summaryrefslogtreecommitdiffstats
path: root/compiler/image_writer.cc
blob: 063eb11718b814804f7c0d6243b57db6bd33cc9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "image_writer.h"

#include <sys/stat.h>
#include <lz4.h>
#include <lz4hc.h>

#include <memory>
#include <numeric>
#include <unordered_set>
#include <vector>

#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/logging.h"
#include "base/unix_file/fd_file.h"
#include "class_linker-inl.h"
#include "compiled_method.h"
#include "dex_file-inl.h"
#include "driver/compiler_driver.h"
#include "elf_file.h"
#include "elf_utils.h"
#include "elf_writer.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/heap.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "globals.h"
#include "image.h"
#include "intern_table.h"
#include "linear_alloc.h"
#include "lock_word.h"
#include "mirror/abstract_method.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/method.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-inl.h"
#include "oat.h"
#include "oat_file.h"
#include "oat_file_manager.h"
#include "runtime.h"
#include "scoped_thread_state_change.h"
#include "handle_scope-inl.h"
#include "utils/dex_cache_arrays_layout-inl.h"

using ::art::mirror::Class;
using ::art::mirror::DexCache;
using ::art::mirror::Object;
using ::art::mirror::ObjectArray;
using ::art::mirror::String;

namespace art {

// Separate objects into multiple bins to optimize dirty memory use.
static constexpr bool kBinObjects = true;

// Return true if an object is already in an image space.
bool ImageWriter::IsInBootImage(const void* obj) const {
  gc::Heap* const heap = Runtime::Current()->GetHeap();
  if (!compile_app_image_) {
    DCHECK(heap->GetBootImageSpaces().empty());
    return false;
  }
  for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
    const uint8_t* image_begin = boot_image_space->Begin();
    // Real image end including ArtMethods and ArtField sections.
    const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
    if (image_begin <= obj && obj < image_end) {
      return true;
    }
  }
  return false;
}

bool ImageWriter::IsInBootOatFile(const void* ptr) const {
  gc::Heap* const heap = Runtime::Current()->GetHeap();
  if (!compile_app_image_) {
    DCHECK(heap->GetBootImageSpaces().empty());
    return false;
  }
  for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
    const ImageHeader& image_header = boot_image_space->GetImageHeader();
    if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
      return true;
    }
  }
  return false;
}

static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED)
    SHARED_REQUIRES(Locks::mutator_lock_) {
  Class* klass = obj->GetClass();
  CHECK_NE(PrettyClass(klass), "com.android.dex.Dex");
}

static void CheckNoDexObjects() {
  ScopedObjectAccess soa(Thread::Current());
  Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr);
}

bool ImageWriter::PrepareImageAddressSpace() {
  target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
  gc::Heap* const heap = Runtime::Current()->GetHeap();
  {
    ScopedObjectAccess soa(Thread::Current());
    PruneNonImageClasses();  // Remove junk
    if (!compile_app_image_) {
      // Avoid for app image since this may increase RAM and image size.
      ComputeLazyFieldsForImageClasses();  // Add useful information
    }
  }
  heap->CollectGarbage(false);  // Remove garbage.

  // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped
  // dex files.
  //
  // We may open them in the unstarted-runtime code for class metadata. Their fields should all be
  // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually
  // true.
  if (kIsDebugBuild) {
    CheckNoDexObjects();
  }

  if (kIsDebugBuild) {
    ScopedObjectAccess soa(Thread::Current());
    CheckNonImageClassesRemoved();
  }

  {
    ScopedObjectAccess soa(Thread::Current());
    CalculateNewObjectOffsets();
  }

  // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
  // bin size sums being calculated.
  if (!AllocMemory()) {
    return false;
  }

  return true;
}

bool ImageWriter::Write(int image_fd,
                        const std::vector<const char*>& image_filenames,
                        const std::vector<const char*>& oat_filenames) {
  // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
  // oat_filenames.
  CHECK(!image_filenames.empty());
  if (image_fd != kInvalidFd) {
    CHECK_EQ(image_filenames.size(), 1u);
  }
  CHECK(!oat_filenames.empty());
  CHECK_EQ(image_filenames.size(), oat_filenames.size());

  {
    ScopedObjectAccess soa(Thread::Current());
    for (size_t i = 0; i < oat_filenames.size(); ++i) {
      CreateHeader(i);
      CopyAndFixupNativeData(i);
    }
  }

  {
    // TODO: heap validation can't handle these fix up passes.
    ScopedObjectAccess soa(Thread::Current());
    Runtime::Current()->GetHeap()->DisableObjectValidation();
    CopyAndFixupObjects();
  }

  for (size_t i = 0; i < image_filenames.size(); ++i) {
    const char* image_filename = image_filenames[i];
    ImageInfo& image_info = GetImageInfo(i);
    std::unique_ptr<File> image_file;
    if (image_fd != kInvalidFd) {
      if (strlen(image_filename) == 0u) {
        image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
        // Empty the file in case it already exists.
        if (image_file != nullptr) {
          TEMP_FAILURE_RETRY(image_file->SetLength(0));
          TEMP_FAILURE_RETRY(image_file->Flush());
        }
      } else {
        LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
      }
    } else {
      image_file.reset(OS::CreateEmptyFile(image_filename));
    }

    if (image_file == nullptr) {
      LOG(ERROR) << "Failed to open image file " << image_filename;
      return false;
    }

    if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) {
      PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
      image_file->Erase();
      return EXIT_FAILURE;
    }

    std::unique_ptr<char[]> compressed_data;
    // Image data size excludes the bitmap and the header.
    ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
    const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader);
    char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader);
    size_t data_size;
    const char* image_data_to_write;
    const uint64_t compress_start_time = NanoTime();

    CHECK_EQ(image_header->storage_mode_, image_storage_mode_);
    switch (image_storage_mode_) {
      case ImageHeader::kStorageModeLZ4HC:  // Fall-through.
      case ImageHeader::kStorageModeLZ4: {
        const size_t compressed_max_size = LZ4_compressBound(image_data_size);
        compressed_data.reset(new char[compressed_max_size]);
        data_size = LZ4_compress(
            reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
            &compressed_data[0],
            image_data_size);

        break;
      }
      /*
       * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444
      case ImageHeader::kStorageModeLZ4HC: {
        // Bound is same as non HC.
        const size_t compressed_max_size = LZ4_compressBound(image_data_size);
        compressed_data.reset(new char[compressed_max_size]);
        data_size = LZ4_compressHC(
            reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
            &compressed_data[0],
            image_data_size);
        break;
      }
      */
      case ImageHeader::kStorageModeUncompressed: {
        data_size = image_data_size;
        image_data_to_write = image_data;
        break;
      }
      default: {
        LOG(FATAL) << "Unsupported";
        UNREACHABLE();
      }
    }

    if (compressed_data != nullptr) {
      image_data_to_write = &compressed_data[0];
      VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in "
                     << PrettyDuration(NanoTime() - compress_start_time);
      if (kIsDebugBuild) {
        std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]);
        const size_t decompressed_size = LZ4_decompress_safe(
            reinterpret_cast<char*>(&compressed_data[0]),
            reinterpret_cast<char*>(&temp[0]),
            data_size,
            image_data_size);
        CHECK_EQ(decompressed_size, image_data_size);
        CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_;
      }
    }

    // Write out the image + fields + methods.
    const bool is_compressed = compressed_data != nullptr;
    if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) {
      PLOG(ERROR) << "Failed to write image file data " << image_filename;
      image_file->Erase();
      return false;
    }

