summaryrefslogtreecommitdiffstats
path: root/libSBRdec/src/env_dec.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libSBRdec/src/env_dec.cpp')
-rw-r--r--libSBRdec/src/env_dec.cpp852
1 files changed, 852 insertions, 0 deletions
diff --git a/libSBRdec/src/env_dec.cpp b/libSBRdec/src/env_dec.cpp
new file mode 100644
index 0000000..ac6c299
--- /dev/null
+++ b/libSBRdec/src/env_dec.cpp
@@ -0,0 +1,852 @@
+
+/* -----------------------------------------------------------------------------------------------------------
+Software License for The Fraunhofer FDK AAC Codec Library for Android
+
+© Copyright 1995 - 2012 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
+ All rights reserved.
+
+ 1. INTRODUCTION
+The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
+the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
+This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
+
+AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
+audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
+independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
+of the MPEG specifications.
+
+Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
+may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
+individually for the purpose of encoding or decoding bit streams in products that are compliant with
+the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
+these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
+software may already be covered under those patent licenses when it is used for those licensed purposes only.
+
+Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
+are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
+applications information and documentation.
+
+2. COPYRIGHT LICENSE
+
+Redistribution and use in source and binary forms, with or without modification, are permitted without
+payment of copyright license fees provided that you satisfy the following conditions:
+
+You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
+your modifications thereto in source code form.
+
+You must retain the complete text of this software license in the documentation and/or other materials
+provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
+You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
+modifications thereto to recipients of copies in binary form.
+
+The name of Fraunhofer may not be used to endorse or promote products derived from this library without
+prior written permission.
+
+You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
+software or your modifications thereto.
+
+Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
+and the date of any change. For modified versions of the FDK AAC Codec, the term
+"Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
+"Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
+
+3. NO PATENT LICENSE
+
+NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
+ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
+respect to this software.
+
+You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
+by appropriate patent licenses.
+
+4. DISCLAIMER
+
+This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
+"AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
+of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
+CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
+including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
+or business interruption, however caused and on any theory of liability, whether in contract, strict
+liability, or tort (including negligence), arising in any way out of the use of this software, even if
+advised of the possibility of such damage.
+
+5. CONTACT INFORMATION
+
+Fraunhofer Institute for Integrated Circuits IIS
+Attention: Audio and Multimedia Departments - FDK AAC LL
+Am Wolfsmantel 33
+91058 Erlangen, Germany
+
+www.iis.fraunhofer.de/amm
+amm-info@iis.fraunhofer.de
+----------------------------------------------------------------------------------------------------------- */
+
+/*!
+ \file
+ \brief envelope decoding
+ This module provides envelope decoding and error concealment algorithms. The main
+ entry point is decodeSbrData().
+
+ \sa decodeSbrData(),\ref documentationOverview
+*/
+
+#include "env_dec.h"
+
+#include "env_extr.h"
+#include "transcendent.h"
+
+#include "genericStds.h"
+
+
+static void decodeEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data_otherChannel);
+static void sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_data_left,
+ HANDLE_SBR_FRAME_DATA h_data_right);
+static void requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data,
+ int ampResolution);
+static void deltaToLinearPcmEnvelopeDecoding (HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+static void decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+static void timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+static int checkEnvelopeData (HANDLE_SBR_HEADER_DATA hHeaderData,
+ HANDLE_SBR_FRAME_DATA h_sbr_data,
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data);
+
+
+
+#define SBR_ENERGY_PAN_OFFSET (12 << ENV_EXP_FRACT)
+#define SBR_MAX_ENERGY (35 << ENV_EXP_FRACT)
+
+#define DECAY ( 1 << ENV_EXP_FRACT)
+
+#if ENV_EXP_FRACT
+#define DECAY_COUPLING ( 1 << (ENV_EXP_FRACT-1) ) /*!< corresponds to a value of 0.5 */
+#else
+#define DECAY_COUPLING 1 /*!< If the energy data is not shifted, use 1 instead of 0.5 */
+#endif
+
+
+/*!
