summaryrefslogtreecommitdiffstats
path: root/runtime/interpreter/interpreter.cc
blob: 735c0e815ab3d92c03b5ac171802bff01223368f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "interpreter.h"

#include <limits>

#include "common_dex_operations.h"
#include "common_throws.h"
#include "dex/dex_file_types.h"
#include "interpreter_common.h"
#include "interpreter_mterp_impl.h"
#include "interpreter_switch_impl.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "jvalue-inl.h"
#include "mirror/string-inl.h"
#include "mterp/mterp.h"
#include "nativehelper/scoped_local_ref.h"
#include "scoped_thread_state_change-inl.h"
#include "stack.h"
#include "thread-inl.h"
#include "unstarted_runtime.h"

namespace art {
namespace interpreter {

ALWAYS_INLINE static ObjPtr<mirror::Object> ObjArg(uint32_t arg)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  return ObjPtr<mirror::Object>(reinterpret_cast<mirror::Object*>(arg));
}

static void InterpreterJni(Thread* self,
                           ArtMethod* method,
                           const StringPiece& shorty,
                           ObjPtr<mirror::Object> receiver,
                           uint32_t* args,
                           JValue* result)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  // TODO: The following enters JNI code using a typedef-ed function rather than the JNI compiler,
  //       it should be removed and JNI compiled stubs used instead.
  ScopedObjectAccessUnchecked soa(self);
  if (method->IsStatic()) {
    if (shorty == "L") {
      typedef jobject (fntype)(JNIEnv*, jclass);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      jobject jresult;
      {
        ScopedThreadStateChange tsc(self, kNative);
        jresult = fn(soa.Env(), klass.get());
      }
      result->SetL(soa.Decode<mirror::Object>(jresult));
    } else if (shorty == "V") {
      typedef void (fntype)(JNIEnv*, jclass);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedThreadStateChange tsc(self, kNative);
      fn(soa.Env(), klass.get());
    } else if (shorty == "Z") {
      typedef jboolean (fntype)(JNIEnv*, jclass);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedThreadStateChange tsc(self, kNative);
      result->SetZ(fn(soa.Env(), klass.get()));
    } else if (shorty == "BI") {
      typedef jbyte (fntype)(JNIEnv*, jclass, jint);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedThreadStateChange tsc(self, kNative);
      result->SetB(fn(soa.Env(), klass.get(), args[0]));
    } else if (shorty == "II") {
      typedef jint (fntype)(JNIEnv*, jclass, jint);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedThreadStateChange tsc(self, kNative);
      result->SetI(fn(soa.Env(), klass.get(), args[0]));
    } else if (shorty == "LL") {
      typedef jobject (fntype)(JNIEnv*, jclass, jobject);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedLocalRef<jobject> arg0(soa.Env(),
                                   soa.AddLocalReference<jobject>(ObjArg(args[0])));
      jobject jresult;
      {
        ScopedThreadStateChange tsc(self, kNative);
        jresult = fn(soa.Env(), klass.get(), arg0.get());
      }
      result->SetL(soa.Decode<mirror::Object>(jresult));
    } else if (shorty == "IIZ") {
      typedef jint (fntype)(JNIEnv*, jclass, jint, jboolean);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedThreadStateChange tsc(self, kNative);
      result->SetI(fn(soa.Env(), klass.get(), args[0], args[1]));
    } else if (shorty == "ILI") {
      typedef jint (fntype)(JNIEnv*, jclass, jobject, jint);
      fntype* const fn = reinterpret_cast<fntype*>(const_cast<void*>(
          method->GetEntryPointFromJni()));
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedLocalRef<jobject> arg0(soa.Env(),
                                   soa.AddLocalReference<jobject>(ObjArg(args[0])));
      ScopedThreadStateChange tsc(self, kNative);
      result->SetI(fn(soa.Env(), klass.get(), arg0.get(), args[1]));
    } else if (shorty == "SIZ") {
      typedef jshort (fntype)(JNIEnv*, jclass, jint, jboolean);
      fntype* const fn =
          reinterpret_cast<fntype*>(const_cast<void*>(method->GetEntryPointFromJni()));
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedThreadStateChange tsc(self, kNative);
      result->SetS(fn(soa.Env(), klass.get(), args[0], args[1]));
    } else if (shorty == "VIZ") {