    // Write out the image bitmap at the page aligned start of the image end, also uncompressed for
    // convenience.
    const ImageSection& bitmap_section = image_header->GetImageSection(
        ImageHeader::kSectionImageBitmap);
    // Align up since data size may be unaligned if the image is compressed.
    size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize);
    if (!is_compressed) {
      CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset());
    }
    if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()),
                                 bitmap_section.Size(),
                                 bitmap_position_in_file)) {
      PLOG(ERROR) << "Failed to write image file " << image_filename;
      image_file->Erase();
      return false;
    }

    int err = image_file->Flush();
    if (err < 0) {
      PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
      image_file->Erase();
      return false;
    }

    // Write header last in case the compiler gets killed in the middle of image writing.
    // We do not want to have a corrupted image with a valid header.
    // The header is uncompressed since it contains whether the image is compressed or not.
    image_header->data_size_ = data_size;
    if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()),
                                 sizeof(ImageHeader),
                                 0)) {
      PLOG(ERROR) << "Failed to write image file header " << image_filename;
      image_file->Erase();
      return false;
    }

    CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(),
             static_cast<size_t>(image_file->GetLength()));
    if (image_file->FlushCloseOrErase() != 0) {
      PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
      return false;
    }
  }
  return true;
}

void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
  DCHECK(object != nullptr);
  DCHECK_NE(offset, 0U);

  // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
  object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
  DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
  DCHECK(IsImageOffsetAssigned(object));
}

void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
  DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
  obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
  DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
}

void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
  DCHECK(object != nullptr);
  DCHECK_NE(image_objects_offset_begin_, 0u);

  size_t oat_index = GetOatIndex(object);
  ImageInfo& image_info = GetImageInfo(oat_index);
  size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()];
  size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
  DCHECK_ALIGNED(new_offset, kObjectAlignment);

  SetImageOffset(object, new_offset);
  DCHECK_LT(new_offset, image_info.image_end_);
}

bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
  // Will also return true if the bin slot was assigned since we are reusing the lock word.
  DCHECK(object != nullptr);
  return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
}

size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
  DCHECK(object != nullptr);
  DCHECK(IsImageOffsetAssigned(object));
  LockWord lock_word = object->GetLockWord(false);
  size_t offset = lock_word.ForwardingAddress();
  size_t oat_index = GetOatIndex(object);
  const ImageInfo& image_info = GetImageInfo(oat_index);
  DCHECK_LT(offset, image_info.image_end_);
  return offset;
}

void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
  DCHECK(object != nullptr);
  DCHECK(!IsImageOffsetAssigned(object));
  DCHECK(!IsImageBinSlotAssigned(object));

  // Before we stomp over the lock word, save the hash code for later.
  Monitor::Deflate(Thread::Current(), object);;
  LockWord lw(object->GetLockWord(false));
  switch (lw.GetState()) {
    case LockWord::kFatLocked: {
      LOG(FATAL) << "Fat locked object " << object << " found during object copy";
      break;
    }
    case LockWord::kThinLocked: {
      LOG(FATAL) << "Thin locked object " << object << " found during object copy";
      break;
    }
    case LockWord::kUnlocked:
      // No hash, don't need to save it.
      break;
    case LockWord::kHashCode:
      DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
      saved_hashcode_map_.emplace(object, lw.GetHashCode());
      break;
    default:
      LOG(FATAL) << "Unreachable.";
      UNREACHABLE();
  }
  object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
  DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
  DCHECK(IsImageBinSlotAssigned(object));
}

void ImageWriter::PrepareDexCacheArraySlots() {
  // Prepare dex cache array starts based on the ordering specified in the CompilerDriver.
  // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
  // when AssignImageBinSlot() assigns their indexes out or order.
  for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
    auto it = dex_file_oat_index_map_.find(dex_file);
    DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
    ImageInfo& image_info = GetImageInfo(it->second);
    image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]);
    DexCacheArraysLayout layout(target_ptr_size_, dex_file);
    image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size();
  }

  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  Thread* const self = Thread::Current();
  ReaderMutexLock mu(self, *class_linker->DexLock());
  for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
    mirror::DexCache* dex_cache =
        down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
    if (dex_cache == nullptr || IsInBootImage(dex_cache)) {
      continue;
    }
    const DexFile* dex_file = dex_cache->GetDexFile();
    CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
        << "Dex cache should have been pruned " << dex_file->GetLocation()
        << "; possibly in class path";
    DexCacheArraysLayout layout(target_ptr_size_, dex_file);
    DCHECK(layout.Valid());
    size_t oat_index = GetOatIndexForDexCache(dex_cache);
    ImageInfo& image_info = GetImageInfo(oat_index);
    uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
    DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
    AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
                               start + layout.TypesOffset(),
                               dex_cache);
    DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
    AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
                               start + layout.MethodsOffset(),
                               dex_cache);
    DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
    AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
                               start + layout.FieldsOffset(),
                               dex_cache);
    DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
    AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache);
  }
}

void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) {
  if (array != nullptr) {
    DCHECK(!IsInBootImage(array));
    size_t oat_index = GetOatIndexForDexCache(dex_cache);
    native_object_relocations_.emplace(array,
        NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray });
  }
}

void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
  DCHECK(arr != nullptr);
  if (kIsDebugBuild) {
    for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
      ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
      if (method != nullptr && !method->IsRuntimeMethod()) {
        mirror::Class* klass = method->GetDeclaringClass();
        CHECK(klass == nullptr || KeepClass(klass))
            << PrettyClass(klass) << " should be a kept class";
      }
    }
  }
  // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
  // ArtMethods.
  pointer_arrays_.emplace(arr, kBinArtMethodClean);
}

void ImageWriter::AssignImageBinSlot(mirror::Object* object) {
  DCHECK(object != nullptr);
  size_t object_size = object->SizeOf();

  // The magic happens here. We segregate objects into different bins based
  // on how likely they are to get dirty at runtime.
  //
  // Likely-to-dirty objects get packed together into the same bin so that
  // at runtime their page dirtiness ratio (how many dirty objects a page has) is
  // maximized.
  //
  // This means more pages will stay either clean or shared dirty (with zygote) and
  // the app will use less of its own (private) memory.
  Bin bin = kBinRegular;
  size_t current_offset = 0u;

  if (kBinObjects) {
    //
    // Changing the bin of an object is purely a memory-use tuning.
    // It has no change on runtime correctness.
    //
    // Memory analysis has determined that the following types of objects get dirtied
    // the most:
    //
    // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
    //   a fixed layout which helps improve generated code (using PC-relative addressing),
    //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
    //   Since these arrays are huge, most pages do not overlap other objects and it's not
    //   really important where they are for the clean/dirty separation. Due to their
    //   special PC-relative addressing, we arbitrarily keep them at the end.
    // * Class'es which are verified [their clinit runs only at runtime]
    //   - classes in general [because their static fields get overwritten]
    //   - initialized classes with all-final statics are unlikely to be ever dirty,
    //     so bin them separately
    // * Art Methods that are:
    //   - native [their native entry point is not looked up until runtime]
    //   - have declaring classes that aren't initialized
    //            [their interpreter/quick entry points are trampolines until the class
    //             becomes initialized]
    //
    // We also assume the following objects get dirtied either never or extremely rarely:
    //  * Strings (they are immutable)
    //  * Art methods that aren't native and have initialized declared classes
    //
    // We assume that "regular" bin objects are highly unlikely to become dirtied,
    // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
    //
    if (object->IsClass()) {
      bin = kBinClassVerified;
      mirror::Class* klass = object->AsClass();