+ \brief Convert table index
+*/
+static int indexLow2High(int offset, /*!< mapping factor */
+ int index, /*!< index to scalefactor band */
+ int res) /*!< frequency resolution */
+{
+ if(res == 0)
+ {
+ if (offset >= 0)
+ {
+ if (index < offset)
+ return(index);
+ else
+ return(2*index - offset);
+ }
+ else
+ {
+ offset = -offset;
+ if (index < offset)
+ return(2*index+index);
+ else
+ return(2*index + offset);
+ }
+ }
+ else
+ return(index);
+}
+
+
+/*!
+ \brief Update previous envelope value for delta-coding
+
+ The current envelope values needs to be stored for delta-coding
+ in the next frame. The stored envelope is always represented with
+ the high frequency resolution. If the current envelope uses the
+ low frequency resolution, the energy value will be mapped to the
+ corresponding high-res bands.
+*/
+static void mapLowResEnergyVal(FIXP_SGL currVal, /*!< current energy value */
+ FIXP_SGL* prevData,/*!< pointer to previous data vector */
+ int offset, /*!< mapping factor */
+ int index, /*!< index to scalefactor band */
+ int res) /*!< frequeny resolution */
+{
+ if(res == 0)
+ {
+ if (offset >= 0)
+ {
+ if(index < offset)
+ prevData[index] = currVal;
+ else
+ {
+ prevData[2*index - offset] = currVal;
+ prevData[2*index+1 - offset] = currVal;
+ }
+ }
+ else
+ {
+ offset = -offset;
+ if (index < offset)
+ {
+ prevData[3*index] = currVal;
+ prevData[3*index+1] = currVal;
+ prevData[3*index+2] = currVal;
+ }
+ else
+ {
+ prevData[2*index + offset] = currVal;
+ prevData[2*index + 1 + offset] = currVal;
+ }
+ }
+ }
+ else
+ prevData[index] = currVal;
+}
+
+
+
+/*!
+ \brief Convert raw envelope and noisefloor data to energy levels
+
+ This function is being called by sbrDecoder_ParseElement() and provides two important algorithms:
+
+ First the function decodes envelopes and noise floor levels as described in requantizeEnvelopeData()
+ and sbr_envelope_unmapping(). The function also implements concealment algorithms in case there are errors
+ within the sbr data. For both operations fractional arithmetic is used.
+ Therefore you might encounter different output values on your target
+ system compared to the reference implementation.
+*/
+void
+decodeSbrData (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel frame data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data_left, /*!< pointer to left channel previous frame data */
+ HANDLE_SBR_FRAME_DATA h_data_right, /*!< pointer to right channel frame data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data_right)/*!< pointer to right channel previous frame data */
+{
+ FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
+ int errLeft;
+
+ /* Save previous energy values to be able to reuse them later for concealment. */
+ FDKmemcpy (tempSfbNrgPrev, h_prev_data_left->sfb_nrg_prev, MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
+
+ decodeEnvelope (hHeaderData, h_data_left, h_prev_data_left, h_prev_data_right);
+ decodeNoiseFloorlevels (hHeaderData, h_data_left, h_prev_data_left);
+
+ if(h_data_right != NULL) {
+ errLeft = hHeaderData->frameErrorFlag;
+ decodeEnvelope (hHeaderData, h_data_right, h_prev_data_right, h_prev_data_left);
+ decodeNoiseFloorlevels (hHeaderData, h_data_right, h_prev_data_right);
+
+ if (!errLeft && hHeaderData->frameErrorFlag) {
+ /* If an error occurs in the right channel where the left channel seemed ok,
+ we apply concealment also on the left channel. This ensures that the coupling
+ modes of both channels match and that we have the same number of envelopes in
+ coupling mode.
+ However, as the left channel has already been processed before, the resulting
+ energy levels are not the same as if the left channel had been concealed
+ during the first call of decodeEnvelope().
+ */
+ /* Restore previous energy values for concealment, because the values have been
+ overwritten by the first call of decodeEnvelope(). */
+ FDKmemcpy (h_prev_data_left->sfb_nrg_prev, tempSfbNrgPrev, MAX_FREQ_COEFFS * sizeof(FIXP_SGL));
+ /* Do concealment */
+ decodeEnvelope (hHeaderData, h_data_left, h_prev_data_left, h_prev_data_right);
+ }
+
+ if (h_data_left->coupling) {
+ sbr_envelope_unmapping (hHeaderData, h_data_left, h_data_right);
+ }
+ }
+
+ /* Display the data for debugging: */
+}
+
+
+/*!
