summaryrefslogtreecommitdiffstats
path: root/vm/compiler/Dataflow.c
blob: 1084201296e1e079a64dbd8e44b9eea2c6bbd494 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
/*
 * Copyright (C) 2009 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "Dalvik.h"
#include "Dataflow.h"
#include "Loop.h"
#include "dexdump/OpCodeNames.h"

/*
 * Main table containing data flow attributes for each bytecode. The first
 * 256 entries are for Dalvik bytecode instructions, where extended opcode at
 * the MIR level are appended afterwards.
 *
 * TODO - many optimization flags are incomplete - they will only limit the
 * scope of optimizations but will not cause mis-optimizations.
 */
int dvmCompilerDataFlowAttributes[kMirOpLast] = {
    // 00 OP_NOP
    DF_NOP,

    // 01 OP_MOVE vA, vB
    DF_DA | DF_UB | DF_IS_MOVE,

    // 02 OP_MOVE_FROM16 vAA, vBBBB
    DF_DA | DF_UB | DF_IS_MOVE,

    // 03 OP_MOVE_16 vAAAA, vBBBB
    DF_DA | DF_UB | DF_IS_MOVE,

    // 04 OP_MOVE_WIDE vA, vB
    DF_DA_WIDE | DF_UB_WIDE | DF_IS_MOVE,

    // 05 OP_MOVE_WIDE_FROM16 vAA, vBBBB
    DF_DA_WIDE | DF_UB_WIDE | DF_IS_MOVE,

    // 06 OP_MOVE_WIDE_16 vAAAA, vBBBB
    DF_DA_WIDE | DF_UB_WIDE | DF_IS_MOVE,

    // 07 OP_MOVE_OBJECT vA, vB
    DF_DA | DF_UB | DF_IS_MOVE,

    // 08 OP_MOVE_OBJECT_FROM16 vAA, vBBBB
    DF_DA | DF_UB | DF_IS_MOVE,

    // 09 OP_MOVE_OBJECT_16 vAAAA, vBBBB
    DF_DA | DF_UB | DF_IS_MOVE,

    // 0A OP_MOVE_RESULT vAA
    DF_DA,

    // 0B OP_MOVE_RESULT_WIDE vAA
    DF_DA_WIDE,

    // 0C OP_MOVE_RESULT_OBJECT vAA
    DF_DA,

    // 0D OP_MOVE_EXCEPTION vAA
    DF_DA,

    // 0E OP_RETURN_VOID
    DF_NOP,

    // 0F OP_RETURN vAA
    DF_UA,

    // 10 OP_RETURN_WIDE vAA
    DF_UA_WIDE,

    // 11 OP_RETURN_OBJECT vAA
    DF_UA,

    // 12 OP_CONST_4 vA, #+B
    DF_DA | DF_SETS_CONST,

    // 13 OP_CONST_16 vAA, #+BBBB
    DF_DA | DF_SETS_CONST,

    // 14 OP_CONST vAA, #+BBBBBBBB
    DF_DA | DF_SETS_CONST,

    // 15 OP_CONST_HIGH16 VAA, #+BBBB0000
    DF_DA | DF_SETS_CONST,

    // 16 OP_CONST_WIDE_16 vAA, #+BBBB
    DF_DA_WIDE | DF_SETS_CONST,

    // 17 OP_CONST_WIDE_32 vAA, #+BBBBBBBB
    DF_DA_WIDE | DF_SETS_CONST,

    // 18 OP_CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
    DF_DA_WIDE | DF_SETS_CONST,

    // 19 OP_CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
    DF_DA_WIDE | DF_SETS_CONST,

    // 1A OP_CONST_STRING vAA, string@BBBB
    DF_DA,

    // 1B OP_CONST_STRING_JUMBO vAA, string@BBBBBBBB
    DF_DA,

    // 1C OP_CONST_CLASS vAA, type@BBBB
    DF_DA,

    // 1D OP_MONITOR_ENTER vAA
    DF_UA,

    // 1E OP_MONITOR_EXIT vAA
    DF_UA,

    // 1F OP_CHECK_CAST vAA, type@BBBB
    DF_UA,

    // 20 OP_INSTANCE_OF vA, vB, type@CCCC
    DF_DA | DF_UB,

    // 21 OP_ARRAY_LENGTH vA, vB
    DF_DA | DF_UB,

    // 22 OP_NEW_INSTANCE vAA, type@BBBB
    DF_DA,

    // 23 OP_NEW_ARRAY vA, vB, type@CCCC
    DF_DA | DF_UB,

    // 24 OP_FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
    DF_FORMAT_35C,

    // 25 OP_FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
    DF_FORMAT_3RC,