      // Add non-embedded vtable to the pointer array table if there is one.
      auto* vtable = klass->GetVTable();
      if (vtable != nullptr) {
        AddMethodPointerArray(vtable);
      }
      auto* iftable = klass->GetIfTable();
      if (iftable != nullptr) {
        for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
          if (iftable->GetMethodArrayCount(i) > 0) {
            AddMethodPointerArray(iftable->GetMethodArray(i));
          }
        }
      }

      if (klass->GetStatus() == Class::kStatusInitialized) {
        bin = kBinClassInitialized;

        // If the class's static fields are all final, put it into a separate bin
        // since it's very likely it will stay clean.
        uint32_t num_static_fields = klass->NumStaticFields();
        if (num_static_fields == 0) {
          bin = kBinClassInitializedFinalStatics;
        } else {
          // Maybe all the statics are final?
          bool all_final = true;
          for (uint32_t i = 0; i < num_static_fields; ++i) {
            ArtField* field = klass->GetStaticField(i);
            if (!field->IsFinal()) {
              all_final = false;
              break;
            }
          }

          if (all_final) {
            bin = kBinClassInitializedFinalStatics;
          }
        }
      }
    } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
      bin = kBinString;  // Strings are almost always immutable (except for object header).
    } else if (object->GetClass<kVerifyNone>() ==
        Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) {
      // Instance of java lang object, probably a lock object. This means it will be dirty when we
      // synchronize on it.
      bin = kBinMiscDirty;
    } else if (object->IsDexCache()) {
      // Dex file field becomes dirty when the image is loaded.
      bin = kBinMiscDirty;
    }
    // else bin = kBinRegular
  }

  size_t oat_index = GetOatIndex(object);
  ImageInfo& image_info = GetImageInfo(oat_index);

  size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
  current_offset = image_info.bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
  // Move the current bin size up to accommodate the object we just assigned a bin slot.
  image_info.bin_slot_sizes_[bin] += offset_delta;

  BinSlot new_bin_slot(bin, current_offset);
  SetImageBinSlot(object, new_bin_slot);

  ++image_info.bin_slot_count_[bin];

  // Grow the image closer to the end by the object we just assigned.
  image_info.image_end_ += offset_delta;
}

bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
  if (m->IsNative()) {
    return true;
  }
  mirror::Class* declaring_class = m->GetDeclaringClass();
  // Initialized is highly unlikely to dirty since there's no entry points to mutate.
  return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
}

bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
  DCHECK(object != nullptr);

  // We always stash the bin slot into a lockword, in the 'forwarding address' state.
  // If it's in some other state, then we haven't yet assigned an image bin slot.
  if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
    return false;
  } else if (kIsDebugBuild) {
    LockWord lock_word = object->GetLockWord(false);
    size_t offset = lock_word.ForwardingAddress();
    BinSlot bin_slot(offset);
    size_t oat_index = GetOatIndex(object);
    const ImageInfo& image_info = GetImageInfo(oat_index);
    DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()])
        << "bin slot offset should not exceed the size of that bin";
  }
  return true;
}

ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
  DCHECK(object != nullptr);
  DCHECK(IsImageBinSlotAssigned(object));

  LockWord lock_word = object->GetLockWord(false);
  size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
  DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());

  BinSlot bin_slot(static_cast<uint32_t>(offset));
  size_t oat_index = GetOatIndex(object);
  const ImageInfo& image_info = GetImageInfo(oat_index);
  DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]);

  return bin_slot;
}

bool ImageWriter::AllocMemory() {
  for (ImageInfo& image_info : image_infos_) {
    ImageSection unused_sections[ImageHeader::kSectionCount];
    const size_t length = RoundUp(
        image_info.CreateImageSections(unused_sections), kPageSize);

    std::string error_msg;
    image_info.image_.reset(MemMap::MapAnonymous("image writer image",
                                                 nullptr,
                                                 length,
                                                 PROT_READ | PROT_WRITE,
                                                 false,
                                                 false,
                                                 &error_msg));
    if (UNLIKELY(image_info.image_.get() == nullptr)) {
      LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
      return false;
    }

    // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
    CHECK_LE(image_info.image_end_, length);
    image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
        "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize)));
    if (image_info.image_bitmap_.get() == nullptr) {
      LOG(ERROR) << "Failed to allocate memory for image bitmap";
      return false;
    }
  }
  return true;
}

class ComputeLazyFieldsForClassesVisitor : public ClassVisitor {
 public:
  bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    StackHandleScope<1> hs(Thread::Current());
    mirror::Class::ComputeName(hs.NewHandle(c));
    return true;
  }
};

void ImageWriter::ComputeLazyFieldsForImageClasses() {
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  ComputeLazyFieldsForClassesVisitor visitor;
  class_linker->VisitClassesWithoutClassesLock(&visitor);
}

static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) {
  return klass->GetClassLoader() == nullptr;
}

bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
  return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
}

bool ImageWriter::PruneAppImageClass(mirror::Class* klass) {
  bool early_exit = false;
  std::unordered_set<mirror::Class*> visited;
  return PruneAppImageClassInternal(klass, &early_exit, &visited);
}

bool ImageWriter::PruneAppImageClassInternal(
    mirror::Class* klass,
    bool* early_exit,
    std::unordered_set<mirror::Class*>* visited) {
  DCHECK(early_exit != nullptr);
  DCHECK(visited != nullptr);
  DCHECK(compile_app_image_);
  if (klass == nullptr || IsInBootImage(klass)) {
    return false;
  }
  auto found = prune_class_memo_.find(klass);
  if (found != prune_class_memo_.end()) {
    // Already computed, return the found value.
    return found->second;
  }
  // Circular dependencies, return false but do not store the result in the memoization table.
  if (visited->find(klass) != visited->end()) {
    *early_exit = true;
    return false;
  }
  visited->emplace(klass);
  bool result = IsBootClassLoaderClass(klass);
  std::string temp;
  // Prune if not an image class, this handles any broken sets of image classes such as having a
  // class in the set but not it's superclass.
  result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
  bool my_early_exit = false;  // Only for ourselves, ignore caller.
  // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
  // app image.
  if (klass->GetStatus() == mirror::Class::kStatusError) {
    result = true;
  } else {
    CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass);
  }
  if (!result) {
    // Check interfaces since these wont be visited through VisitReferences.)
    mirror::IfTable* if_table = klass->GetIfTable();
    for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
      result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
                                                    &my_early_exit,
                                                    visited);
    }
  }
  if (klass->IsObjectArrayClass()) {
    result = result || PruneAppImageClassInternal(klass->GetComponentType(),
                                                  &my_early_exit,
                                                  visited);
  }
  // Check static fields and their classes.
  size_t num_static_fields = klass->NumReferenceStaticFields();
  if (num_static_fields != 0 && klass->IsResolved()) {
    // Presumably GC can happen when we are cross compiling, it should not cause performance
    // problems to do pointer size logic.
    MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
        Runtime::Current()->GetClassLinker()->GetImagePointerSize());
    for (size_t i = 0u; i < num_static_fields; ++i) {
      mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
      if (ref != nullptr) {
        if (ref->IsClass()) {
          result = result || PruneAppImageClassInternal(ref->AsClass(),
                                                        &my_early_exit,
                                                        visited);
        } else {
          result = result || PruneAppImageClassInternal(ref->GetClass(),
                                                        &my_early_exit,
                                                        visited);
        }
      }
      field_offset = MemberOffset(field_offset.Uint32Value() +
                                  sizeof(mirror::HeapReference<mirror::Object>));
    }
  }
  result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
                                                &my_early_exit,
                                                visited);
  // Erase the element we stored earlier since we are exiting the function.
  auto it = visited->find(klass);
  DCHECK(it != visited->end());
  visited->erase(it);
  // Only store result if it is true or none of the calls early exited due to circular
  // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
  // a child call and we can remember the result.
  if (result == true || !my_early_exit || visited->empty()) {
    prune_class_memo_[klass] = result;
  }
  *early_exit |= my_early_exit;
  return result;
}