+ \brief Convert from coupled channels to independent L/R data
+*/
+static void
+sbr_envelope_unmapping (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_data_left, /*!< pointer to left channel */
+ HANDLE_SBR_FRAME_DATA h_data_right) /*!< pointer to right channel */
+{
+ int i;
+ FIXP_SGL tempL_m, tempR_m, tempRplus1_m, newL_m, newR_m;
+ SCHAR tempL_e, tempR_e, tempRplus1_e, newL_e, newR_e;
+
+
+ /* 1. Unmap (already dequantized) coupled envelope energies */
+
+ for (i = 0; i < h_data_left->nScaleFactors; i++) {
+ tempR_m = (FIXP_SGL)((LONG)h_data_right->iEnvelope[i] & MASK_M);
+ tempR_e = (SCHAR)((LONG)h_data_right->iEnvelope[i] & MASK_E);
+
+ tempR_e -= (18 + NRG_EXP_OFFSET); /* -18 = ld(UNMAPPING_SCALE / h_data_right->nChannels) */
+ tempL_m = (FIXP_SGL)((LONG)h_data_left->iEnvelope[i] & MASK_M);
+ tempL_e = (SCHAR)((LONG)h_data_left->iEnvelope[i] & MASK_E);
+
+ tempL_e -= NRG_EXP_OFFSET;
+
+ /* Calculate tempRight+1 */
+ FDK_add_MantExp( tempR_m, tempR_e,
+ FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
+ &tempRplus1_m, &tempRplus1_e);
+
+ FDK_divide_MantExp( tempL_m, tempL_e+1, /* 2 * tempLeft */
+ tempRplus1_m, tempRplus1_e,
+ &newR_m, &newR_e );
+
+ if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
+ newR_m >>= 1;
+ newR_e += 1;
+ }
+
+ newL_m = FX_DBL2FX_SGL(fMult(tempR_m,newR_m));
+ newL_e = tempR_e + newR_e;
+
+ h_data_right->iEnvelope[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NRG_EXP_OFFSET) & MASK_E);
+ h_data_left->iEnvelope[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NRG_EXP_OFFSET) & MASK_E);
+ }
+
+ /* 2. Dequantize and unmap coupled noise floor levels */
+
+ for (i = 0; i < hHeaderData->freqBandData.nNfb * h_data_left->frameInfo.nNoiseEnvelopes; i++) {
+
+ tempL_e = (SCHAR)(6 - (LONG)h_data_left->sbrNoiseFloorLevel[i]);
+ tempR_e = (SCHAR)((LONG)h_data_right->sbrNoiseFloorLevel[i] - 12) /*SBR_ENERGY_PAN_OFFSET*/;
+
+ /* Calculate tempR+1 */
+ FDK_add_MantExp( FL2FXCONST_SGL(0.5f), 1+tempR_e, /* tempR */
+ FL2FXCONST_SGL(0.5f), 1, /* 1.0 */
+ &tempRplus1_m, &tempRplus1_e);
+
+ /* Calculate 2*tempLeft/(tempR+1) */
+ FDK_divide_MantExp( FL2FXCONST_SGL(0.5f), tempL_e+2, /* 2 * tempLeft */
+ tempRplus1_m, tempRplus1_e,
+ &newR_m, &newR_e );
+
+ /* if (newR_m >= ((FIXP_SGL)MAXVAL_SGL - ROUNDING)) {
+ newR_m >>= 1;
+ newR_e += 1;
+ } */
+
+ /* L = tempR * R */
+ newL_m = newR_m;
+ newL_e = newR_e + tempR_e;
+ h_data_right->sbrNoiseFloorLevel[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newR_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newR_e + NOISE_EXP_OFFSET) & MASK_E);
+ h_data_left->sbrNoiseFloorLevel[i] = ((FIXP_SGL)((SHORT)(FIXP_SGL)(newL_m + ROUNDING) & MASK_M)) +
+ (FIXP_SGL)((SHORT)(FIXP_SGL)(newL_e + NOISE_EXP_OFFSET) & MASK_E);
+ }
+}
+
+
+/*!