    // 26 OP_FILL_ARRAY_DATA vAA, +BBBBBBBB
    DF_UA,

    // 27 OP_THROW vAA
    DF_UA,

    // 28 OP_GOTO
    DF_NOP,

    // 29 OP_GOTO_16
    DF_NOP,

    // 2A OP_GOTO_32
    DF_NOP,

    // 2B OP_PACKED_SWITCH vAA, +BBBBBBBB
    DF_UA,

    // 2C OP_SPARSE_SWITCH vAA, +BBBBBBBB
    DF_UA,

    // 2D OP_CMPL_FLOAT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C,

    // 2E OP_CMPG_FLOAT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C,

    // 2F OP_CMPL_DOUBLE vAA, vBB, vCC
    DF_DA | DF_UB_WIDE | DF_UC_WIDE | DF_FP_B | DF_FP_C,

    // 30 OP_CMPG_DOUBLE vAA, vBB, vCC
    DF_DA | DF_UB_WIDE | DF_UC_WIDE | DF_FP_B | DF_FP_C,

    // 31 OP_CMP_LONG vAA, vBB, vCC
    DF_DA | DF_UB_WIDE | DF_UC_WIDE,

    // 32 OP_IF_EQ vA, vB, +CCCC
    DF_UA | DF_UB,

    // 33 OP_IF_NE vA, vB, +CCCC
    DF_UA | DF_UB,

    // 34 OP_IF_LT vA, vB, +CCCC
    DF_UA | DF_UB,

    // 35 OP_IF_GE vA, vB, +CCCC
    DF_UA | DF_UB,

    // 36 OP_IF_GT vA, vB, +CCCC
    DF_UA | DF_UB,

    // 37 OP_IF_LE vA, vB, +CCCC
    DF_UA | DF_UB,


    // 38 OP_IF_EQZ vAA, +BBBB
    DF_UA,

    // 39 OP_IF_NEZ vAA, +BBBB
    DF_UA,

    // 3A OP_IF_LTZ vAA, +BBBB
    DF_UA,

    // 3B OP_IF_GEZ vAA, +BBBB
    DF_UA,

    // 3C OP_IF_GTZ vAA, +BBBB
    DF_UA,

    // 3D OP_IF_LEZ vAA, +BBBB
    DF_UA,

    // 3E OP_UNUSED_3E
    DF_NOP,

    // 3F OP_UNUSED_3F
    DF_NOP,

    // 40 OP_UNUSED_40
    DF_NOP,

    // 41 OP_UNUSED_41
    DF_NOP,

    // 42 OP_UNUSED_42
    DF_NOP,

    // 43 OP_UNUSED_43
    DF_NOP,

    // 44 OP_AGET vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0,

    // 45 OP_AGET_WIDE vAA, vBB, vCC
    DF_DA_WIDE | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0,

    // 46 OP_AGET_OBJECT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0,

    // 47 OP_AGET_BOOLEAN vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0,

    // 48 OP_AGET_BYTE vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0,

    // 49 OP_AGET_CHAR vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0,

    // 4A OP_AGET_SHORT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_0,

    // 4B OP_APUT vAA, vBB, vCC
    DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1,

    // 4C OP_APUT_WIDE vAA, vBB, vCC
    DF_UA_WIDE | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_2,

    // 4D OP_APUT_OBJECT vAA, vBB, vCC
    DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1,

    // 4E OP_APUT_BOOLEAN vAA, vBB, vCC
    DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1,

    // 4F OP_APUT_BYTE vAA, vBB, vCC
    DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1,

    // 50 OP_APUT_CHAR vAA, vBB, vCC
    DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1,

    // 51 OP_APUT_SHORT vAA, vBB, vCC
    DF_UA | DF_UB | DF_UC | DF_NULL_N_RANGE_CHECK_1,

    // 52 OP_IGET vA, vB, field@CCCC
    DF_DA | DF_UB,

    // 53 OP_IGET_WIDE vA, vB, field@CCCC
    DF_DA_WIDE | DF_UB,

    // 54 OP_IGET_OBJECT vA, vB, field@CCCC
    DF_DA | DF_UB,

    // 55 OP_IGET_BOOLEAN vA, vB, field@CCCC
    DF_DA | DF_UB,

    // 56 OP_IGET_BYTE vA, vB, field@CCCC
    DF_DA | DF_UB,

    // 57 OP_IGET_CHAR vA, vB, field@CCCC
    DF_DA | DF_UB,

    // 58 OP_IGET_SHORT vA, vB, field@CCCC
    DF_DA | DF_UB,

    // 59 OP_IPUT vA, vB, field@CCCC
    DF_UA | DF_UB,

    // 5A OP_IPUT_WIDE vA, vB, field@CCCC
    DF_UA_WIDE | DF_UB,

    // 5B OP_IPUT_OBJECT vA, vB, field@CCCC
    DF_UA | DF_UB,

    // 5C OP_IPUT_BOOLEAN vA, vB, field@CCCC
    DF_UA | DF_UB,

    // 5D OP_IPUT_BYTE vA, vB, field@CCCC
    DF_UA | DF_UB,

    // 5E OP_IPUT_CHAR vA, vB, field@CCCC
    DF_UA | DF_UB,

    // 5F OP_IPUT_SHORT vA, vB, field@CCCC
    DF_UA | DF_UB,

    // 60 OP_SGET vAA, field@BBBB
    DF_DA,

    // 61 OP_SGET_WIDE vAA, field@BBBB
    DF_DA_WIDE,

    // 62 OP_SGET_OBJECT vAA, field@BBBB
    DF_DA,

    // 63 OP_SGET_BOOLEAN vAA, field@BBBB
    DF_DA,

    // 64 OP_SGET_BYTE vAA, field@BBBB
    DF_DA,

    // 65 OP_SGET_CHAR vAA, field@BBBB
    DF_DA,

    // 66 OP_SGET_SHORT vAA, field@BBBB
    DF_DA,

    // 67 OP_SPUT vAA, field@BBBB
    DF_UA,

    // 68 OP_SPUT_WIDE vAA, field@BBBB
    DF_UA_WIDE,

    // 69 OP_SPUT_OBJECT vAA, field@BBBB
    DF_UA,

    // 6A OP_SPUT_BOOLEAN vAA, field@BBBB
    DF_UA,

    // 6B OP_SPUT_BYTE vAA, field@BBBB
    DF_UA,

    // 6C OP_SPUT_CHAR vAA, field@BBBB
    DF_UA,

    // 6D OP_SPUT_SHORT vAA, field@BBBB
    DF_UA,

    // 6E OP_INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
    DF_FORMAT_35C,