      typedef void (fntype)(JNIEnv*, jclass, jint, jboolean);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedThreadStateChange tsc(self, kNative);
      fn(soa.Env(), klass.get(), args[0], args[1]);
    } else if (shorty == "ZLL") {
      typedef jboolean (fntype)(JNIEnv*, jclass, jobject, jobject);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedLocalRef<jobject> arg0(soa.Env(),
                                   soa.AddLocalReference<jobject>(ObjArg(args[0])));
      ScopedLocalRef<jobject> arg1(soa.Env(),
                                   soa.AddLocalReference<jobject>(ObjArg(args[1])));
      ScopedThreadStateChange tsc(self, kNative);
      result->SetZ(fn(soa.Env(), klass.get(), arg0.get(), arg1.get()));
    } else if (shorty == "ZILL") {
      typedef jboolean (fntype)(JNIEnv*, jclass, jint, jobject, jobject);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedLocalRef<jobject> arg1(soa.Env(),
                                   soa.AddLocalReference<jobject>(ObjArg(args[1])));
      ScopedLocalRef<jobject> arg2(soa.Env(),
                                   soa.AddLocalReference<jobject>(ObjArg(args[2])));
      ScopedThreadStateChange tsc(self, kNative);
      result->SetZ(fn(soa.Env(), klass.get(), args[0], arg1.get(), arg2.get()));
    } else if (shorty == "VILII") {
      typedef void (fntype)(JNIEnv*, jclass, jint, jobject, jint, jint);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedLocalRef<jobject> arg1(soa.Env(),
                                   soa.AddLocalReference<jobject>(ObjArg(args[1])));
      ScopedThreadStateChange tsc(self, kNative);
      fn(soa.Env(), klass.get(), args[0], arg1.get(), args[2], args[3]);
    } else if (shorty == "VLILII") {
      typedef void (fntype)(JNIEnv*, jclass, jobject, jint, jobject, jint, jint);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jclass> klass(soa.Env(),
                                   soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
      ScopedLocalRef<jobject> arg0(soa.Env(),
                                   soa.AddLocalReference<jobject>(ObjArg(args[0])));
      ScopedLocalRef<jobject> arg2(soa.Env(),
                                   soa.AddLocalReference<jobject>(ObjArg(args[2])));
      ScopedThreadStateChange tsc(self, kNative);
      fn(soa.Env(), klass.get(), arg0.get(), args[1], arg2.get(), args[3], args[4]);
    } else {
      LOG(FATAL) << "Do something with static native method: " << method->PrettyMethod()
          << " shorty: " << shorty;
    }
  } else {
    if (shorty == "L") {
      typedef jobject (fntype)(JNIEnv*, jobject);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jobject> rcvr(soa.Env(),
                                   soa.AddLocalReference<jobject>(receiver));
      jobject jresult;
      {
        ScopedThreadStateChange tsc(self, kNative);
        jresult = fn(soa.Env(), rcvr.get());
      }
      result->SetL(soa.Decode<mirror::Object>(jresult));
    } else if (shorty == "V") {
      typedef void (fntype)(JNIEnv*, jobject);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jobject> rcvr(soa.Env(),
                                   soa.AddLocalReference<jobject>(receiver));
      ScopedThreadStateChange tsc(self, kNative);
      fn(soa.Env(), rcvr.get());
    } else if (shorty == "LL") {
      typedef jobject (fntype)(JNIEnv*, jobject, jobject);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jobject> rcvr(soa.Env(),
                                   soa.AddLocalReference<jobject>(receiver));
      ScopedLocalRef<jobject> arg0(soa.Env(),
                                   soa.AddLocalReference<jobject>(ObjArg(args[0])));
      jobject jresult;
      {
        ScopedThreadStateChange tsc(self, kNative);
        jresult = fn(soa.Env(), rcvr.get(), arg0.get());
      }
      result->SetL(soa.Decode<mirror::Object>(jresult));
      ScopedThreadStateChange tsc(self, kNative);
    } else if (shorty == "III") {
      typedef jint (fntype)(JNIEnv*, jobject, jint, jint);
      fntype* const fn = reinterpret_cast<fntype*>(method->GetEntryPointFromJni());
      ScopedLocalRef<jobject> rcvr(soa.Env(),
                                   soa.AddLocalReference<jobject>(receiver));
      ScopedThreadStateChange tsc(self, kNative);
      result->SetI(fn(soa.Env(), rcvr.get(), args[0], args[1]));
    } else {
      LOG(FATAL) << "Do something with native method: " << method->PrettyMethod()
          << " shorty: " << shorty;
    }
  }
}