+ \brief Simple alternative to the real SBR concealment
+
+ If the real frameInfo is not available due to a frame loss, a replacement will
+ be constructed with 1 envelope spanning the whole frame (FIX-FIX).
+ The delta-coded energies are set to negative values, resulting in a fade-down.
+ In case of coupling, the balance-channel will move towards the center.
+*/
+static void
+leanSbrConcealment(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
+ )
+{
+ FIXP_SGL target; /* targeted level for sfb_nrg_prev during fade-down */
+ FIXP_SGL step; /* speed of fade */
+ int i;
+
+ int currentStartPos = h_prev_data->stopPos - hHeaderData->numberTimeSlots;
+ int currentStopPos = hHeaderData->numberTimeSlots;
+
+
+ /* Use some settings of the previous frame */
+ h_sbr_data->ampResolutionCurrentFrame = h_prev_data->ampRes;
+ h_sbr_data->coupling = h_prev_data->coupling;
+ for(i=0;i<MAX_INVF_BANDS;i++)
+ h_sbr_data->sbr_invf_mode[i] = h_prev_data->sbr_invf_mode[i];
+
+ /* Generate concealing control data */
+
+ h_sbr_data->frameInfo.nEnvelopes = 1;
+ h_sbr_data->frameInfo.borders[0] = currentStartPos;
+ h_sbr_data->frameInfo.borders[1] = currentStopPos;
+ h_sbr_data->frameInfo.freqRes[0] = 1;
+ h_sbr_data->frameInfo.tranEnv = -1; /* no transient */
+ h_sbr_data->frameInfo.nNoiseEnvelopes = 1;
+ h_sbr_data->frameInfo.bordersNoise[0] = currentStartPos;
+ h_sbr_data->frameInfo.bordersNoise[1] = currentStopPos;
+
+ h_sbr_data->nScaleFactors = hHeaderData->freqBandData.nSfb[1];
+
+ /* Generate fake envelope data */
+
+ h_sbr_data->domain_vec[0] = 1;
+
+ if (h_sbr_data->coupling == COUPLING_BAL) {
+ target = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
+ step = (FIXP_SGL)DECAY_COUPLING;
+ }
+ else {
+ target = FL2FXCONST_SGL(0.0f);
+ step = (FIXP_SGL)DECAY;
+ }
+ if (hHeaderData->bs_info.ampResolution == 0) {
+ target <<= 1;
+ step <<= 1;
+ }
+
+ for (i=0; i < h_sbr_data->nScaleFactors; i++) {
+ if (h_prev_data->sfb_nrg_prev[i] > target)
+ h_sbr_data->iEnvelope[i] = -step;
+ else
+ h_sbr_data->iEnvelope[i] = step;
+ }
+
+ /* Noisefloor levels are always cleared ... */
+
+ h_sbr_data->domain_vec_noise[0] = 1;
+ for (i=0; i < hHeaderData->freqBandData.nNfb; i++)
+ h_sbr_data->sbrNoiseFloorLevel[i] = FL2FXCONST_SGL(0.0f);
+
+ /* ... and so are the sines */
+ FDKmemclear(h_sbr_data->addHarmonics, MAX_FREQ_COEFFS);
+}
+
+
+/*!
+ \brief Build reference energies and noise levels from bitstream elements
+*/
+static void
+decodeEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data, /*!< pointer to data of last frame */
+ HANDLE_SBR_PREV_FRAME_DATA otherChannel /*!< other channel's last frame data */
+ )
+{
+ int i;
+ int fFrameError = hHeaderData->frameErrorFlag;
+ FIXP_SGL tempSfbNrgPrev[MAX_FREQ_COEFFS];
+
+ if (!fFrameError) {
+ /*
+ To avoid distortions after bad frames, set the error flag if delta coding in time occurs.
+ However, SBR can take a little longer to come up again.
+ */
+ if ( h_prev_data->frameErrorFlag ) {
+ if (h_sbr_data->domain_vec[0] != 0) {
+ fFrameError = 1;
+ }
+ } else {
+ /* Check that the previous stop position and the current start position match.