    // 6F OP_INVOKE_SUPER {vD, vE, vF, vG, vA}
    DF_FORMAT_35C,

    // 70 OP_INVOKE_DIRECT {vD, vE, vF, vG, vA}
    DF_FORMAT_35C,

    // 71 OP_INVOKE_STATIC {vD, vE, vF, vG, vA}
    DF_FORMAT_35C,

    // 72 OP_INVOKE_INTERFACE {vD, vE, vF, vG, vA}
    DF_FORMAT_35C,

    // 73 OP_UNUSED_73
    DF_NOP,

    // 74 OP_INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
    DF_FORMAT_3RC,

    // 75 OP_INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
    DF_FORMAT_3RC,

    // 76 OP_INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
    DF_FORMAT_3RC,

    // 77 OP_INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
    DF_FORMAT_3RC,

    // 78 OP_INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
    DF_FORMAT_3RC,

    // 79 OP_UNUSED_79
    DF_NOP,

    // 7A OP_UNUSED_7A
    DF_NOP,

    // 7B OP_NEG_INT vA, vB
    DF_DA | DF_UB,

    // 7C OP_NOT_INT vA, vB
    DF_DA | DF_UB,

    // 7D OP_NEG_LONG vA, vB
    DF_DA_WIDE | DF_UB_WIDE,

    // 7E OP_NOT_LONG vA, vB
    DF_DA_WIDE | DF_UB_WIDE,

    // 7F OP_NEG_FLOAT vA, vB
    DF_DA | DF_UB | DF_FP_A | DF_FP_B,

    // 80 OP_NEG_DOUBLE vA, vB
    DF_DA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,

    // 81 OP_INT_TO_LONG vA, vB
    DF_DA_WIDE | DF_UB,

    // 82 OP_INT_TO_FLOAT vA, vB
    DF_DA | DF_UB | DF_FP_A,

    // 83 OP_INT_TO_DOUBLE vA, vB
    DF_DA_WIDE | DF_UB | DF_FP_A,

    // 84 OP_LONG_TO_INT vA, vB
    DF_DA | DF_UB_WIDE,

    // 85 OP_LONG_TO_FLOAT vA, vB
    DF_DA | DF_UB_WIDE | DF_FP_A,

    // 86 OP_LONG_TO_DOUBLE vA, vB
    DF_DA_WIDE | DF_UB_WIDE | DF_FP_A,

    // 87 OP_FLOAT_TO_INT vA, vB
    DF_DA | DF_UB | DF_FP_B,

    // 88 OP_FLOAT_TO_LONG vA, vB
    DF_DA_WIDE | DF_UB | DF_FP_B,

    // 89 OP_FLOAT_TO_DOUBLE vA, vB
    DF_DA_WIDE | DF_UB | DF_FP_A | DF_FP_B,

    // 8A OP_DOUBLE_TO_INT vA, vB
    DF_DA | DF_UB_WIDE | DF_FP_B,

    // 8B OP_DOUBLE_TO_LONG vA, vB
    DF_DA_WIDE | DF_UB_WIDE | DF_FP_B,

    // 8C OP_DOUBLE_TO_FLOAT vA, vB
    DF_DA | DF_UB_WIDE | DF_FP_A | DF_FP_B,

    // 8D OP_INT_TO_BYTE vA, vB
    DF_DA | DF_UB,

    // 8E OP_INT_TO_CHAR vA, vB
    DF_DA | DF_UB,

    // 8F OP_INT_TO_SHORT vA, vB
    DF_DA | DF_UB,

    // 90 OP_ADD_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_IS_LINEAR,

    // 91 OP_SUB_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_IS_LINEAR,

    // 92 OP_MUL_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC,

    // 93 OP_DIV_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC,

    // 94 OP_REM_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC,

    // 95 OP_AND_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC,

    // 96 OP_OR_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC,

    // 97 OP_XOR_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC,

    // 98 OP_SHL_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC,

    // 99 OP_SHR_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC,

    // 9A OP_USHR_INT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC,

    // 9B OP_ADD_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,

    // 9C OP_SUB_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,

    // 9D OP_MUL_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,

    // 9E OP_DIV_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,

    // 9F OP_REM_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,

    // A0 OP_AND_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,

    // A1 OP_OR_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,

    // A2 OP_XOR_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE,

    // A3 OP_SHL_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC,

    // A4 OP_SHR_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC,

    // A5 OP_USHR_LONG vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC,

    // A6 OP_ADD_FLOAT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,

    // A7 OP_SUB_FLOAT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,

    // A8 OP_MUL_FLOAT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,

    // A9 OP_DIV_FLOAT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,

    // AA OP_REM_FLOAT vAA, vBB, vCC
    DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,

    // AB OP_ADD_DOUBLE vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,

    // AC OP_SUB_DOUBLE vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,

    // AD OP_MUL_DOUBLE vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,

    // AE OP_DIV_DOUBLE vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,

    // AF OP_REM_DOUBLE vAA, vBB, vCC
    DF_DA_WIDE | DF_UB_WIDE | DF_UC_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,

    // B0 OP_ADD_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // B1 OP_SUB_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // B2 OP_MUL_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // B3 OP_DIV_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // B4 OP_REM_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // B5 OP_AND_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // B6 OP_OR_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // B7 OP_XOR_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // B8 OP_SHL_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // B9 OP_SHR_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // BA OP_USHR_INT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB,

    // BB OP_ADD_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,

    // BC OP_SUB_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,

    // BD OP_MUL_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,

    // BE OP_DIV_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,

    // BF OP_REM_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,

    // C0 OP_AND_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,

    // C1 OP_OR_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,

    // C2 OP_XOR_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE,

    // C3 OP_SHL_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB,

    // C4 OP_SHR_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB,

    // C5 OP_USHR_LONG_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB,

    // C6 OP_ADD_FLOAT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,

    // C7 OP_SUB_FLOAT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,

    // C8 OP_MUL_FLOAT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,

    // C9 OP_DIV_FLOAT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,

    // CA OP_REM_FLOAT_2ADDR vA, vB
    DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,