enum InterpreterImplKind {
  kSwitchImplKind,        // Switch-based interpreter implementation.
  kMterpImplKind          // Assembly interpreter
};

static constexpr InterpreterImplKind kInterpreterImplKind = kMterpImplKind;

static inline JValue Execute(
    Thread* self,
    const CodeItemDataAccessor& accessor,
    ShadowFrame& shadow_frame,
    JValue result_register,
    bool stay_in_interpreter = false) REQUIRES_SHARED(Locks::mutator_lock_) {
  DCHECK(!shadow_frame.GetMethod()->IsAbstract());
  DCHECK(!shadow_frame.GetMethod()->IsNative());
  if (LIKELY(shadow_frame.GetDexPC() == 0)) {  // Entering the method, but not via deoptimization.
    if (kIsDebugBuild) {
      self->AssertNoPendingException();
    }
    instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
    ArtMethod *method = shadow_frame.GetMethod();

    if (UNLIKELY(instrumentation->HasMethodEntryListeners())) {
      instrumentation->MethodEnterEvent(self,
                                        shadow_frame.GetThisObject(accessor.InsSize()),
                                        method,
                                        0);
      if (UNLIKELY(self->IsExceptionPending())) {
        instrumentation->MethodUnwindEvent(self,
                                           shadow_frame.GetThisObject(accessor.InsSize()),
                                           method,
                                           0);
        return JValue();
      }
    }

    if (!stay_in_interpreter) {
      jit::Jit* jit = Runtime::Current()->GetJit();
      if (jit != nullptr) {
        jit->MethodEntered(self, shadow_frame.GetMethod());
        if (jit->CanInvokeCompiledCode(method)) {
          JValue result;

          // Pop the shadow frame before calling into compiled code.
          self->PopShadowFrame();
          // Calculate the offset of the first input reg. The input registers are in the high regs.
          // It's ok to access the code item here since JIT code will have been touched by the
          // interpreter and compiler already.
          uint16_t arg_offset = accessor.RegistersSize() - accessor.InsSize();
          ArtInterpreterToCompiledCodeBridge(self, nullptr, &shadow_frame, arg_offset, &result);
          // Push the shadow frame back as the caller will expect it.
          self->PushShadowFrame(&shadow_frame);

          return result;
        }
      }
    }
  }

  ArtMethod* method = shadow_frame.GetMethod();

  DCheckStaticState(self, method);

  // Lock counting is a special version of accessibility checks, and for simplicity and
  // reduction of template parameters, we gate it behind access-checks mode.
  DCHECK(!method->SkipAccessChecks() || !method->MustCountLocks());

  bool transaction_active = Runtime::Current()->IsActiveTransaction();
  if (LIKELY(method->SkipAccessChecks())) {
    // Enter the "without access check" interpreter.
    if (kInterpreterImplKind == kMterpImplKind) {
      if (transaction_active) {
        // No Mterp variant - just use the switch interpreter.
        return ExecuteSwitchImpl<false, true>(self, accessor, shadow_frame, result_register,
                                              false);
      } else if (UNLIKELY(!Runtime::Current()->IsStarted())) {
        return ExecuteSwitchImpl<false, false>(self, accessor, shadow_frame, result_register,
                                               false);
      } else {
        while (true) {
          // Mterp does not support all instrumentation/debugging.
          if (MterpShouldSwitchInterpreters() != 0) {
            return ExecuteSwitchImpl<false, false>(self, accessor, shadow_frame, result_register,
                                                   false);
          }
          bool returned = ExecuteMterpImpl(self,
                                           accessor.Insns(),
                                           &shadow_frame,
                                           &result_register);
          if (returned) {
            return result_register;
          } else {
            // Mterp didn't like that instruction.  Single-step it with the reference interpreter.
            result_register = ExecuteSwitchImpl<false, false>(self, accessor, shadow_frame,
                                                              result_register, true);
            if (shadow_frame.GetDexPC() == dex::kDexNoIndex) {
              // Single-stepped a return or an exception not handled locally.  Return to caller.
              return result_register;
            }
          }
        }
      }
    } else {
      DCHECK_EQ(kInterpreterImplKind, kSwitchImplKind);
      if (transaction_active) {
        return ExecuteSwitchImpl<false, true>(self, accessor, shadow_frame, result_register,
                                              false);
      } else {
        return ExecuteSwitchImpl<false, false>(self, accessor, shadow_frame, result_register,
                                               false);
      }
    }
  } else {
    // Enter the "with access check" interpreter.
    if (kInterpreterImplKind == kMterpImplKind) {
      // No access check variants for Mterp.  Just use the switch version.
      if (transaction_active) {
        return ExecuteSwitchImpl<true, true>(self, accessor, shadow_frame, result_register,
                                             false);
      } else {
        return ExecuteSwitchImpl<true, false>(self, accessor, shadow_frame, result_register,
                                              false);
      }
    } else {
      DCHECK_EQ(kInterpreterImplKind, kSwitchImplKind);
      if (transaction_active) {
        return ExecuteSwitchImpl<true, true>(self, accessor, shadow_frame, result_register,
                                             false);
      } else {
        return ExecuteSwitchImpl<true, false>(self, accessor, shadow_frame, result_register,
                                              false);
      }
    }
  }
}