+ (Could be done in checkFrameInfo(), but the previous frame data is not available there) */
+ if ( h_sbr_data->frameInfo.borders[0] != h_prev_data->stopPos - hHeaderData->numberTimeSlots ) {
+ /* Both the previous as well as the current frame are flagged to be ok, but they do not match! */
+ if (h_sbr_data->domain_vec[0] == 1) {
+ /* Prefer concealment over delta-time coding between the mismatching frames */
+ fFrameError = 1;
+ }
+ else {
+ /* Close the gap in time by triggering timeCompensateFirstEnvelope() */
+ fFrameError = 1;
+ }
+ }
+ }
+ }
+
+
+ if (fFrameError) /* Error is detected */
+ {
+ leanSbrConcealment(hHeaderData,
+ h_sbr_data,
+ h_prev_data);
+
+ /* decode the envelope data to linear PCM */
+ deltaToLinearPcmEnvelopeDecoding (hHeaderData, h_sbr_data, h_prev_data);
+ }
+ else /*Do a temporary dummy decoding and check that the envelope values are within limits */
+ {
+ if (h_prev_data->frameErrorFlag) {
+ timeCompensateFirstEnvelope (hHeaderData, h_sbr_data, h_prev_data);
+ if (h_sbr_data->coupling != h_prev_data->coupling) {
+ /*
+ Coupling mode has changed during concealment.
+ The stored energy levels need to be converted.
+ */
+ for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
+ /* Former Level-Channel will be used for both channels */
+ if (h_prev_data->coupling == COUPLING_BAL)
+ h_prev_data->sfb_nrg_prev[i] = otherChannel->sfb_nrg_prev[i];
+ /* Former L/R will be combined as the new Level-Channel */
+ else if (h_sbr_data->coupling == COUPLING_LEVEL)
+ h_prev_data->sfb_nrg_prev[i] = (h_prev_data->sfb_nrg_prev[i] + otherChannel->sfb_nrg_prev[i]) >> 1;
+ else if (h_sbr_data->coupling == COUPLING_BAL)
+ h_prev_data->sfb_nrg_prev[i] = (FIXP_SGL)SBR_ENERGY_PAN_OFFSET;
+ }
+ }
+ }
+ FDKmemcpy (tempSfbNrgPrev, h_prev_data->sfb_nrg_prev,
+ MAX_FREQ_COEFFS * sizeof (FIXP_SGL));
+
+ deltaToLinearPcmEnvelopeDecoding (hHeaderData, h_sbr_data, h_prev_data);
+
+ fFrameError = checkEnvelopeData (hHeaderData, h_sbr_data, h_prev_data);
+
+ if (fFrameError)
+ {
+ hHeaderData->frameErrorFlag = 1;
+ FDKmemcpy (h_prev_data->sfb_nrg_prev, tempSfbNrgPrev,
+ MAX_FREQ_COEFFS * sizeof (FIXP_SGL));
+ decodeEnvelope (hHeaderData, h_sbr_data, h_prev_data, otherChannel);
+ return;
+ }
+ }
+
+ requantizeEnvelopeData (h_sbr_data, h_sbr_data->ampResolutionCurrentFrame);
+
+ hHeaderData->frameErrorFlag = fFrameError;
+}
+
+
+/*!
+ \brief Verify that envelope energies are within the allowed range
+ \return 0 if all is fine, 1 if an envelope value was too high
+*/
+static int
+checkEnvelopeData (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data /*!< pointer to data of last frame */
+ )
+{
+ FIXP_SGL *iEnvelope = h_sbr_data->iEnvelope;
+ FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
+ int i = 0, errorFlag = 0;
+ FIXP_SGL sbr_max_energy =
+ (h_sbr_data->ampResolutionCurrentFrame == 1) ? SBR_MAX_ENERGY : (SBR_MAX_ENERGY << 1);
+
+ /*
+ Range check for current energies
+ */
+ for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
+ if (iEnvelope[i] > sbr_max_energy) {
+ errorFlag = 1;
+ }
+ if (iEnvelope[i] < FL2FXCONST_SGL(0.0f)) {
+ errorFlag = 1;
+ /* iEnvelope[i] = FL2FXCONST_SGL(0.0f); */
+ }
+ }
+
+ /*
+ Range check for previous energies
+ */
+ for (i = 0; i < hHeaderData->freqBandData.nSfb[1]; i++) {
+ sfb_nrg_prev[i] = fixMax(sfb_nrg_prev[i], FL2FXCONST_SGL(0.0f));
+ sfb_nrg_prev[i] = fixMin(sfb_nrg_prev[i], sbr_max_energy);
+ }
+
+ return (errorFlag);
+}
+
+
+/*!