    // CB OP_ADD_DOUBLE_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,

    // CC OP_SUB_DOUBLE_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,

    // CD OP_MUL_DOUBLE_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,

    // CE OP_DIV_DOUBLE_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,

    // CF OP_REM_DOUBLE_2ADDR vA, vB
    DF_DA_WIDE | DF_UA_WIDE | DF_UB_WIDE | DF_FP_A | DF_FP_B,

    // D0 OP_ADD_INT_LIT16 vA, vB, #+CCCC
    DF_DA | DF_UB,

    // D1 OP_RSUB_INT vA, vB, #+CCCC
    DF_DA | DF_UB,

    // D2 OP_MUL_INT_LIT16 vA, vB, #+CCCC
    DF_DA | DF_UB,

    // D3 OP_DIV_INT_LIT16 vA, vB, #+CCCC
    DF_DA | DF_UB,

    // D4 OP_REM_INT_LIT16 vA, vB, #+CCCC
    DF_DA | DF_UB,

    // D5 OP_AND_INT_LIT16 vA, vB, #+CCCC
    DF_DA | DF_UB,

    // D6 OP_OR_INT_LIT16 vA, vB, #+CCCC
    DF_DA | DF_UB,

    // D7 OP_XOR_INT_LIT16 vA, vB, #+CCCC
    DF_DA | DF_UB,

    // D8 OP_ADD_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB | DF_IS_LINEAR,

    // D9 OP_RSUB_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB,

    // DA OP_MUL_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB,

    // DB OP_DIV_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB,

    // DC OP_REM_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB,

    // DD OP_AND_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB,

    // DE OP_OR_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB,

    // DF OP_XOR_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB,

    // E0 OP_SHL_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB,

    // E1 OP_SHR_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB,

    // E2 OP_USHR_INT_LIT8 vAA, vBB, #+CC
    DF_DA | DF_UB,

    // E3 OP_IGET_VOLATILE
    DF_NOP,

    // E4 OP_IPUT_VOLATILE
    DF_NOP,

    // E5 OP_SGET_VOLATILE
    DF_NOP,

    // E6 OP_SPUT_VOLATILE
    DF_NOP,

    // E7 OP_IGET_OBJECT_VOLATILE
    DF_NOP,

    // E8 OP_IGET_WIDE_VOLATILE
    DF_NOP,

    // E9 OP_IPUT_WIDE_VOLATILE
    DF_NOP,

    // EA OP_SGET_WIDE_VOLATILE
    DF_NOP,

    // EB OP_SPUT_WIDE_VOLATILE
    DF_NOP,

    // EC OP_BREAKPOINT
    DF_NOP,

    // ED OP_THROW_VERIFICATION_ERROR
    DF_NOP,

    // EE OP_EXECUTE_INLINE
    DF_FORMAT_35C,

    // EF OP_EXECUTE_INLINE_RANGE
    DF_FORMAT_3RC,

    // F0 OP_INVOKE_DIRECT_EMPTY
    DF_NOP,

    // F1 OP_UNUSED_F1
    DF_NOP,

    // F2 OP_IGET_QUICK
    DF_DA | DF_UB,

    // F3 OP_IGET_WIDE_QUICK
    DF_DA_WIDE | DF_UB,

    // F4 OP_IGET_OBJECT_QUICK
    DF_DA | DF_UB,

    // F5 OP_IPUT_QUICK
    DF_UA | DF_UB,

    // F6 OP_IPUT_WIDE_QUICK
    DF_UA_WIDE | DF_UB,

    // F7 OP_IPUT_OBJECT_QUICK
    DF_UA | DF_UB,

    // F8 OP_INVOKE_VIRTUAL_QUICK
    DF_FORMAT_35C,

    // F9 OP_INVOKE_VIRTUAL_QUICK_RANGE
    DF_FORMAT_3RC,

    // FA OP_INVOKE_SUPER_QUICK
    DF_FORMAT_35C,

    // FB OP_INVOKE_SUPER_QUICK_RANGE
    DF_FORMAT_3RC,

    // FC OP_IPUT_OBJECT_VOLATILE
    DF_NOP,

    // FD OP_SGET_OBJECT_VOLATILE
    DF_NOP,

    // FE OP_SPUT_OBJECT_VOLATILE
    DF_NOP,

    // FF OP_UNUSED_FF
    DF_NOP,

    // Beginning of extended MIR opcodes
    // 100 OP_MIR_PHI
    DF_PHI | DF_DA,

    /*
     * For extended MIR inserted at the MIR2LIR stage, it is okay to have
     * undefined values here.
     */
};

/* Return the Dalvik register/subscript pair of a given SSA register */
int dvmConvertSSARegToDalvik(CompilationUnit *cUnit, int ssaReg)
{
      return GET_ELEM_N(cUnit->ssaToDalvikMap, int, ssaReg);
}

/*
 * Utility function to convert encoded SSA register value into Dalvik register
 * and subscript pair. Each SSA register can be used to index the
 * ssaToDalvikMap list to get the subscript[31..16]/dalvik_reg[15..0] mapping.
 */
char *dvmCompilerGetDalvikDisassembly(DecodedInstruction *insn)
{
    char buffer[256];
    int opcode = insn->opCode;
    int dfAttributes = dvmCompilerDataFlowAttributes[opcode];
    char *ret;

    buffer[0] = 0;
    strcpy(buffer, getOpcodeName(opcode));