void EnterInterpreterFromInvoke(Thread* self,
                                ArtMethod* method,
                                ObjPtr<mirror::Object> receiver,
                                uint32_t* args,
                                JValue* result,
                                bool stay_in_interpreter) {
  DCHECK_EQ(self, Thread::Current());
  bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks();
  if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) {
    ThrowStackOverflowError(self);
    return;
  }

  // This can happen if we are in forced interpreter mode and an obsolete method is called using
  // reflection.
  if (UNLIKELY(method->IsObsolete())) {
    ThrowInternalError("Attempting to invoke obsolete version of '%s'.",
                       method->PrettyMethod().c_str());
    return;
  }

  const char* old_cause = self->StartAssertNoThreadSuspension("EnterInterpreterFromInvoke");
  CodeItemDataAccessor accessor(method->DexInstructionData());
  uint16_t num_regs;
  uint16_t num_ins;
  if (accessor.HasCodeItem()) {
    num_regs =  accessor.RegistersSize();
    num_ins = accessor.InsSize();
  } else if (!method->IsInvokable()) {
    self->EndAssertNoThreadSuspension(old_cause);
    method->ThrowInvocationTimeError();
    return;
  } else {
    DCHECK(method->IsNative());
    num_regs = num_ins = ArtMethod::NumArgRegisters(method->GetShorty());
    if (!method->IsStatic()) {
      num_regs++;
      num_ins++;
    }
  }
  // Set up shadow frame with matching number of reference slots to vregs.
  ShadowFrame* last_shadow_frame = self->GetManagedStack()->GetTopShadowFrame();
  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
      CREATE_SHADOW_FRAME(num_regs, last_shadow_frame, method, /* dex pc */ 0);
  ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
  self->PushShadowFrame(shadow_frame);

  size_t cur_reg = num_regs - num_ins;
  if (!method->IsStatic()) {
    CHECK(receiver != nullptr);
    shadow_frame->SetVRegReference(cur_reg, receiver.Ptr());
    ++cur_reg;
  }
  uint32_t shorty_len = 0;
  const char* shorty = method->GetShorty(&shorty_len);
  for (size_t shorty_pos = 0, arg_pos = 0; cur_reg < num_regs; ++shorty_pos, ++arg_pos, cur_reg++) {
    DCHECK_LT(shorty_pos + 1, shorty_len);
    switch (shorty[shorty_pos + 1]) {
      case 'L': {
        ObjPtr<mirror::Object> o =
            reinterpret_cast<StackReference<mirror::Object>*>(&args[arg_pos])->AsMirrorPtr();
        shadow_frame->SetVRegReference(cur_reg, o.Ptr());
        break;
      }
      case 'J': case 'D': {
        uint64_t wide_value = (static_cast<uint64_t>(args[arg_pos + 1]) << 32) | args[arg_pos];
        shadow_frame->SetVRegLong(cur_reg, wide_value);
        cur_reg++;
        arg_pos++;
        break;
      }
      default:
        shadow_frame->SetVReg(cur_reg, args[arg_pos]);
        break;
    }
  }
  self->EndAssertNoThreadSuspension(old_cause);
  // Do this after populating the shadow frame in case EnsureInitialized causes a GC.
  if (method->IsStatic() && UNLIKELY(!method->GetDeclaringClass()->IsInitialized())) {
    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
    StackHandleScope<1> hs(self);
    Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass()));
    if (UNLIKELY(!class_linker->EnsureInitialized(self, h_class, true, true))) {
      CHECK(self->IsExceptionPending());
      self->PopShadowFrame();
      return;
    }
  }
  if (LIKELY(!method->IsNative())) {
    JValue r = Execute(self, accessor, *shadow_frame, JValue(), stay_in_interpreter);
    if (result != nullptr) {
      *result = r;
    }
  } else {
    // We don't expect to be asked to interpret native code (which is entered via a JNI compiler
    // generated stub) except during testing and image writing.
    // Update args to be the args in the shadow frame since the input ones could hold stale
    // references pointers due to moving GC.
    args = shadow_frame->GetVRegArgs(method->IsStatic() ? 0 : 1);
    if (!Runtime::Current()->IsStarted()) {
      UnstartedRuntime::Jni(self, method, receiver.Ptr(), args, result);
    } else {
      InterpreterJni(self, method, shorty, receiver, args, result);
    }
  }
  self->PopShadowFrame();
}