bool ImageWriter::KeepClass(Class* klass) {
  if (klass == nullptr) {
    return false;
  }
  if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
    // Already in boot image, return true.
    return true;
  }
  std::string temp;
  if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) {
    return false;
  }
  if (compile_app_image_) {
    // For app images, we need to prune boot loader classes that are not in the boot image since
    // these may have already been loaded when the app image is loaded.
    // Keep classes in the boot image space since we don't want to re-resolve these.
    return !PruneAppImageClass(klass);
  }
  return true;
}

class NonImageClassesVisitor : public ClassVisitor {
 public:
  explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}

  bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    if (!image_writer_->KeepClass(klass)) {
      classes_to_prune_.insert(klass);
    }
    return true;
  }

  std::unordered_set<mirror::Class*> classes_to_prune_;
  ImageWriter* const image_writer_;
};

void ImageWriter::PruneNonImageClasses() {
  Runtime* runtime = Runtime::Current();
  ClassLinker* class_linker = runtime->GetClassLinker();
  Thread* self = Thread::Current();

  // Clear class table strong roots so that dex caches can get pruned. We require pruning the class
  // path dex caches.
  class_linker->ClearClassTableStrongRoots();

  // Make a list of classes we would like to prune.
  NonImageClassesVisitor visitor(this);
  class_linker->VisitClasses(&visitor);

  // Remove the undesired classes from the class roots.
  VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes";
  for (mirror::Class* klass : visitor.classes_to_prune_) {
    std::string temp;
    const char* name = klass->GetDescriptor(&temp);
    VLOG(compiler) << "Pruning class " << name;
    if (!compile_app_image_) {
      DCHECK(IsBootClassLoaderClass(klass));
    }
    bool result = class_linker->RemoveClass(name, klass->GetClassLoader());
    DCHECK(result);
  }

  // Clear references to removed classes from the DexCaches.
  ArtMethod* resolution_method = runtime->GetResolutionMethod();

  ScopedAssertNoThreadSuspension sa(self, __FUNCTION__);
  ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);  // For ClassInClassTable
  ReaderMutexLock mu2(self, *class_linker->DexLock());
  for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
    if (self->IsJWeakCleared(data.weak_root)) {
      continue;
    }
    mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache();
    for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
      Class* klass = dex_cache->GetResolvedType(i);
      if (klass != nullptr && !KeepClass(klass)) {
        dex_cache->SetResolvedType(i, nullptr);
      }
    }
    ArtMethod** resolved_methods = dex_cache->GetResolvedMethods();
    for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) {
      ArtMethod* method =
          mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_);
      DCHECK(method != nullptr) << "Expected resolution method instead of null method";
      mirror::Class* declaring_class = method->GetDeclaringClass();
      // Copied methods may be held live by a class which was not an image class but have a
      // declaring class which is an image class. Set it to the resolution method to be safe and
      // prevent dangling pointers.
      if (method->IsCopied() || !KeepClass(declaring_class)) {
        mirror::DexCache::SetElementPtrSize(resolved_methods,
                                            i,
                                            resolution_method,
                                            target_ptr_size_);
      } else {
        // Check that the class is still in the classes table.
        DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class "
            << PrettyClass(declaring_class) << " not in class linker table";
      }
    }
    ArtField** resolved_fields = dex_cache->GetResolvedFields();
    for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
      ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_);
      if (field != nullptr && !KeepClass(field->GetDeclaringClass())) {
        dex_cache->SetResolvedField(i, nullptr, target_ptr_size_);
      }
    }
    // Clean the dex field. It might have been populated during the initialization phase, but
    // contains data only valid during a real run.
    dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr);
  }

  // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
  class_linker->DropFindArrayClassCache();

  // Clear to save RAM.
  prune_class_memo_.clear();
}

void ImageWriter::CheckNonImageClassesRemoved() {
  if (compiler_driver_.GetImageClasses() != nullptr) {
    gc::Heap* heap = Runtime::Current()->GetHeap();
    heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
  }
}

void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
  ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
  if (obj->IsClass() && !image_writer->IsInBootImage(obj)) {
    Class* klass = obj->AsClass();
    if (!image_writer->KeepClass(klass)) {
      image_writer->DumpImageClasses();
      std::string temp;
      CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp)
                                            << " " << PrettyDescriptor(klass);
    }
  }
}

void ImageWriter::DumpImageClasses() {
  auto image_classes = compiler_driver_.GetImageClasses();
  CHECK(image_classes != nullptr);
  for (const std::string& image_class : *image_classes) {
    LOG(INFO) << " " << image_class;
  }
}

mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
  Thread* const self = Thread::Current();
  for (const ImageInfo& image_info : image_infos_) {
    mirror::String* const found = image_info.intern_table_->LookupStrong(self, string);
    DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
        << string->ToModifiedUtf8();
    if (found != nullptr) {
      return found;
    }
  }
  if (compile_app_image_) {
    Runtime* const runtime = Runtime::Current();
    mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string);
    // If we found it in the runtime intern table it could either be in the boot image or interned
    // during app image compilation. If it was in the boot image return that, otherwise return null
    // since it belongs to another image space.
    if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) {
      return found;
    }
    DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
        << string->ToModifiedUtf8();
  }
  return nullptr;
}

void ImageWriter::CalculateObjectBinSlots(Object* obj) {
  DCHECK(obj != nullptr);
  // if it is a string, we want to intern it if its not interned.
  if (obj->GetClass()->IsStringClass()) {
    size_t oat_index = GetOatIndex(obj);
    ImageInfo& image_info = GetImageInfo(oat_index);

    // we must be an interned string that was forward referenced and already assigned
    if (IsImageBinSlotAssigned(obj)) {
      DCHECK_EQ(obj, FindInternedString(obj->AsString()));
      return;
    }
    // Need to check if the string is already interned in another image info so that we don't have
    // the intern tables of two different images contain the same string.
    mirror::String* interned = FindInternedString(obj->AsString());
    if (interned == nullptr) {
      // Not in another image space, insert to our table.
      interned = image_info.intern_table_->InternStrongImageString(obj->AsString());
    }
    if (obj != interned) {
      if (!IsImageBinSlotAssigned(interned)) {
        // interned obj is after us, allocate its location early
        AssignImageBinSlot(interned);
      }
      // point those looking for this object to the interned version.
      SetImageBinSlot(obj, GetImageBinSlot(interned));
      return;
    }
    // else (obj == interned), nothing to do but fall through to the normal case
  }

  AssignImageBinSlot(obj);
}

ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const {
  Runtime* runtime = Runtime::Current();
  ClassLinker* class_linker = runtime->GetClassLinker();
  Thread* self = Thread::Current();
  StackHandleScope<3> hs(self);
  Handle<Class> object_array_class(hs.NewHandle(
      class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));

  std::unordered_set<const DexFile*> image_dex_files;
  for (auto& pair : dex_file_oat_index_map_) {
    const DexFile* image_dex_file = pair.first;
    size_t image_oat_index = pair.second;
    if (oat_index == image_oat_index) {
      image_dex_files.insert(image_dex_file);
    }
  }