    if (dfAttributes & DF_FORMAT_35C) {
        unsigned int i;
        for (i = 0; i < insn->vA; i++) {
            if (i != 0) strcat(buffer, ",");
            sprintf(buffer + strlen(buffer), " v%d", insn->arg[i]);
        }
    }
    else if (dfAttributes & DF_FORMAT_3RC) {
        sprintf(buffer + strlen(buffer),
                " v%d..v%d", insn->vC, insn->vC + insn->vA - 1);
    }
    else {
        if (dfAttributes & DF_A_IS_REG) {
            sprintf(buffer + strlen(buffer), " v%d", insn->vA);
        }
        if (dfAttributes & DF_B_IS_REG) {
            sprintf(buffer + strlen(buffer),
                    ", v%d", insn->vB);
        }
        else {
            sprintf(buffer + strlen(buffer),
                    ", (#%d)", insn->vB);
        }
        if (dfAttributes & DF_C_IS_REG) {
            sprintf(buffer + strlen(buffer),
                    ", v%d", insn->vC);
        }
        else {
            sprintf(buffer + strlen(buffer),
                    ", (#%d)", insn->vC);
        }
    }
    int length = strlen(buffer) + 1;
    ret = dvmCompilerNew(length, false);
    memcpy(ret, buffer, length);
    return ret;
}

/*
 * Utility function to convert encoded SSA register value into Dalvik register
 * and subscript pair. Each SSA register can be used to index the
 * ssaToDalvikMap list to get the subscript[31..16]/dalvik_reg[15..0] mapping.
 */
char *dvmCompilerGetSSAString(CompilationUnit *cUnit, SSARepresentation *ssaRep)
{
    char buffer[256];
    char *ret;
    int i;

    buffer[0] = 0;
    for (i = 0; i < ssaRep->numDefs; i++) {
        int ssa2DalvikValue = dvmConvertSSARegToDalvik(cUnit, ssaRep->defs[i]);

        sprintf(buffer + strlen(buffer), "s%d(v%d_%d) ",
                ssaRep->defs[i], DECODE_REG(ssa2DalvikValue),
                DECODE_SUB(ssa2DalvikValue));
    }

    if (ssaRep->numDefs) {
        strcat(buffer, "<- ");
    }

    for (i = 0; i < ssaRep->numUses; i++) {
        int ssa2DalvikValue = dvmConvertSSARegToDalvik(cUnit, ssaRep->uses[i]);
        int len = strlen(buffer);

        if (snprintf(buffer + len, 250 - len, "s%d(v%d_%d) ",
                     ssaRep->uses[i], DECODE_REG(ssa2DalvikValue),
                     DECODE_SUB(ssa2DalvikValue)) >= (250 - len)) {
            strcat(buffer, "...");
            break;
        }
    }

    int length = strlen(buffer) + 1;
    ret = dvmCompilerNew(length, false);
    memcpy(ret, buffer, length);
    return ret;
}

/* Any register that is used before being defined is considered live-in */
static inline void handleLiveInUse(BitVector *useV, BitVector *defV,
                                   BitVector *liveInV, int dalvikRegId)
{
    dvmCompilerSetBit(useV, dalvikRegId);
    if (!dvmIsBitSet(defV, dalvikRegId)) {
        dvmCompilerSetBit(liveInV, dalvikRegId);
    }
}

/* Mark a reg as being defined */
static inline void handleLiveInDef(BitVector *defV, int dalvikRegId)
{
    dvmCompilerSetBit(defV, dalvikRegId);
}

/*
 * Find out live-in variables for natural loops. Variables that are live-in in
 * the main loop body are considered to be defined in the entry block.
 */
void dvmCompilerFindLiveIn(CompilationUnit *cUnit, BasicBlock *bb)
{
    MIR *mir;
    BitVector *useV, *defV, *liveInV;

    if (bb->blockType != kDalvikByteCode &&
        bb->blockType != kEntryBlock) {
        return;
    }

    useV = bb->dataFlowInfo->useV =
        dvmCompilerAllocBitVector(cUnit->method->registersSize, false);
    defV = bb->dataFlowInfo->defV =
        dvmCompilerAllocBitVector(cUnit->method->registersSize, false);
    liveInV = bb->dataFlowInfo->liveInV =
        dvmCompilerAllocBitVector(cUnit->method->registersSize, false);

    for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
        int dfAttributes =
            dvmCompilerDataFlowAttributes[mir->dalvikInsn.opCode];
        DecodedInstruction *dInsn = &mir->dalvikInsn;

        if (dfAttributes & DF_HAS_USES) {
            if (dfAttributes & DF_UA) {
                handleLiveInUse(useV, defV, liveInV, dInsn->vA);
            } else if (dfAttributes & DF_UA_WIDE) {
                handleLiveInUse(useV, defV, liveInV, dInsn->vA);
                handleLiveInUse(useV, defV, liveInV, dInsn->vA+1);
            }
            if (dfAttributes & DF_UB) {
                handleLiveInUse(useV, defV, liveInV, dInsn->vB);
            } else if (dfAttributes & DF_UB_WIDE) {
                handleLiveInUse(useV, defV, liveInV, dInsn->vB);
                handleLiveInUse(useV, defV, liveInV, dInsn->vB+1);
            }
            if (dfAttributes & DF_UC) {
                handleLiveInUse(useV, defV, liveInV, dInsn->vC);
            } else if (dfAttributes & DF_UC_WIDE) {
                handleLiveInUse(useV, defV, liveInV, dInsn->vC);
                handleLiveInUse(useV, defV, liveInV, dInsn->vC+1);
            }
        }
        if (dfAttributes & DF_HAS_DEFS) {
            handleLiveInDef(defV, dInsn->vA);
            if (dfAttributes & DF_DA_WIDE) {
                handleLiveInDef(defV, dInsn->vA+1);
            }
        }
    }
}

/* Find out the latest SSA register for a given Dalvik register */
static void handleSSAUse(CompilationUnit *cUnit, int *uses, int dalvikReg,
                         int regIndex)
{
    int encodedValue = cUnit->dalvikToSSAMap[dalvikReg];
    int ssaReg = DECODE_REG(encodedValue);
    uses[regIndex] = ssaReg;
}