static int16_t GetReceiverRegisterForStringInit(const Instruction* instr) {
  DCHECK(instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE ||
         instr->Opcode() == Instruction::INVOKE_DIRECT);
  return (instr->Opcode() == Instruction::INVOKE_DIRECT_RANGE) ?
      instr->VRegC_3rc() : instr->VRegC_35c();
}

void EnterInterpreterFromDeoptimize(Thread* self,
                                    ShadowFrame* shadow_frame,
                                    JValue* ret_val,
                                    bool from_code,
                                    DeoptimizationMethodType deopt_method_type)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue value;
  // Set value to last known result in case the shadow frame chain is empty.
  value.SetJ(ret_val->GetJ());
  // Are we executing the first shadow frame?
  bool first = true;
  while (shadow_frame != nullptr) {
    // We do not want to recover lock state for lock counting when deoptimizing. Currently,
    // the compiler should not have compiled a method that failed structured-locking checks.
    DCHECK(!shadow_frame->GetMethod()->MustCountLocks());

    self->SetTopOfShadowStack(shadow_frame);
    CodeItemDataAccessor accessor(shadow_frame->GetMethod()->DexInstructionData());
    const uint32_t dex_pc = shadow_frame->GetDexPC();
    uint32_t new_dex_pc = dex_pc;
    if (UNLIKELY(self->IsExceptionPending())) {
      // If we deoptimize from the QuickExceptionHandler, we already reported the exception to
      // the instrumentation. To prevent from reporting it a second time, we simply pass a
      // null Instrumentation*.
      const instrumentation::Instrumentation* const instrumentation =
          first ? nullptr : Runtime::Current()->GetInstrumentation();
      new_dex_pc = MoveToExceptionHandler(
          self, *shadow_frame, instrumentation) ? shadow_frame->GetDexPC() : dex::kDexNoIndex;
    } else if (!from_code) {
      // Deoptimization is not called from code directly.
      const Instruction* instr = &accessor.InstructionAt(dex_pc);
      if (deopt_method_type == DeoptimizationMethodType::kKeepDexPc) {
        DCHECK(first);
        // Need to re-execute the dex instruction.
        // (1) An invocation might be split into class initialization and invoke.
        //     In this case, the invoke should not be skipped.
        // (2) A suspend check should also execute the dex instruction at the
        //     corresponding dex pc.
        DCHECK_EQ(new_dex_pc, dex_pc);
      } else if (instr->Opcode() == Instruction::MONITOR_ENTER ||
                 instr->Opcode() == Instruction::MONITOR_EXIT) {
        DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault);
        DCHECK(first);
        // Non-idempotent dex instruction should not be re-executed.
        // On the other hand, if a MONITOR_ENTER is at the dex_pc of a suspend
        // check, that MONITOR_ENTER should be executed. That case is handled
        // above.
        new_dex_pc = dex_pc + instr->SizeInCodeUnits();
      } else if (instr->IsInvoke()) {
        DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault);
        if (IsStringInit(instr, shadow_frame->GetMethod())) {
          uint16_t this_obj_vreg = GetReceiverRegisterForStringInit(instr);
          // Move the StringFactory.newStringFromChars() result into the register representing
          // "this object" when invoking the string constructor in the original dex instruction.
          // Also move the result into all aliases.
          DCHECK(value.GetL()->IsString());
          SetStringInitValueToAllAliases(shadow_frame, this_obj_vreg, value);
          // Calling string constructor in the original dex code doesn't generate a result value.
          value.SetJ(0);
        }
        new_dex_pc = dex_pc + instr->SizeInCodeUnits();
      } else if (instr->Opcode() == Instruction::NEW_INSTANCE) {
        // A NEW_INSTANCE is simply re-executed, including
        // "new-instance String" which is compiled into a call into
        // StringFactory.newEmptyString().
        DCHECK_EQ(new_dex_pc, dex_pc);
      } else {
        DCHECK(deopt_method_type == DeoptimizationMethodType::kDefault);
        DCHECK(first);
        // By default, we re-execute the dex instruction since if they are not
        // an invoke, so that we don't have to decode the dex instruction to move
        // result into the right vreg. All slow paths have been audited to be
        // idempotent except monitor-enter/exit and invocation stubs.
        // TODO: move result and advance dex pc. That also requires that we
        // can tell the return type of a runtime method, possibly by decoding
        // the dex instruction at the caller.
        DCHECK_EQ(new_dex_pc, dex_pc);
      }
    } else {
      // Nothing to do, the dex_pc is the one at which the code requested
      // the deoptimization.
      DCHECK(first);
      DCHECK_EQ(new_dex_pc, dex_pc);
    }
    if (new_dex_pc != dex::kDexNoIndex) {
      shadow_frame->SetDexPC(new_dex_pc);
      value = Execute(self, accessor, *shadow_frame, value);
    }
    ShadowFrame* old_frame = shadow_frame;
    shadow_frame = shadow_frame->GetLink();
    ShadowFrame::DeleteDeoptimizedFrame(old_frame);
    // Following deoptimizations of shadow frames must be at invocation point
    // and should advance dex pc past the invoke instruction.
    from_code = false;
    deopt_method_type = DeoptimizationMethodType::kDefault;
    first = false;
  }
  ret_val->SetJ(value.GetJ());
}