  // build an Object[] of all the DexCaches used in the source_space_.
  // Since we can't hold the dex lock when allocating the dex_caches
  // ObjectArray, we lock the dex lock twice, first to get the number
  // of dex caches first and then lock it again to copy the dex
  // caches. We check that the number of dex caches does not change.
  size_t dex_cache_count = 0;
  {
    ReaderMutexLock mu(self, *class_linker->DexLock());
    // Count number of dex caches not in the boot image.
    for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
      mirror::DexCache* dex_cache =
          down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
      if (dex_cache == nullptr) {
        continue;
      }
      const DexFile* dex_file = dex_cache->GetDexFile();
      if (!IsInBootImage(dex_cache)) {
        dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
      }
    }
  }
  Handle<ObjectArray<Object>> dex_caches(
      hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count)));
  CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
  {
    ReaderMutexLock mu(self, *class_linker->DexLock());
    size_t non_image_dex_caches = 0;
    // Re-count number of non image dex caches.
    for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
      mirror::DexCache* dex_cache =
          down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
      if (dex_cache == nullptr) {
        continue;
      }
      const DexFile* dex_file = dex_cache->GetDexFile();
      if (!IsInBootImage(dex_cache)) {
        non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
      }
    }
    CHECK_EQ(dex_cache_count, non_image_dex_caches)
        << "The number of non-image dex caches changed.";
    size_t i = 0;
    for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
      mirror::DexCache* dex_cache =
          down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
      if (dex_cache == nullptr) {
        continue;
      }
      const DexFile* dex_file = dex_cache->GetDexFile();
      if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) {
        dex_caches->Set<false>(i, dex_cache);
        ++i;
      }
    }
  }

  // build an Object[] of the roots needed to restore the runtime
  auto image_roots(hs.NewHandle(
      ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
  image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
  image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
  for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
    CHECK(image_roots->Get(i) != nullptr);
  }
  return image_roots.Get();
}

// Walk instance fields of the given Class. Separate function to allow recursion on the super
// class.
void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) {
  // Visit fields of parent classes first.
  StackHandleScope<1> hs(Thread::Current());
  Handle<mirror::Class> h_class(hs.NewHandle(klass));
  mirror::Class* super = h_class->GetSuperClass();
  if (super != nullptr) {
    WalkInstanceFields(obj, super);
  }
  //
  size_t num_reference_fields = h_class->NumReferenceInstanceFields();
  MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset();
  for (size_t i = 0; i < num_reference_fields; ++i) {
    mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset);
    if (value != nullptr) {
      WalkFieldsInOrder(value);
    }
    field_offset = MemberOffset(field_offset.Uint32Value() +
                                sizeof(mirror::HeapReference<mirror::Object>));
  }
}

// For an unvisited object, visit it then all its children found via fields.
void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) {
  if (IsInBootImage(obj)) {
    // Object is in the image, don't need to fix it up.
    return;
  }
  // Use our own visitor routine (instead of GC visitor) to get better locality between
  // an object and its fields
  if (!IsImageBinSlotAssigned(obj)) {
    // Walk instance fields of all objects
    StackHandleScope<2> hs(Thread::Current());
    Handle<mirror::Object> h_obj(hs.NewHandle(obj));
    Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass()));
    // visit the object itself.
    CalculateObjectBinSlots(h_obj.Get());
    WalkInstanceFields(h_obj.Get(), klass.Get());
    // Walk static fields of a Class.
    if (h_obj->IsClass()) {
      size_t num_reference_static_fields = klass->NumReferenceStaticFields();
      MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_);
      for (size_t i = 0; i < num_reference_static_fields; ++i) {
        mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset);
        if (value != nullptr) {
          WalkFieldsInOrder(value);
        }
        field_offset = MemberOffset(field_offset.Uint32Value() +
                                    sizeof(mirror::HeapReference<mirror::Object>));
      }
      // Visit and assign offsets for fields and field arrays.
      auto* as_klass = h_obj->AsClass();
      mirror::DexCache* dex_cache = as_klass->GetDexCache();
      DCHECK_NE(klass->GetStatus(), mirror::Class::kStatusError);
      if (compile_app_image_) {
        // Extra sanity, no boot loader classes should be left!
        CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass);
      }
      LengthPrefixedArray<ArtField>* fields[] = {
          as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
      };
      size_t oat_index = GetOatIndexForDexCache(dex_cache);
      ImageInfo& image_info = GetImageInfo(oat_index);
      {
        // Note: This table is only accessed from the image writer, so the lock is technically
        // unnecessary.
        WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
        // Insert in the class table for this iamge.
        image_info.class_table_->Insert(as_klass);
      }
      for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
        // Total array length including header.
        if (cur_fields != nullptr) {
          const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
          // Forward the entire array at once.
          auto it = native_object_relocations_.find(cur_fields);
          CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
                                                  << " already forwarded";
          size_t& offset = image_info.bin_slot_sizes_[kBinArtField];
          DCHECK(!IsInBootImage(cur_fields));
          native_object_relocations_.emplace(
              cur_fields,
              NativeObjectRelocation {
                  oat_index, offset, kNativeObjectRelocationTypeArtFieldArray
              });
          offset += header_size;
          // Forward individual fields so that we can quickly find where they belong.
          for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
            // Need to forward arrays separate of fields.
            ArtField* field = &cur_fields->At(i);
            auto it2 = native_object_relocations_.find(field);
            CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
                << " already assigned " << PrettyField(field) << " static=" << field->IsStatic();
            DCHECK(!IsInBootImage(field));
            native_object_relocations_.emplace(
                field,
                NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField });
            offset += sizeof(ArtField);
          }
        }
      }
      // Visit and assign offsets for methods.
      size_t num_methods = as_klass->NumMethods();
      if (num_methods != 0) {
        bool any_dirty = false;
        for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
          if (WillMethodBeDirty(&m)) {
            any_dirty = true;
            break;
          }
        }
        NativeObjectRelocationType type = any_dirty
            ? kNativeObjectRelocationTypeArtMethodDirty
            : kNativeObjectRelocationTypeArtMethodClean;
        Bin bin_type = BinTypeForNativeRelocationType(type);
        // Forward the entire array at once, but header first.
        const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
        const size_t method_size = ArtMethod::Size(target_ptr_size_);
        const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
                                                                               method_size,
                                                                               method_alignment);
        LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
        auto it = native_object_relocations_.find(array);
        CHECK(it == native_object_relocations_.end())
            << "Method array " << array << " already forwarded";
        size_t& offset = image_info.bin_slot_sizes_[bin_type];
        DCHECK(!IsInBootImage(array));
        native_object_relocations_.emplace(array,
            NativeObjectRelocation {
                oat_index,
                offset,
                any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty
                          : kNativeObjectRelocationTypeArtMethodArrayClean });
        offset += header_size;
        for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
          AssignMethodOffset(&m, type, oat_index);
        }
        (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
      }
      // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
      // live.
      if (as_klass->ShouldHaveImt()) {
        ImTable* imt = as_klass->GetImt(target_ptr_size_);
        for (size_t i = 0; i < ImTable::kSize; ++i) {
          ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
          DCHECK(imt_method != nullptr);
          if (imt_method->IsRuntimeMethod() &&
              !IsInBootImage(imt_method) &&
              !NativeRelocationAssigned(imt_method)) {
            AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index);
          }
        }
      }