+ \brief Verify that the noise levels are within the allowed range
+
+ The function is equivalent to checkEnvelopeData().
+ When the noise-levels are being decoded, it is already too late for
+ concealment. Therefore the noise levels are simply limited here.
+*/
+static void
+limitNoiseLevels(HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data) /*!< pointer to current data */
+{
+ int i;
+ int nNfb = hHeaderData->freqBandData.nNfb;
+
+ /*
+ Set range limits. The exact values depend on the coupling mode.
+ However this limitation is primarily intended to avoid unlimited
+ accumulation of the delta-coded noise levels.
+ */
+ #define lowerLimit ((FIXP_SGL)0) /* lowerLimit actually refers to the _highest_ noise energy */
+ #define upperLimit ((FIXP_SGL)35) /* upperLimit actually refers to the _lowest_ noise energy */
+
+ /*
+ Range check for current noise levels
+ */
+ for (i = 0; i < h_sbr_data->frameInfo.nNoiseEnvelopes * nNfb; i++) {
+ h_sbr_data->sbrNoiseFloorLevel[i] = fixMin(h_sbr_data->sbrNoiseFloorLevel[i], upperLimit);
+ h_sbr_data->sbrNoiseFloorLevel[i] = fixMax(h_sbr_data->sbrNoiseFloorLevel[i], lowerLimit);
+ }
+}
+
+
+/*!
+ \brief Compensate for the wrong timing that might occur after a frame error.
+*/
+static void
+timeCompensateFirstEnvelope (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to actual data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to data of last frame */
+{
+ int i, nScalefactors;
+ FRAME_INFO *pFrameInfo = &h_sbr_data->frameInfo;
+ UCHAR *nSfb = hHeaderData->freqBandData.nSfb;
+ int estimatedStartPos = h_prev_data->stopPos - hHeaderData->numberTimeSlots;
+ int refLen, newLen, shift;
+ FIXP_SGL deltaExp;
+
+ /* Original length of first envelope according to bitstream */
+ refLen = pFrameInfo->borders[1] - pFrameInfo->borders[0];
+ /* Corrected length of first envelope (concealing can make the first envelope longer) */
+ newLen = pFrameInfo->borders[1] - estimatedStartPos;
+
+ if (newLen <= 0) {
+ /* An envelope length of <= 0 would not work, so we don't use it.
+ May occur if the previous frame was flagged bad due to a mismatch
+ of the old and new frame infos. */
+ newLen = refLen;
+ estimatedStartPos = pFrameInfo->borders[0];
+ }
+
+ deltaExp = FDK_getNumOctavesDiv8(newLen, refLen);
+
+ /* Shift by -3 to rescale ld-table, 1-ampRes to enable coarser steps */
+ shift = (FRACT_BITS - 1 - ENV_EXP_FRACT + 1 - h_sbr_data->ampResolutionCurrentFrame - 3);
+ deltaExp = deltaExp >> shift;
+ pFrameInfo->borders[0] = estimatedStartPos;
+ pFrameInfo->bordersNoise[0] = estimatedStartPos;
+
+ if (h_sbr_data->coupling != COUPLING_BAL) {
+ nScalefactors = (pFrameInfo->freqRes[0]) ? nSfb[1] : nSfb[0];
+
+ for (i = 0; i < nScalefactors; i++)
+ h_sbr_data->iEnvelope[i] = h_sbr_data->iEnvelope[i] + deltaExp;
+ }
+}
+
+
+
+/*!
+ \brief Convert each envelope value from logarithmic to linear domain
+
+ Energy levels are transmitted in powers of 2, i.e. only the exponent
+ is extracted from the bitstream.