JValue EnterInterpreterFromEntryPoint(Thread* self, const CodeItemDataAccessor& accessor,
                                      ShadowFrame* shadow_frame) {
  DCHECK_EQ(self, Thread::Current());
  bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks();
  if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) {
    ThrowStackOverflowError(self);
    return JValue();
  }

  jit::Jit* jit = Runtime::Current()->GetJit();
  if (jit != nullptr) {
    jit->NotifyCompiledCodeToInterpreterTransition(self, shadow_frame->GetMethod());
  }
  return Execute(self, accessor, *shadow_frame, JValue());
}

void ArtInterpreterToInterpreterBridge(Thread* self,
                                       const CodeItemDataAccessor& accessor,
                                       ShadowFrame* shadow_frame,
                                       JValue* result) {
  bool implicit_check = !Runtime::Current()->ExplicitStackOverflowChecks();
  if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEndForInterpreter(implicit_check))) {
    ThrowStackOverflowError(self);
    return;
  }

  self->PushShadowFrame(shadow_frame);
  ArtMethod* method = shadow_frame->GetMethod();
  // Ensure static methods are initialized.
  const bool is_static = method->IsStatic();
  if (is_static) {
    ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
    if (UNLIKELY(!declaring_class->IsInitialized())) {
      StackHandleScope<1> hs(self);
      HandleWrapperObjPtr<mirror::Class> h_declaring_class(hs.NewHandleWrapper(&declaring_class));
      if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized(
          self, h_declaring_class, true, true))) {
        DCHECK(self->IsExceptionPending());
        self->PopShadowFrame();
        return;
      }
      CHECK(h_declaring_class->IsInitializing());
    }
  }

  if (LIKELY(!shadow_frame->GetMethod()->IsNative())) {
    result->SetJ(Execute(self, accessor, *shadow_frame, JValue()).GetJ());
  } else {
    // We don't expect to be asked to interpret native code (which is entered via a JNI compiler
    // generated stub) except during testing and image writing.
    CHECK(!Runtime::Current()->IsStarted());
    ObjPtr<mirror::Object> receiver = is_static ? nullptr : shadow_frame->GetVRegReference(0);
    uint32_t* args = shadow_frame->GetVRegArgs(is_static ? 0 : 1);
    UnstartedRuntime::Jni(self, shadow_frame->GetMethod(), receiver.Ptr(), args, result);
  }

  self->PopShadowFrame();
}

void CheckInterpreterAsmConstants() {
  CheckMterpAsmConstants();
}

void InitInterpreterTls(Thread* self) {
  InitMterpTls(self);
}

}  // namespace interpreter
}  // namespace art