      if (as_klass->ShouldHaveImt()) {
        ImTable* imt = as_klass->GetImt(target_ptr_size_);
        TryAssignImTableOffset(imt, oat_index);
      }
    } else if (h_obj->IsObjectArray()) {
      // Walk elements of an object array.
      int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength();
      for (int32_t i = 0; i < length; i++) {
        mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>();
        mirror::Object* value = obj_array->Get(i);
        if (value != nullptr) {
          WalkFieldsInOrder(value);
        }
      }
    } else if (h_obj->IsClassLoader()) {
      // Register the class loader if it has a class table.
      // The fake boot class loader should not get registered and we should end up with only one
      // class loader.
      mirror::ClassLoader* class_loader = h_obj->AsClassLoader();
      if (class_loader->GetClassTable() != nullptr) {
        class_loaders_.insert(class_loader);
      }
    }
  }
}

bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
  return native_object_relocations_.find(ptr) != native_object_relocations_.end();
}

void ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
  // No offset, or already assigned.
  if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
    return;
  }
  // If the method is a conflict method we also want to assign the conflict table offset.
  ImageInfo& image_info = GetImageInfo(oat_index);
  const size_t size = ImTable::SizeInBytes(target_ptr_size_);
  native_object_relocations_.emplace(
      imt,
      NativeObjectRelocation {
          oat_index,
          image_info.bin_slot_sizes_[kBinImTable],
          kNativeObjectRelocationTypeIMTable});
  image_info.bin_slot_sizes_[kBinImTable] += size;
}

void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
  // No offset, or already assigned.
  if (table == nullptr || NativeRelocationAssigned(table)) {
    return;
  }
  CHECK(!IsInBootImage(table));
  // If the method is a conflict method we also want to assign the conflict table offset.
  ImageInfo& image_info = GetImageInfo(oat_index);
  const size_t size = table->ComputeSize(target_ptr_size_);
  native_object_relocations_.emplace(
      table,
      NativeObjectRelocation {
          oat_index,
          image_info.bin_slot_sizes_[kBinIMTConflictTable],
          kNativeObjectRelocationTypeIMTConflictTable});
  image_info.bin_slot_sizes_[kBinIMTConflictTable] += size;
}

void ImageWriter::AssignMethodOffset(ArtMethod* method,
                                     NativeObjectRelocationType type,
                                     size_t oat_index) {
  DCHECK(!IsInBootImage(method));
  CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
      << PrettyMethod(method);
  if (method->IsRuntimeMethod()) {
    TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
  }
  ImageInfo& image_info = GetImageInfo(oat_index);
  size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)];
  native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
  offset += ArtMethod::Size(target_ptr_size_);
}

void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) {
  ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
  DCHECK(writer != nullptr);
  writer->WalkFieldsInOrder(obj);
}

void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
  ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
  DCHECK(writer != nullptr);
  if (!writer->IsInBootImage(obj)) {
    writer->UnbinObjectsIntoOffset(obj);
  }
}

void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
  DCHECK(!IsInBootImage(obj));
  CHECK(obj != nullptr);

  // We know the bin slot, and the total bin sizes for all objects by now,
  // so calculate the object's final image offset.

  DCHECK(IsImageBinSlotAssigned(obj));
  BinSlot bin_slot = GetImageBinSlot(obj);
  // Change the lockword from a bin slot into an offset
  AssignImageOffset(obj, bin_slot);
}

void ImageWriter::CalculateNewObjectOffsets() {
  Thread* const self = Thread::Current();
  StackHandleScopeCollection handles(self);
  std::vector<Handle<ObjectArray<Object>>> image_roots;
  for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
    image_roots.push_back(handles.NewHandle(CreateImageRoots(i)));
  }

  auto* runtime = Runtime::Current();
  auto* heap = runtime->GetHeap();

  // Leave space for the header, but do not write it yet, we need to
  // know where image_roots is going to end up
  image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment

  const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
  // Write the image runtime methods.
  image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
  image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
  image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
  image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll);
  image_methods_[ImageHeader::kRefsOnlySaveMethod] =
      runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
  image_methods_[ImageHeader::kRefsAndArgsSaveMethod] =
      runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
  // Visit image methods first to have the main runtime methods in the first image.
  for (auto* m : image_methods_) {
    CHECK(m != nullptr);
    CHECK(m->IsRuntimeMethod());
    DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image";
    if (!IsInBootImage(m)) {
      AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex());
    }
  }

  // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots.
  heap->VisitObjects(WalkFieldsCallback, this);

  // Calculate size of the dex cache arrays slot and prepare offsets.
  PrepareDexCacheArraySlots();

  // Calculate the sizes of the intern tables and class tables.
  for (ImageInfo& image_info : image_infos_) {
    // Calculate how big the intern table will be after being serialized.
    InternTable* const intern_table = image_info.intern_table_.get();
    CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
    image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
    // Calculate the size of the class table.
    ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
    image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
  }

  // Calculate bin slot offsets.
  for (ImageInfo& image_info : image_infos_) {
    size_t bin_offset = image_objects_offset_begin_;
    for (size_t i = 0; i != kBinSize; ++i) {
      switch (i) {
        case kBinArtMethodClean:
        case kBinArtMethodDirty: {
          bin_offset = RoundUp(bin_offset, method_alignment);
          break;
        }
        case kBinImTable:
        case kBinIMTConflictTable: {
          bin_offset = RoundUp(bin_offset, target_ptr_size_);
          break;
        }
        default: {
          // Normal alignment.
        }
      }
      image_info.bin_slot_offsets_[i] = bin_offset;
      bin_offset += image_info.bin_slot_sizes_[i];
    }
    // NOTE: There may be additional padding between the bin slots and the intern table.
    DCHECK_EQ(image_info.image_end_,
              GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_);
  }

  // Calculate image offsets.
  size_t image_offset = 0;
  for (ImageInfo& image_info : image_infos_) {
    image_info.image_begin_ = global_image_begin_ + image_offset;
    image_info.image_offset_ = image_offset;
    ImageSection unused_sections[ImageHeader::kSectionCount];
    image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize);
    // There should be no gaps until the next image.
    image_offset += image_info.image_size_;
  }

  // Transform each object's bin slot into an offset which will be used to do the final copy.
  heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);

  // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);

  size_t i = 0;
  for (ImageInfo& image_info : image_infos_) {
    image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
    i++;
  }

  // Update the native relocations by adding their bin sums.
  for (auto& pair : native_object_relocations_) {
    NativeObjectRelocation& relocation = pair.second;
    Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
    ImageInfo& image_info = GetImageInfo(relocation.oat_index);
    relocation.offset += image_info.bin_slot_offsets_[bin_type];
  }

  // Note that image_info.image_end_ is left at end of used mirror object section.
}

size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const {
  DCHECK(out_sections != nullptr);

  // Do not round up any sections here that are represented by the bins since it will break
  // offsets.