+ Therefore, normally only integer exponents can occur. However during
+ fading (in case of a corrupt bitstream), a fractional part can also
+ occur. The data in the array iEnvelope is shifted left by ENV_EXP_FRACT
+ compared to an integer representation so that numbers smaller than 1
+ can be represented.
+
+ This function calculates a mantissa corresponding to the fractional
+ part of the exponent for each reference energy. The array iEnvelope
+ is converted in place to save memory. Input and output data must
+ be interpreted differently, as shown in the below figure:
+
+ \image html EnvelopeData.png
+
+ The data is then used in calculateSbrEnvelope().
+*/
+static void
+requantizeEnvelopeData (HANDLE_SBR_FRAME_DATA h_sbr_data, int ampResolution)
+{
+ int i;
+ FIXP_SGL mantissa;
+ int ampShift = 1 - ampResolution;
+ int exponent;
+
+ /* In case that ENV_EXP_FRACT is changed to something else but 0 or 8,
+ the initialization of this array has to be adapted!
+ */
+#if ENV_EXP_FRACT
+ static const FIXP_SGL pow2[ENV_EXP_FRACT] =
+ {
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 1))), /* 0.7071 */
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 2))), /* 0.5946 */
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 3))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 4))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 5))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 6))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 7))),
+ FL2FXCONST_SGL(0.5f * pow(2.0f, pow(0.5f, 8))) /* 0.5013 */
+ };
+
+ int bit, mask;
+#endif
+
+ for (i = 0; i < h_sbr_data->nScaleFactors; i++) {
+ exponent = (LONG)h_sbr_data->iEnvelope[i];
+
+#if ENV_EXP_FRACT
+
+ exponent = exponent >> ampShift;
+ mantissa = 0.5f;
+
+ /* Amplify mantissa according to the fractional part of the
+ exponent (result will be between 0.500000 and 0.999999)
+ */
+ mask = 1; /* begin with lowest bit of exponent */
+
+ for ( bit=ENV_EXP_FRACT-1; bit>=0; bit-- ) {
+ if (exponent & mask) {
+ /* The current bit of the exponent is set,
+ multiply mantissa with the corresponding factor: */
+ mantissa = (FIXP_SGL)( (mantissa * pow2[bit]) << 1);
+ }
+ /* Advance to next bit */
+ mask = mask << 1;
+ }
+
+ /* Make integer part of exponent right aligned */
+ exponent = exponent >> ENV_EXP_FRACT;
+
+#else
+ /* In case of the high amplitude resolution, 1 bit of the exponent gets lost by the shift.
+ This will be compensated by a mantissa of 0.5*sqrt(2) instead of 0.5 if that bit is 1. */
+ mantissa = (exponent & ampShift) ? FL2FXCONST_SGL(0.707106781186548f) : FL2FXCONST_SGL(0.5f);
+ exponent = exponent >> ampShift;
+#endif
+
+ /*
+ Mantissa was set to 0.5 (instead of 1.0, therefore increase exponent by 1).
+ Multiply by L=nChannels=64 by increasing exponent by another 6.
+ => Increase exponent by 7
+ */
+ exponent += 7 + NRG_EXP_OFFSET;
+
+ /* Combine mantissa and exponent and write back the result */
+ h_sbr_data->iEnvelope[i] = (FIXP_SGL)(((LONG)mantissa & MASK_M) | (exponent & MASK_E));
+
+ }
+}
+
+
+/*!