/* Setup a new SSA register for a given Dalvik register */
static void handleSSADef(CompilationUnit *cUnit, int *defs, int dalvikReg,
                         int regIndex)
{
    int encodedValue = cUnit->dalvikToSSAMap[dalvikReg];
    int ssaReg = cUnit->numSSARegs++;
    /* Bump up the subscript */
    int dalvikSub = DECODE_SUB(encodedValue) + 1;
    int newD2SMapping = ENCODE_REG_SUB(ssaReg, dalvikSub);

    cUnit->dalvikToSSAMap[dalvikReg] = newD2SMapping;

    int newS2DMapping = ENCODE_REG_SUB(dalvikReg, dalvikSub);
    dvmInsertGrowableList(cUnit->ssaToDalvikMap, (void *) newS2DMapping);

    defs[regIndex] = ssaReg;
}

/* Loop up new SSA names for format_35c instructions */
static void dataFlowSSAFormat35C(CompilationUnit *cUnit, MIR *mir)
{
    DecodedInstruction *dInsn = &mir->dalvikInsn;
    int numUses = dInsn->vA;
    int i;

    mir->ssaRep->numUses = numUses;
    mir->ssaRep->uses = dvmCompilerNew(sizeof(int) * numUses, false);

    for (i = 0; i < numUses; i++) {
        handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->arg[i], i);
    }
}

/* Loop up new SSA names for format_3rc instructions */
static void dataFlowSSAFormat3RC(CompilationUnit *cUnit, MIR *mir)
{
    DecodedInstruction *dInsn = &mir->dalvikInsn;
    int numUses = dInsn->vA;
    int i;

    mir->ssaRep->numUses = numUses;
    mir->ssaRep->uses = dvmCompilerNew(sizeof(int) * numUses, false);

    for (i = 0; i < numUses; i++) {
        handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vC+i, i);
    }
}

/* Entry function to convert a block into SSA representation */
void dvmCompilerDoSSAConversion(CompilationUnit *cUnit, BasicBlock *bb)
{
    MIR *mir;

    if (bb->blockType != kDalvikByteCode && bb->blockType != kEntryBlock) {
        return;
    }

    for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
        mir->ssaRep = dvmCompilerNew(sizeof(SSARepresentation), true);

        int dfAttributes =
            dvmCompilerDataFlowAttributes[mir->dalvikInsn.opCode];

        int numUses = 0;

        if (dfAttributes & DF_FORMAT_35C) {
            dataFlowSSAFormat35C(cUnit, mir);
            continue;
        }

        if (dfAttributes & DF_FORMAT_3RC) {
            dataFlowSSAFormat3RC(cUnit, mir);
            continue;
        }

        if (dfAttributes & DF_HAS_USES) {
            if (dfAttributes & DF_UA) {
                numUses++;
            } else if (dfAttributes & DF_UA_WIDE) {
                numUses += 2;
            }
            if (dfAttributes & DF_UB) {
                numUses++;
            } else if (dfAttributes & DF_UB_WIDE) {
                numUses += 2;
            }
            if (dfAttributes & DF_UC) {
                numUses++;
            } else if (dfAttributes & DF_UC_WIDE) {
                numUses += 2;
            }
        }

        if (numUses) {
            mir->ssaRep->numUses = numUses;
            mir->ssaRep->uses = dvmCompilerNew(sizeof(int) * numUses, false);
            mir->ssaRep->fpUse = dvmCompilerNew(sizeof(bool) * numUses, false);
        }

        int numDefs = 0;

        if (dfAttributes & DF_HAS_DEFS) {
            numDefs++;
            if (dfAttributes & DF_DA_WIDE) {
                numDefs++;
            }
        }

        if (numDefs) {
            mir->ssaRep->numDefs = numDefs;
            mir->ssaRep->defs = dvmCompilerNew(sizeof(int) * numDefs, false);
            mir->ssaRep->fpDef = dvmCompilerNew(sizeof(bool) * numDefs, false);
        }

        DecodedInstruction *dInsn = &mir->dalvikInsn;

        if (dfAttributes & DF_HAS_USES) {
            numUses = 0;
            if (dfAttributes & DF_UA) {
                mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_A;
                handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vA, numUses++);
            } else if (dfAttributes & DF_UA_WIDE) {
                mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_A;
                handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vA, numUses++);
                mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_A;
                handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vA+1, numUses++);
            }
            if (dfAttributes & DF_UB) {
                mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_B;
                handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vB, numUses++);
            } else if (dfAttributes & DF_UB_WIDE) {
                mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_B;
                handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vB, numUses++);
                mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_B;
                handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vB+1, numUses++);
            }
            if (dfAttributes & DF_UC) {
                mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_C;
                handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vC, numUses++);
            } else if (dfAttributes & DF_UC_WIDE) {
                mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_C;
                handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vC, numUses++);
                mir->ssaRep->fpUse[numUses] = dfAttributes & DF_FP_C;
                handleSSAUse(cUnit, mir->ssaRep->uses, dInsn->vC+1, numUses++);
            }
        }
        if (dfAttributes & DF_HAS_DEFS) {
            mir->ssaRep->fpDef[0] = dfAttributes & DF_FP_A;
            handleSSADef(cUnit, mir->ssaRep->defs, dInsn->vA, 0);
            if (dfAttributes & DF_DA_WIDE) {
                mir->ssaRep->fpDef[1] = dfAttributes & DF_FP_A;
                handleSSADef(cUnit, mir->ssaRep->defs, dInsn->vA+1, 1);
            }
        }
    }

    bb->dataFlowInfo->dalvikToSSAMap =
        dvmCompilerNew(sizeof(int) * cUnit->method->registersSize, false);

