summaryrefslogtreecommitdiffstats
path: root/runtime/mirror/array-inl.h
blob: 22812454d11d979a0c42bc63d5aa9e0b4395b1d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
#define ART_RUNTIME_MIRROR_ARRAY_INL_H_

#include "array.h"

#include "android-base/stringprintf.h"

#include "base/bit_utils.h"
#include "base/casts.h"
#include "base/logging.h"
#include "class.h"
#include "gc/heap-inl.h"
#include "obj_ptr-inl.h"
#include "thread-current-inl.h"

namespace art {
namespace mirror {

inline uint32_t Array::ClassSize(PointerSize pointer_size) {
  uint32_t vtable_entries = Object::kVTableLength;
  return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
}

template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline size_t Array::SizeOf() {
  // This is safe from overflow because the array was already allocated, so we know it's sane.
  size_t component_size_shift = GetClass<kVerifyFlags, kReadBarrierOption>()->
      template GetComponentSizeShift<kReadBarrierOption>();
  // Don't need to check this since we already check this in GetClass.
  int32_t component_count =
      GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
  size_t header_size = DataOffset(1U << component_size_shift).SizeValue();
  size_t data_size = component_count << component_size_shift;
  return header_size + data_size;
}

inline MemberOffset Array::DataOffset(size_t component_size) {
  DCHECK(IsPowerOfTwo(component_size)) << component_size;
  size_t data_offset = RoundUp(OFFSETOF_MEMBER(Array, first_element_), component_size);
  DCHECK_EQ(RoundUp(data_offset, component_size), data_offset)
      << "Array data offset isn't aligned with component size";
  return MemberOffset(data_offset);
}

template<VerifyObjectFlags kVerifyFlags>
inline bool Array::CheckIsValidIndex(int32_t index) {
  if (UNLIKELY(static_cast<uint32_t>(index) >=
               static_cast<uint32_t>(GetLength<kVerifyFlags>()))) {
    ThrowArrayIndexOutOfBoundsException(index);
    return false;
  }
  return true;
}

static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) {
  DCHECK_GE(component_count, 0);

  size_t component_size = 1U << component_size_shift;
  size_t header_size = Array::DataOffset(component_size).SizeValue();
  size_t data_size = static_cast<size_t>(component_count) << component_size_shift;
  size_t size = header_size + data_size;

  // Check for size_t overflow if this was an unreasonable request
  // but let the caller throw OutOfMemoryError.
#ifdef __LP64__
  // 64-bit. No overflow as component_count is 32-bit and the maximum
  // component size is 8.
  DCHECK_LE((1U << component_size_shift), 8U);
#else
  // 32-bit.
  DCHECK_NE(header_size, 0U);
  DCHECK_EQ(RoundUp(header_size, component_size), header_size);
  // The array length limit (exclusive).
  const size_t length_limit = (0U - header_size) >> component_size_shift;
  if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) {
    return 0;  // failure
  }
#endif
  return size;
}

// Used for setting the array length in the allocation code path to ensure it is guarded by a
// StoreStore fence.
class SetLengthVisitor {
 public:
  explicit SetLengthVisitor(int32_t length) : length_(length) {
  }

  void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const
      REQUIRES_SHARED(Locks::mutator_lock_) {
    // Avoid AsArray as object is not yet in live bitmap or allocation stack.
    ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
    // DCHECK(array->IsArrayInstance());
    array->SetLength(length_);
  }

 private:
  const int32_t length_;

  DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
};

// Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
// array.
class SetLengthToUsableSizeVisitor {
 public:
  SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size,
                               size_t component_size_shift) :
      minimum_length_(min_length), header_size_(header_size),
      component_size_shift_(component_size_shift) {
  }

  void operator()(ObjPtr<Object> obj, size_t usable_size) const
      REQUIRES_SHARED(Locks::mutator_lock_) {
    // Avoid AsArray as object is not yet in live bitmap or allocation stack.
    ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
    // DCHECK(array->IsArrayInstance());
    int32_t length = (usable_size - header_size_) >> component_size_shift_;
    DCHECK_GE(length, minimum_length_);
    uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
                                                                    minimum_length_));
    uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
                                                                    length));
    // Ensure space beyond original allocation is zeroed.
    memset(old_end, 0, new_end - old_end);
    array->SetLength(length);
  }

 private:
  const int32_t minimum_length_;
  const size_t header_size_;
  const size_t component_size_shift_;

  DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
};

template <bool kIsInstrumented, bool kFillUsable>
inline Array* Array::Alloc(Thread* self,
                           ObjPtr<Class> array_class,
                           int32_t component_count,
                           size_t component_size_shift,
                           gc::AllocatorType allocator_type) {
  DCHECK(allocator_type != gc::kAllocatorTypeLOS);
  DCHECK(array_class != nullptr);
  DCHECK(array_class->IsArrayClass());
  DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift);
  DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift));
  size_t size = ComputeArraySize(component_count, component_size_shift);
#ifdef __LP64__
  // 64-bit. No size_t overflow.
  DCHECK_NE(size, 0U);
#else
  // 32-bit.
  if (UNLIKELY(size == 0)) {
    self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow",
                                                            array_class->PrettyDescriptor().c_str(),
                                                            component_count).c_str());
    return nullptr;
  }
#endif
  gc::Heap* heap = Runtime::Current()->GetHeap();
  Array* result;
  if (!kFillUsable) {
    SetLengthVisitor visitor(component_count);
    result = down_cast<Array*>(
        heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
                                                              allocator_type, visitor));
  } else {
    SetLengthToUsableSizeVisitor visitor(component_count,
                                         DataOffset(1U << component_size_shift).SizeValue(),
                                         component_size_shift);
    result = down_cast<Array*>(
        heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
                                                              allocator_type, visitor));
  }
  if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
    array_class = result->GetClass();  // In case the array class moved.
    CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift);
    if (!kFillUsable) {
      CHECK_EQ(result->SizeOf(), size);
    } else {
      CHECK_GE(result->SizeOf(), size);
    }
  }
  return result;
}

template<class T>
inline void PrimitiveArray<T>::VisitRoots(RootVisitor* visitor) {
  array_class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass));
}

template<typename T>
inline PrimitiveArray<T>* PrimitiveArray<T>::AllocateAndFill(Thread* self,
                                                             const T* data,
                                                             size_t length) {
  StackHandleScope<1> hs(self);
  Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length)));
  if (!arr.IsNull()) {
    // Copy it in. Just skip if it's null
    memcpy(arr->GetData(), data, sizeof(T) * length);
  }
  return arr.Get();
}

template<typename T>
inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
  Array* raw_array = Array::Alloc<true>(self,
                                        GetArrayClass(),
                                        length,
                                        ComponentSizeShiftWidth(sizeof(T)),
                                        Runtime::Current()->GetHeap()->GetCurrentAllocator());
  return down_cast<PrimitiveArray<T>*>(raw_array);
}

template<typename T>
inline T PrimitiveArray<T>::Get(int32_t i) {
  if (!CheckIsValidIndex(i)) {
    DCHECK(Thread::Current()->IsExceptionPending());
    return T(0);
  }
  return GetWithoutChecks(i);
}

template<typename T>
inline void PrimitiveArray<T>::Set(int32_t i, T value) {
  if (Runtime::Current()->IsActiveTransaction()) {
    Set<true>(i, value);
  } else {
    Set<false>(i, value);
  }
}

template<typename T>
template<bool kTransactionActive, bool kCheckTransaction>
inline void PrimitiveArray<T>::Set(int32_t i, T value) {
  if (CheckIsValidIndex(i)) {
    SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value);
  } else {
    DCHECK(Thread::Current()->IsExceptionPending());
  }
}

template<typename T>
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) {
  if (kCheckTransaction) {
    DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
  }
  if (kTransactionActive) {
    Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i));
  }
  DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
  GetData()[i] = value;
}
// Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
template<typename T>
static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
  d += count;
  s += count;
  for (int32_t i = 0; i < count; ++i) {
    d--;
    s--;
    *d = *s;
  }
}

// Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
template<typename T>
static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
  for (int32_t i = 0; i < count; ++i) {
    *d = *s;
    d++;
    s++;
  }
}

template<class T>
inline void PrimitiveArray<T>::Memmove(int32_t dst_pos,
                                       ObjPtr<PrimitiveArray<T>> src,
                                       int32_t src_pos,
                                       int32_t count) {
  if (UNLIKELY(count == 0)) {
    return;
  }
  DCHECK_GE(dst_pos, 0);
  DCHECK_GE(src_pos, 0);
  DCHECK_GT(count, 0);
  DCHECK(src != nullptr);
  DCHECK_LT(dst_pos, GetLength());
  DCHECK_LE(dst_pos, GetLength() - count);
  DCHECK_LT(src_pos, src->GetLength());
  DCHECK_LE(src_pos, src->GetLength() - count);

  // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
  // in our implementation, because they may copy byte-by-byte.
  if (LIKELY(src != this)) {
    // Memcpy ok for guaranteed non-overlapping distinct arrays.
    Memcpy(dst_pos, src, src_pos, count);
  } else {
    // Handle copies within the same array using the appropriate direction copy.
    void* dst_raw = GetRawData(sizeof(T), dst_pos);
    const void* src_raw = src->GetRawData(sizeof(T), src_pos);
    if (sizeof(T) == sizeof(uint8_t)) {
      uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
      const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
      memmove(d, s, count);
    } else {
      const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
      if (sizeof(T) == sizeof(uint16_t)) {
        uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
        const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
        if (copy_forward) {
          ArrayForwardCopy<uint16_t>(d, s, count);
        } else {
          ArrayBackwardCopy<uint16_t>(d, s, count);
        }
      } else if (sizeof(T) == sizeof(uint32_t)) {
        uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
        const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
        if (copy_forward) {
          ArrayForwardCopy<uint32_t>(d, s, count);
        } else {
          ArrayBackwardCopy<uint32_t>(d, s, count);
        }
      } else {
        DCHECK_EQ(sizeof(T), sizeof(uint64_t));
        uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
        const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
        if (copy_forward) {
          ArrayForwardCopy<uint64_t>(d, s, count);
        } else {
          ArrayBackwardCopy<uint64_t>(d, s, count);
        }
      }
    }
  }
}