+ \brief Build new reference energies from old ones and delta coded data
+*/
+static void
+deltaToLinearPcmEnvelopeDecoding (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
+{
+ int i, domain, no_of_bands, band, freqRes;
+
+ FIXP_SGL *sfb_nrg_prev = h_prev_data->sfb_nrg_prev;
+ FIXP_SGL *ptr_nrg = h_sbr_data->iEnvelope;
+
+ int offset = 2 * hHeaderData->freqBandData.nSfb[0] - hHeaderData->freqBandData.nSfb[1];
+
+ for (i = 0; i < h_sbr_data->frameInfo.nEnvelopes; i++) {
+ domain = h_sbr_data->domain_vec[i];
+ freqRes = h_sbr_data->frameInfo.freqRes[i];
+
+ FDK_ASSERT(freqRes >= 0 && freqRes <= 1);
+
+ no_of_bands = hHeaderData->freqBandData.nSfb[freqRes];
+
+ FDK_ASSERT(no_of_bands < (64));
+
+ if (domain == 0)
+ {
+ mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, 0, freqRes);
+ ptr_nrg++;
+ for (band = 1; band < no_of_bands; band++)
+ {
+ *ptr_nrg = *ptr_nrg + *(ptr_nrg-1);
+ mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
+ ptr_nrg++;
+ }
+ }
+ else
+ {
+ for (band = 0; band < no_of_bands; band++)
+ {
+ *ptr_nrg = *ptr_nrg + sfb_nrg_prev[indexLow2High(offset, band, freqRes)];
+ mapLowResEnergyVal(*ptr_nrg, sfb_nrg_prev, offset, band, freqRes);
+ ptr_nrg++;
+ }
+ }
+ }
+}
+
+
+/*!
+ \brief Build new noise levels from old ones and delta coded data
+*/
+static void
+decodeNoiseFloorlevels (HANDLE_SBR_HEADER_DATA hHeaderData, /*!< Static control data */
+ HANDLE_SBR_FRAME_DATA h_sbr_data, /*!< pointer to current data */
+ HANDLE_SBR_PREV_FRAME_DATA h_prev_data) /*!< pointer to previous data */
+{
+ int i;
+ int nNfb = hHeaderData->freqBandData.nNfb;
+ int nNoiseFloorEnvelopes = h_sbr_data->frameInfo.nNoiseEnvelopes;
+
+ /* Decode first noise envelope */
+
+ if (h_sbr_data->domain_vec_noise[0] == 0) {
+ FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[0];
+ for (i = 1; i < nNfb; i++) {
+ noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
+ h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
+ }
+ }
+ else {
+ for (i = 0; i < nNfb; i++) {
+ h_sbr_data->sbrNoiseFloorLevel[i] += h_prev_data->prevNoiseLevel[i];
+ }
+ }
+
+ /* If present, decode the second noise envelope
+ Note: nNoiseFloorEnvelopes can only be 1 or 2 */
+
+ if (nNoiseFloorEnvelopes > 1) {
+ if (h_sbr_data->domain_vec_noise[1] == 0) {
+ FIXP_SGL noiseLevel = h_sbr_data->sbrNoiseFloorLevel[nNfb];
+ for (i = nNfb + 1; i < 2*nNfb; i++) {
+ noiseLevel += h_sbr_data->sbrNoiseFloorLevel[i];
+ h_sbr_data->sbrNoiseFloorLevel[i] = noiseLevel;
+ }
+ }
+ else {
+ for (i = 0; i < nNfb; i++) {
+ h_sbr_data->sbrNoiseFloorLevel[i + nNfb] += h_sbr_data->sbrNoiseFloorLevel[i];
+ }
+ }
+ }
+
+ limitNoiseLevels(hHeaderData, h_sbr_data);
+
+ /* Update prevNoiseLevel with the last noise envelope */
+ for (i = 0; i < nNfb; i++)
+ h_prev_data->prevNoiseLevel[i] = h_sbr_data->sbrNoiseFloorLevel[i + nNfb*(nNoiseFloorEnvelopes-1)];
+
+
+ /* Requantize the noise floor levels in COUPLING_OFF-mode */
+ if (!h_sbr_data->coupling) {
+ int nf_e;
+
+ for (i = 0; i < nNoiseFloorEnvelopes*nNfb; i++) {
+ nf_e = 6 - (LONG)h_sbr_data->sbrNoiseFloorLevel[i] + 1 + NOISE_EXP_OFFSET;
+ /* +1 to compensate for a mantissa of 0.5 instead of 1.0 */
+
+ h_sbr_data->sbrNoiseFloorLevel[i] =
+ (FIXP_SGL)( ((LONG)FL2FXCONST_SGL(0.5f)) + /* mantissa */
+ (nf_e & MASK_E) ); /* exponent */
+
+ }
+ }
+}