFT-IS_DIRECTION_DEVIATION_THRESH_SF)) ) { isScaleLast = realIsScale[sfboffs + sfb]; } else{ isMask[sfboffs + sfb] = 0; inIsBlock = 0; currentIsSfbCount--; } } if (currentIsSfbCount > 0 && (!inIsBlock || sfb == maxSfbPerGroup - 1)) { /* not enough SFBs -> do not use IS */ if (currentIsSfbCount < isParams->min_is_sfbs || (isRegionLoudness < isParams->is_region_min_loudness>>MAX_SFB_PER_GROUP_SF)) { for(j = startIsSfb; j <= sfboffs + sfb; j++) { isMask[j] = 0; } } currentIsSfbCount = 0; overallHrrError = FL2FXCONST_DBL(0.0f); isRegionLoudness = FL2FXCONST_DBL(0.0f); } } } } /***************************************************************************** functionname: FDKaacEnc_IntensityStereoProcessing description: Intensity stereo processing tool input: sfbEnergyLeft sfbEnergyRight mdctSpectrumLeft mdctSpectrumRight sfbThresholdLeft sfbThresholdRight sfbSpreadEnLeft sfbSpreadEnRight sfbEnergyLdDataLeft sfbEnergyLdDataRight output: isBook isScale pnsData->pnsFlag msDigest zeroed from start to sfbCnt msMask zeroed from start to sfbCnt mdctSpectrumRight zeroed where isBook!=0 sfbEnergyRight zeroed where isBook!=0 sfbSpreadEnRight zeroed where isBook!=0 sfbThresholdRight zeroed where isBook!=0 sfbEnergyLdDataRight FL2FXCONST_DBL(-1.0) where isBook!=0 sfbThresholdLdDataRight FL2FXCONST_DBL(-0.515625f) where isBook!=0 returns: none *****************************************************************************/ void FDKaacEnc_IntensityStereoProcessing( FIXP_DBL *sfbEnergyLeft, FIXP_DBL *sfbEnergyRight, FIXP_DBL *mdctSpectrumLeft, FIXP_DBL *mdctSpectrumRight, FIXP_DBL *sfbThresholdLeft, FIXP_DBL *sfbThresholdRight, FIXP_DBL *sfbThresholdLdDataRight, FIXP_DBL *sfbSpreadEnLeft, FIXP_DBL *sfbSpreadEnRight, FIXP_DBL *sfbEnergyLdDataLeft, FIXP_DBL *sfbEnergyLdDataRight, INT *msDigest, INT *msMask, const INT sfbCnt, const INT sfbPerGroup, const INT maxSfbPerGroup, const INT *sfbOffset, const INT allowIS, INT *isBook, INT *isScale, PNS_DATA *RESTRICT pnsData[2] ) { INT sfb,sfboffs, j; FIXP_DBL scale; FIXP_DBL lr; FIXP_DBL hrrErr[MAX_GROUPED_SFB]; FIXP_DBL normSfbLoudness[MAX_GROUPED_SFB]; FIXP_DBL realIsScale[MAX_GROUPED_SFB]; INTENSITY_PARAMETERS isParams; INT isMask[MAX_GROUPED_SFB]; FDKmemclear((void*)isBook,sfbCnt*sizeof(INT)); FDKmemclear((void*)isMask,sfbCnt*sizeof(INT)); FDKmemclear((void*)realIsScale,sfbCnt*sizeof(FIXP_DBL)); FDKmemclear((void*)isScale,sfbCnt*sizeof(INT)); FDKmemclear((void*)hrrErr,sfbCnt*sizeof(FIXP_DBL)); if (!allowIS) return; FDKaacEnc_initIsParams(&isParams); /* compute / set the following values per SFB: * - left/right ratio between channels * - normalized loudness * + loudness == average of energy in channels to 0.25 * + normalization: division by sum of all SFB loudnesses * - isMask (is set to 0 if channels are the same or one is 0) */ FDKaacEnc_prepareIntensityDecision(sfbEnergyLeft, sfbEnergyRight, sfbEnergyLdDataLeft, sfbEnergyLdDataRight, mdctSpectrumLeft, mdctSpectrumRight, &isParams, hrrErr, isMask, realIsScale, normSfbLoudness, sfbCnt, sfbPerGroup, maxSfbPerGroup, sfbOffset); FDKaacEnc_finalizeIntensityDecision(hrrErr, isMask, realIsScale, normSfbLoudness, &isParams, sfbCnt, sfbPerGroup, maxSfbPerGroup); for (sfb=0; sfb sfbThresholdRight[sfb+sfboffs]) ) { continue; } /* NEW: if there is a big-enough IS region, switch off PNS */ if (pnsData[0]) { if(pnsData[0]->pnsFlag[sfb+sfboffs]) { pnsData[0]->pnsFlag[sfb+sfboffs] = 0; } if(pnsData[1]->pnsFlag[sfb+sfboffs]) { pnsData[1]->pnsFlag[sfb+sfboffs] = 0; } } inv_n = GetInvInt((sfbOffset[sfb + sfboffs + 1] - sfbOffset[sfb + sfboffs])>>1); // scaled with 2 to compensate fMultDiv2() in subsequent loop sL = calcSfbMaxScale(mdctSpectrumLeft,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); sR = calcSfbMaxScale(mdctSpectrumRight,sfbOffset[sfb+sfboffs],sfbOffset[sfb+sfboffs+1]); lr = FL2FXCONST_DBL(0.0f); for (j=sfbOffset[sfb+sfboffs]; j>1) - ((mdctSpectrumRight[j]<>1); ed += fMultDiv2(d,d)>>(MDCT_SPEC_SF-1); } msMask[sfb+sfboffs] = 1; tmp = fDivNorm(sfbEnergyLeft[sfb+sfboffs],ed,&s1); s2 = (s1) + (2*s0) - 2 - MDCT_SPEC_SF; if (s2 & 1) { tmp = tmp>>1; s2 = s2+1; } s2 = (s2>>1) + 1; // +1 compensate fMultDiv2() in subsequent loop s2 = fixMin(fixMax(s2,-(DFRACT_BITS-1)),(DFRACT_BITS-1)); scale = sqrtFixp(tmp); if (s2 < 0) { s2 = -s2; for (j=sfbOffset[sfb+sfboffs]; j> s2; mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f); } } else { for (j=sfbOffset[sfb+sfboffs]; j>1) + ((mdctSpectrumRight[j]<>1); es += fMultDiv2(s,s)>>(MDCT_SPEC_SF-1); // scaled 2*(mdctScale - s0 + 1) + MDCT_SPEC_SF } msMask[sfb+sfboffs] = 0; tmp = fDivNorm(sfbEnergyLeft[sfb+sfboffs],es,&s1); s2 = (s1) + (2*s0) - 2 - MDCT_SPEC_SF; if (s2 & 1) { tmp = tmp>>1; s2 = s2 + 1; } s2 = (s2>>1) + 1; // +1 compensate fMultDiv2() in subsequent loop s2 = fixMin(fixMax(s2,-(DFRACT_BITS-1)),(DFRACT_BITS-1)); scale = sqrtFixp(tmp); if (s2 < 0) { s2 = -s2; for (j=sfbOffset[sfb+sfboffs]; j> s2; mdctSpectrumRight[j] = FL2FXCONST_DBL(0.0f); } } else { for (j=sfbOffset[sfb+sfboffs]; j>1)-FL2FXCONST_DBL(0.5f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT+1))))>>(DFRACT_BITS-1-REAL_SCALE_SF-LD_DATA_SHIFT-1)) + 1; } else { isScale[sfb+sfboffs] = (INT)(((realIsScale[sfb+sfboffs]>>1)+FL2FXCONST_DBL(0.5f/(1<<(REAL_SCALE_SF+LD_DATA_SHIFT+1))))>>(DFRACT_BITS-1-REAL_SCALE_SF-LD_DATA_SHIFT-1)); } sfbEnergyRight[sfb+sfboffs] = FL2FXCONST_DBL(0.0f); sfbEnergyLdDataRight[sfb+sfboffs] = FL2FXCONST_DBL(-1.0f); sfbThresholdRight[sfb+sfboffs] = FL2FXCONST_DBL(0.0f); sfbThresholdLdDataRight[sfb+sfboffs] = FL2FXCONST_DBL(-0.515625f); sfbSpreadEnRight[sfb+sfboffs] = FL2FXCONST_DBL(0.0f); *msDigest = MS_SOME; } } }