  // Objects section
  ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects];
  *objects_section = ImageSection(0u, image_end_);

  // Add field section.
  ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields];
  *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]);
  CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset());

  // Add method section.
  ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods];
  *methods_section = ImageSection(
      bin_slot_offsets_[kBinArtMethodClean],
      bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]);

  // IMT section.
  ImageSection* imt_section = &out_sections[ImageHeader::kSectionImTables];
  *imt_section = ImageSection(bin_slot_offsets_[kBinImTable], bin_slot_sizes_[kBinImTable]);

  // Conflict tables section.
  ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables];
  *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable],
                                              bin_slot_sizes_[kBinIMTConflictTable]);

  // Runtime methods section.
  ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods];
  *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod],
                                          bin_slot_sizes_[kBinRuntimeMethod]);

  // Add dex cache arrays section.
  ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays];
  *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray],
                                           bin_slot_sizes_[kBinDexCacheArray]);

  // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
  size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t));
  // Calculate the size of the interned strings.
  ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings];
  *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
  cur_pos = interned_strings_section->End();
  // Round up to the alignment the class table expects. See HashSet::WriteToMemory.
  cur_pos = RoundUp(cur_pos, sizeof(uint64_t));
  // Calculate the size of the class table section.
  ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable];
  *class_table_section = ImageSection(cur_pos, class_table_bytes_);
  cur_pos = class_table_section->End();
  // Image end goes right before the start of the image bitmap.
  return cur_pos;
}

void ImageWriter::CreateHeader(size_t oat_index) {
  ImageInfo& image_info = GetImageInfo(oat_index);
  const uint8_t* oat_file_begin = image_info.oat_file_begin_;
  const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
  const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;

  // Create the image sections.
  ImageSection sections[ImageHeader::kSectionCount];
  const size_t image_end = image_info.CreateImageSections(sections);

  // Finally bitmap section.
  const size_t bitmap_bytes = image_info.image_bitmap_->Size();
  auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
  *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
  if (VLOG_IS_ON(compiler)) {
    LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
    size_t idx = 0;
    for (const ImageSection& section : sections) {
      LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
      ++idx;
    }
    LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
    LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
    LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
              << " Image offset=" << image_info.image_offset_ << std::dec;
    LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
              << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
              << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
              << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
  }
  // Store boot image info for app image so that we can relocate.
  uint32_t boot_image_begin = 0;
  uint32_t boot_image_end = 0;
  uint32_t boot_oat_begin = 0;
  uint32_t boot_oat_end = 0;
  gc::Heap* const heap = Runtime::Current()->GetHeap();
  heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);

  // Create the header, leave 0 for data size since we will fill this in as we are writing the
  // image.
  new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_),
                                               image_end,
                                               sections,
                                               image_info.image_roots_address_,
                                               image_info.oat_checksum_,
                                               PointerToLowMemUInt32(oat_file_begin),
                                               PointerToLowMemUInt32(image_info.oat_data_begin_),
                                               PointerToLowMemUInt32(oat_data_end),
                                               PointerToLowMemUInt32(oat_file_end),
                                               boot_image_begin,
                                               boot_image_end - boot_image_begin,
                                               boot_oat_begin,
                                               boot_oat_end - boot_oat_begin,
                                               target_ptr_size_,
                                               compile_pic_,
                                               /*is_pic*/compile_app_image_,
                                               image_storage_mode_,
                                               /*data_size*/0u);
}

ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
  auto it = native_object_relocations_.find(method);
  CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method;
  size_t oat_index = GetOatIndex(method->GetDexCache());
  ImageInfo& image_info = GetImageInfo(oat_index);
  CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects";
  return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset);
}

class FixupRootVisitor : public RootVisitor {
 public:
  explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
  }

  void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    for (size_t i = 0; i < count; ++i) {
      *roots[i] = image_writer_->GetImageAddress(*roots[i]);
    }
  }

  void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
                  const RootInfo& info ATTRIBUTE_UNUSED)
      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    for (size_t i = 0; i < count; ++i) {
      roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr()));
    }
  }

 private:
  ImageWriter* const image_writer_;
};

void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
  for (size_t i = 0; i < ImTable::kSize; ++i) {
    ArtMethod* method = orig->Get(i, target_ptr_size_);
    copy->Set(i, NativeLocationInImage(method), target_ptr_size_);
  }
}

void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
  const size_t count = orig->NumEntries(target_ptr_size_);
  for (size_t i = 0; i < count; ++i) {
    ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
    ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
    copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method));
    copy->SetImplementationMethod(i,
                                  target_ptr_size_,
                                  NativeLocationInImage(implementation_method));
  }
}

void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
  const ImageInfo& image_info = GetImageInfo(oat_index);
  // Copy ArtFields and methods to their locations and update the array for convenience.
  for (auto& pair : native_object_relocations_) {
    NativeObjectRelocation& relocation = pair.second;
    // Only work with fields and methods that are in the current oat file.
    if (relocation.oat_index != oat_index) {
      continue;
    }
    auto* dest = image_info.image_->Begin() + relocation.offset;
    DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_);
    DCHECK(!IsInBootImage(pair.first));
    switch (relocation.type) {
      case kNativeObjectRelocationTypeArtField: {
        memcpy(dest, pair.first, sizeof(ArtField));
        reinterpret_cast<ArtField*>(dest)->SetDeclaringClass(
            GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()));
        break;
      }
      case kNativeObjectRelocationTypeRuntimeMethod:
      case kNativeObjectRelocationTypeArtMethodClean:
      case kNativeObjectRelocationTypeArtMethodDirty: {
        CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
                           reinterpret_cast<ArtMethod*>(dest),
                           image_info);
        break;
      }
      // For arrays, copy just the header since the elements will get copied by their corresponding
      // relocations.
      case kNativeObjectRelocationTypeArtFieldArray: {
        memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
        break;
      }
      case kNativeObjectRelocationTypeArtMethodArrayClean:
      case kNativeObjectRelocationTypeArtMethodArrayDirty: {
        size_t size = ArtMethod::Size(target_ptr_size_);
        size_t alignment = ArtMethod::Alignment(target_ptr_size_);
        memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
        // Clear padding to avoid non-deterministic data in the image (and placate valgrind).
        reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
        break;
      }
      case kNativeObjectRelocationTypeDexCacheArray:
        // Nothing to copy here, everything is done in FixupDexCache().
        break;
      case kNativeObjectRelocationTypeIMTable: {
        ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
        ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
        CopyAndFixupImTable(orig_imt, dest_imt);
        break;
      }
      case kNativeObjectRelocationTypeIMTConflictTable: {
        auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
        CopyAndFixupImtConflictTable(
            orig_table,
            new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
        break;
      }
    }
  }
  // Fixup the image method roots.
  auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
  for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
    ArtMethod* method = image_methods_[i];
    CHECK(method != nullptr);
    if (!IsInBootImage(method)) {
      method = NativeLocationInImage(method);
    }
    image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method);
  }
  FixupRootVisitor root_visitor(this);

  // Write the intern table into the image.
  if (image_info.intern_table_bytes_ > 0) {
    const ImageSection& intern_table_section = image_header->GetImageSection(
        ImageHeader::kSectionInternedStrings);
    InternTable* const intern_table = image_info.intern_table_.get();
    uint8_t* const intern_table_memory_ptr =
        image_info.image_->Begin() + intern_table_section.Offset();
    const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
    CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
    // Fixup the pointers in the newly written intern table to contain image addresses.
    InternTable temp_intern_table;
    // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
    // the VisitRoots() will update the memory directly rather than the copies.
    // This also relies on visit roots not doing any verification which could fail after we update
    // the roots to be the image addresses.
    temp_intern_table.AddTableFromMemory(intern_table_memory_ptr);
    CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
    temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
  }
  // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
  // class loaders. Writing multiple class tables into the image is currently unsupported.
  if (image_info.class_table_bytes_ > 0u) {
    const ImageSection& class_table_section = image_header->GetImageSection(
        ImageHeader::kSectionClassTable);
    uint8_t* const class_table_memory_ptr =
        image_info.image_->Begin() + class_table_section.Offset();
    ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);