template<class T>
inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos,
                                      ObjPtr<PrimitiveArray<T>> src,
                                      int32_t src_pos,
                                      int32_t count) {
  if (UNLIKELY(count == 0)) {
    return;
  }
  DCHECK_GE(dst_pos, 0);
  DCHECK_GE(src_pos, 0);
  DCHECK_GT(count, 0);
  DCHECK(src != nullptr);
  DCHECK_LT(dst_pos, GetLength());
  DCHECK_LE(dst_pos, GetLength() - count);
  DCHECK_LT(src_pos, src->GetLength());
  DCHECK_LE(src_pos, src->GetLength() - count);

  // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
  // in our implementation, because they may copy byte-by-byte.
  void* dst_raw = GetRawData(sizeof(T), dst_pos);
  const void* src_raw = src->GetRawData(sizeof(T), src_pos);
  if (sizeof(T) == sizeof(uint8_t)) {
    memcpy(dst_raw, src_raw, count);
  } else if (sizeof(T) == sizeof(uint16_t)) {
    uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
    const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
    ArrayForwardCopy<uint16_t>(d, s, count);
  } else if (sizeof(T) == sizeof(uint32_t)) {
    uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
    const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
    ArrayForwardCopy<uint32_t>(d, s, count);
  } else {
    DCHECK_EQ(sizeof(T), sizeof(uint64_t));
    uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
    const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
    ArrayForwardCopy<uint64_t>(d, s, count);
  }
}

template<typename T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) {
  // C style casts here since we sometimes have T be a pointer, or sometimes an integer
  // (for stack traces).
  if (ptr_size == PointerSize::k64) {
    return (T)static_cast<uintptr_t>(
        AsLongArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx));
  }
  return (T)static_cast<uintptr_t>(static_cast<uint32_t>(
      AsIntArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx)));
}

template<bool kTransactionActive, bool kUnchecked>
inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) {
  if (ptr_size == PointerSize::k64) {
    (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray())->
        SetWithoutChecks<kTransactionActive>(idx, element);
  } else {
    DCHECK_LE(element, static_cast<uint64_t>(0xFFFFFFFFu));
    (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray())
        ->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>(element));
  }
}

template<bool kTransactionActive, bool kUnchecked, typename T>
inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) {
  SetElementPtrSize<kTransactionActive, kUnchecked>(idx,
                                                    reinterpret_cast<uintptr_t>(element),
                                                    ptr_size);
}

template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void PointerArray::Fixup(mirror::PointerArray* dest,
                                PointerSize pointer_size,
                                const Visitor& visitor) {
  for (size_t i = 0, count = GetLength(); i < count; ++i) {
    void* ptr = GetElementPtrSize<void*, kVerifyFlags, kReadBarrierOption>(i, pointer_size);
    void* new_ptr = visitor(ptr);
    if (ptr != new_ptr) {
      dest->SetElementPtrSize<false, true>(i, new_ptr, pointer_size);
    }
  }
}

template<bool kUnchecked>
void PointerArray::Memcpy(int32_t dst_pos,
                          ObjPtr<PointerArray> src,
                          int32_t src_pos,
                          int32_t count,
                          PointerSize ptr_size) {
  DCHECK(!Runtime::Current()->IsActiveTransaction());
  DCHECK(!src.IsNull());
  if (ptr_size == PointerSize::k64) {
    LongArray* l_this = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this))
                                    : AsLongArray());
    LongArray* l_src = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(src.Ptr()))
                                   : src->AsLongArray());
    l_this->Memcpy(dst_pos, l_src, src_pos, count);
  } else {
    IntArray* i_this = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this))
                                   : AsIntArray());
    IntArray* i_src = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(src.Ptr()))
                                  : src->AsIntArray());
    i_this->Memcpy(dst_pos, i_src, src_pos, count);
  }
}

template<typename T>
inline void PrimitiveArray<T>::SetArrayClass(ObjPtr<Class> array_class) {
  CHECK(array_class_.IsNull());
  CHECK(array_class != nullptr);
  array_class_ = GcRoot<Class>(array_class);
}

}  // namespace mirror
}  // namespace art

#endif  // ART_RUNTIME_MIRROR_ARRAY_INL_H_