    /* Take a snapshot of Dalvik->SSA mapping at the end of each block */
    memcpy(bb->dataFlowInfo->dalvikToSSAMap, cUnit->dalvikToSSAMap,
           sizeof(int) * cUnit->method->registersSize);
}

/* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
static void setConstant(CompilationUnit *cUnit, int ssaReg, int value)
{
    dvmSetBit(cUnit->isConstantV, ssaReg);
    cUnit->constantValues[ssaReg] = value;
}

void dvmCompilerDoConstantPropagation(CompilationUnit *cUnit, BasicBlock *bb)
{
    MIR *mir;
    BitVector *isConstantV = cUnit->isConstantV;

    for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
        int dfAttributes =
            dvmCompilerDataFlowAttributes[mir->dalvikInsn.opCode];

        DecodedInstruction *dInsn = &mir->dalvikInsn;

        if (!(dfAttributes & DF_HAS_DEFS)) continue;

        /* Handle instructions that set up constants directly */
        if (dfAttributes & DF_SETS_CONST) {
            if (dfAttributes & DF_DA) {
                switch (dInsn->opCode) {
                    case OP_CONST_4:
                    case OP_CONST_16:
                    case OP_CONST:
                        setConstant(cUnit, mir->ssaRep->defs[0], dInsn->vB);
                        break;
                    case OP_CONST_HIGH16:
                        setConstant(cUnit, mir->ssaRep->defs[0],
                                    dInsn->vB << 16);
                        break;
                    default:
                        break;
                }
            } else if (dfAttributes & DF_DA_WIDE) {
                switch (dInsn->opCode) {
                    case OP_CONST_WIDE_16:
                    case OP_CONST_WIDE_32:
                        setConstant(cUnit, mir->ssaRep->defs[0], dInsn->vB);
                        setConstant(cUnit, mir->ssaRep->defs[1], 0);
                        break;
                    case OP_CONST_WIDE:
                        setConstant(cUnit, mir->ssaRep->defs[0],
                                    (int) dInsn->vB_wide);
                        setConstant(cUnit, mir->ssaRep->defs[1],
                                    (int) (dInsn->vB_wide >> 32));
                        break;
                    case OP_CONST_WIDE_HIGH16:
                        setConstant(cUnit, mir->ssaRep->defs[0], 0);
                        setConstant(cUnit, mir->ssaRep->defs[1],
                                    dInsn->vB << 16);
                        break;
                    default:
                        break;
                }
            }
        /* Handle instructions that set up constants directly */
        } else if (dfAttributes & DF_IS_MOVE) {
            int i;

            for (i = 0; i < mir->ssaRep->numUses; i++) {
                if (!dvmIsBitSet(isConstantV, mir->ssaRep->uses[i])) break;
            }
            /* Move a register holding a constant to another register */
            if (i == mir->ssaRep->numUses) {
                setConstant(cUnit, mir->ssaRep->defs[0],
                            cUnit->constantValues[mir->ssaRep->uses[0]]);
                if (dfAttributes & DF_DA_WIDE) {
                    setConstant(cUnit, mir->ssaRep->defs[1],
                                cUnit->constantValues[mir->ssaRep->uses[1]]);
                }
            }
        }
    }
    /* TODO: implement code to handle arithmetic operations */
}

void dvmCompilerFindInductionVariables(struct CompilationUnit *cUnit,
                                       struct BasicBlock *bb)
{
    BitVector *isIndVarV = cUnit->loopAnalysis->isIndVarV;
    BitVector *isConstantV = cUnit->isConstantV;
    GrowableList *ivList = cUnit->loopAnalysis->ivList;
    MIR *mir;

    if (bb->blockType != kDalvikByteCode &&
        bb->blockType != kEntryBlock) {
        return;
    }

    /* If the bb doesn't have a phi it cannot contain an induction variable */
    if (bb->firstMIRInsn == NULL ||
        bb->firstMIRInsn->dalvikInsn.opCode != kMirOpPhi) {
        return;
    }

    /* Find basic induction variable first */
    for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
        int dfAttributes =
            dvmCompilerDataFlowAttributes[mir->dalvikInsn.opCode];

        if (!(dfAttributes & DF_IS_LINEAR)) continue;

        /*
         * For a basic induction variable:
         *   1) use[0] should belong to the output of a phi node
         *   2) def[0] should belong to the input of the same phi node
         *   3) the value added/subtracted is a constant
         */
        MIR *phi;
        for (phi = bb->firstMIRInsn; phi; phi = phi->next) {
            if (phi->dalvikInsn.opCode != kMirOpPhi) break;

            if (phi->ssaRep->defs[0] == mir->ssaRep->uses[0] &&
                phi->ssaRep->uses[1] == mir->ssaRep->defs[0]) {
                bool deltaIsConstant = false;
                int deltaValue;

                switch (mir->dalvikInsn.opCode) {
                    case OP_ADD_INT:
                        if (dvmIsBitSet(isConstantV,
                                        mir->ssaRep->uses[1])) {
                            deltaValue =
                                cUnit->constantValues[mir->ssaRep->uses[1]];
                            deltaIsConstant = true;
                        }
                        break;
                    case OP_SUB_INT:
                        if (dvmIsBitSet(isConstantV,
                                        mir->ssaRep->uses[1])) {
                            deltaValue =
                                -cUnit->constantValues[mir->ssaRep->uses[1]];
                            deltaIsConstant = true;
                        }
                        break;
                    case OP_ADD_INT_LIT8:
                        deltaValue = mir->dalvikInsn.vC;
                        deltaIsConstant = true;
                        break;
                    default:
                        break;
                }
                if (deltaIsConstant) {
                    dvmSetBit(isIndVarV, mir->ssaRep->uses[0]);
                    InductionVariableInfo *ivInfo =
                        dvmCompilerNew(sizeof(InductionVariableInfo),
                                       false);

                    ivInfo->ssaReg = mir->ssaRep->uses[0];
                    ivInfo->basicSSAReg = mir->ssaRep->uses[0];
                    ivInfo->m = 1;         // always 1 to basic iv
                    ivInfo->c = 0;         // N/A to basic iv
                    ivInfo->inc = deltaValue;
                    dvmInsertGrowableList(ivList, (void *) ivInfo);
                    cUnit->loopAnalysis->numBasicIV++;
                    break;
                }
            }
        }
    }

    /* Find dependent induction variable now */
    for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
        int dfAttributes =
            dvmCompilerDataFlowAttributes[mir->dalvikInsn.opCode];

        if (!(dfAttributes & DF_IS_LINEAR)) continue;

        /* Skip already identified induction variables */
        if (dvmIsBitSet(isIndVarV, mir->ssaRep->defs[0])) continue;

        /*
         * For a dependent induction variable:
         *  1) use[0] should be an induction variable (basic/dependent)
         *  2) operand2 should be a constant
         */
        if (dvmIsBitSet(isIndVarV, mir->ssaRep->uses[0])) {
            int srcDalvikReg = dvmConvertSSARegToDalvik(cUnit,
                                                        mir->ssaRep->uses[0]);
            int dstDalvikReg = dvmConvertSSARegToDalvik(cUnit,
                                                        mir->ssaRep->defs[0]);

            bool cIsConstant = false;
            int c = 0;

            switch (mir->dalvikInsn.opCode) {
                case OP_ADD_INT:
                    if (dvmIsBitSet(isConstantV,
                                    mir->ssaRep->uses[1])) {
                        c = cUnit->constantValues[mir->ssaRep->uses[1]];
                        cIsConstant = true;
                    }
                    break;
                case OP_SUB_INT:
                    if (dvmIsBitSet(isConstantV,
                                    mir->ssaRep->uses[1])) {
                        c = -cUnit->constantValues[mir->ssaRep->uses[1]];
                        cIsConstant = true;
                    }
                    break;
                case OP_ADD_INT_LIT8:
                    c = mir->dalvikInsn.vC;
                    cIsConstant = true;
                    break;
                default:
                    break;
            }

            /* Ignore the update to the basic induction variable itself */
            if (DECODE_REG(srcDalvikReg) == DECODE_REG(dstDalvikReg))  {
                cUnit->loopAnalysis->ssaBIV = mir->ssaRep->defs[0];
                cIsConstant = false;
            }

            if (cIsConstant) {
                unsigned int i;
                dvmSetBit(isIndVarV, mir->ssaRep->defs[0]);
                InductionVariableInfo *ivInfo =
                    dvmCompilerNew(sizeof(InductionVariableInfo),
                                   false);
                InductionVariableInfo *ivInfoOld = NULL ;

                for (i = 0; i < ivList->numUsed; i++) {
                    ivInfoOld = ivList->elemList[i];
                    if (ivInfoOld->ssaReg == mir->ssaRep->uses[0]) break;
                }

                /* Guaranteed to find an element */
                assert(i < ivList->numUsed);

                ivInfo->ssaReg = mir->ssaRep->defs[0];
                ivInfo->basicSSAReg = ivInfoOld->basicSSAReg;
                ivInfo->m = ivInfoOld->m;
                ivInfo->c = c + ivInfoOld->c;
                ivInfo->inc = ivInfoOld->inc;
                dvmInsertGrowableList(ivList, (void *) ivInfo);
            }
        }
    }
}

/* Setup the basic data structures for SSA conversion */
void dvmInitializeSSAConversion(CompilationUnit *cUnit)
{
    int i;
    int numDalvikReg = cUnit->method->registersSize;

    cUnit->ssaToDalvikMap = dvmCompilerNew(sizeof(GrowableList), false);
    dvmInitGrowableList(cUnit->ssaToDalvikMap, numDalvikReg);

    /*
     * Initial number of SSA registers is equal to the number of Dalvik
     * registers.
     */
    cUnit->numSSARegs = numDalvikReg;

    /*
     * Initialize the SSA2Dalvik map list. For the first numDalvikReg elements,
     * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
     * into "(0 << 16) | i"
     */
    for (i = 0; i < numDalvikReg; i++) {
        dvmInsertGrowableList(cUnit->ssaToDalvikMap,
                              (void *) ENCODE_REG_SUB(i, 0));
    }

    /*
     * Initialize the DalvikToSSAMap map. The low 16 bit is the SSA register id,
     * while the high 16 bit is the current subscript. The original Dalvik
     * register N is mapped to SSA register N with subscript 0.
     */
    cUnit->dalvikToSSAMap = dvmCompilerNew(sizeof(int) * numDalvikReg, false);
    for (i = 0; i < numDalvikReg; i++) {
        cUnit->dalvikToSSAMap[i] = i;
    }

    /*
     * Allocate the BasicBlockDataFlow structure for the entry and code blocks
     */
    for (i = 0; i < cUnit->numBlocks; i++) {
        BasicBlock *bb = cUnit->blockList[i];
        if (bb->blockType == kDalvikByteCode ||
            bb->blockType == kEntryBlock) {
            bb->dataFlowInfo = dvmCompilerNew(sizeof(BasicBlockDataFlow), true);
        }
    }
}

void dvmCompilerDataFlowAnalysisDispatcher(CompilationUnit *cUnit,
                void (*func)(CompilationUnit *, BasicBlock *))
{
    int i;
    for (i = 0; i < cUnit->numBlocks; i++) {
        BasicBlock *bb = cUnit->blockList[i];
        (*func)(cUnit, bb);
    }
}

/* Main entry point to do SSA conversion for non-loop traces */
void dvmCompilerNonLoopAnalysis(CompilationUnit *cUnit)
{
    dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerDoSSAConversion);
}