    ClassTable* table = image_info.class_table_.get();
    CHECK(table != nullptr);
    const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
    CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
    // Fixup the pointers in the newly written class table to contain image addresses. See
    // above comment for intern tables.
    ClassTable temp_class_table;
    temp_class_table.ReadFromMemory(class_table_memory_ptr);
    CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() +
             table->NumZygoteClasses());
    BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor,
                                                                    RootInfo(kRootUnknown));
    temp_class_table.VisitRoots(buffered_visitor);
  }
}

void ImageWriter::CopyAndFixupObjects() {
  gc::Heap* heap = Runtime::Current()->GetHeap();
  heap->VisitObjects(CopyAndFixupObjectsCallback, this);
  // Fix up the object previously had hash codes.
  for (const auto& hash_pair : saved_hashcode_map_) {
    Object* obj = hash_pair.first;
    DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U);
    obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false);
  }
  saved_hashcode_map_.clear();
}

void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
  DCHECK(obj != nullptr);
  DCHECK(arg != nullptr);
  reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj);
}

void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr,
                                    mirror::Class* klass, Bin array_type) {
  CHECK(klass->IsArrayClass());
  CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr;
  // Fixup int and long pointers for the ArtMethod or ArtField arrays.
  const size_t num_elements = arr->GetLength();
  dst->SetClass(GetImageAddress(arr->GetClass()));
  auto* dest_array = down_cast<mirror::PointerArray*>(dst);
  for (size_t i = 0, count = num_elements; i < count; ++i) {
    void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
    if (elem != nullptr && !IsInBootImage(elem)) {
      auto it = native_object_relocations_.find(elem);
      if (UNLIKELY(it == native_object_relocations_.end())) {
        if (it->second.IsArtMethodRelocation()) {
          auto* method = reinterpret_cast<ArtMethod*>(elem);
          LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ "
              << method << " idx=" << i << "/" << num_elements << " with declaring class "
              << PrettyClass(method->GetDeclaringClass());
        } else {
          CHECK_EQ(array_type, kBinArtField);
          auto* field = reinterpret_cast<ArtField*>(elem);
          LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ "
              << field << " idx=" << i << "/" << num_elements << " with declaring class "
              << PrettyClass(field->GetDeclaringClass());
        }
        UNREACHABLE();
      } else {
        ImageInfo& image_info = GetImageInfo(it->second.oat_index);
        elem = image_info.image_begin_ + it->second.offset;
      }
    }
    dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_);
  }
}

void ImageWriter::CopyAndFixupObject(Object* obj) {
  if (IsInBootImage(obj)) {
    return;
  }
  size_t offset = GetImageOffset(obj);
  size_t oat_index = GetOatIndex(obj);
  ImageInfo& image_info = GetImageInfo(oat_index);
  auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset);
  DCHECK_LT(offset, image_info.image_end_);
  const auto* src = reinterpret_cast<const uint8_t*>(obj);

  image_info.image_bitmap_->Set(dst);  // Mark the obj as live.

  const size_t n = obj->SizeOf();
  DCHECK_LE(offset + n, image_info.image_->Size());
  memcpy(dst, src, n);

  // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
  // word.
  const auto it = saved_hashcode_map_.find(obj);
  dst->SetLockWord(it != saved_hashcode_map_.end() ?
      LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
  FixupObject(obj, dst);
}

// Rewrite all the references in the copied object to point to their image address equivalent
class FixupVisitor {
 public:
  FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
  }

  // Ignore class roots since we don't have a way to map them to the destination. These are handled
  // with other logic.
  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
      const {}
  void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}


  void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
      REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
    // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
    // image.
    copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
        offset,
        image_writer_->GetImageAddress(ref));
  }

  // java.lang.ref.Reference visitor.
  void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
      SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
    copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
        mirror::Reference::ReferentOffset(),
        image_writer_->GetImageAddress(ref->GetReferent()));
  }

 protected:
  ImageWriter* const image_writer_;
  mirror::Object* const copy_;
};

class FixupClassVisitor FINAL : public FixupVisitor {
 public:
  FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
  }

  void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
      REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
    DCHECK(obj->IsClass());
    FixupVisitor::operator()(obj, offset, /*is_static*/false);
  }

  void operator()(mirror::Class* klass ATTRIBUTE_UNUSED,
                  mirror::Reference* ref ATTRIBUTE_UNUSED) const
      SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
    LOG(FATAL) << "Reference not expected here.";
  }
};

uintptr_t ImageWriter::NativeOffsetInImage(void* obj) {
  DCHECK(obj != nullptr);
  DCHECK(!IsInBootImage(obj));
  auto it = native_object_relocations_.find(obj);
  CHECK(it != native_object_relocations_.end()) << obj << " spaces "
      << Runtime::Current()->GetHeap()->DumpSpaces();
  const NativeObjectRelocation& relocation = it->second;
  return relocation.offset;
}

template <typename T>
std::string PrettyPrint(T* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
  std::ostringstream oss;
  oss << ptr;
  return oss.str();
}

template <>
std::string PrettyPrint(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) {
  return PrettyMethod(method);
}

template <typename T>
T* ImageWriter::NativeLocationInImage(T* obj) {
  if (obj == nullptr || IsInBootImage(obj)) {
    return obj;
  } else {
    auto it = native_object_relocations_.find(obj);
    CHECK(it != native_object_relocations_.end()) << obj << " " << PrettyPrint(obj)
        << " spaces " << Runtime::Current()->GetHeap()->DumpSpaces();
    const NativeObjectRelocation& relocation = it->second;
    ImageInfo& image_info = GetImageInfo(relocation.oat_index);
    return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
  }
}

template <typename T>
T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) {
  if (obj == nullptr || IsInBootImage(obj)) {
    return obj;
  } else {
    size_t oat_index = GetOatIndexForDexCache(dex_cache);
    ImageInfo& image_info = GetImageInfo(oat_index);
    return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj));
  }
}

class NativeLocationVisitor {
 public:
  explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}

  template <typename T>
  T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
    return image_writer_->NativeLocationInImage(ptr);
  }

 private:
  ImageWriter* const image_writer_;
};

void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
  orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
  FixupClassVisitor visitor(this, copy);
  static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor);

  // Remove the clinitThreadId. This is required for image determinism.
  copy->SetClinitThreadId(static_cast<pid_t>(0));
}

void ImageWriter::FixupObject(Object* orig, Object* copy) {
  DCHECK(orig != nullptr);
  DCHECK(copy != nullptr);
  if (kUseBakerOrBrooksReadBarrier) {
    orig->AssertReadBarrierPointer();
    if (kUseBrooksReadBarrier) {
      // Note the address 'copy' isn't the same as the image address of 'orig'.
      copy->SetReadBarrierPointer(GetImageAddress(orig));
      DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
    }
  }
  auto* klass = orig->GetClass();
  if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
    // Is this a native pointer array?
    auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
    if (it != pointer_arrays_.end()) {
      // Should only need to fixup every pointer array exactly once.
      FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
      pointer_arrays_.erase(it);
      return;
    }
  }
  if (orig->IsClass()) {
    FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
  } else {
    if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
      // Need to go update the ArtMethod.
      auto* dest = down_cast<mirror::AbstractMethod*>(copy);
      auto* src = down_cast<mirror::AbstractMethod*>(orig);
      ArtMethod* src_method = src->GetArtMethod();
      auto it = native_object_relocations_.find(src_method);
      CHECK(it != native_object_relocations_.end())
          << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method);
      dest->SetArtMethod(
          reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset));
    } else if (!klass->IsArrayClass()) {
      ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
      if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) {
        FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
      } else if (klass->IsClassLoaderClass()) {
        mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
        // If src is a ClassLoader, set the class table to null so that it gets recreated by the
        // ClassLoader.
        copy_loader->SetClassTable(nullptr);
        // Also set allocator to null to be safe. The allocator is created when we create the class
        // table. We also never expect to unload things in the image since they are held live as
        // roots.
        copy_loader->SetAllocator(nullptr);
      }
    }
    FixupVisitor visitor(this, copy);
    orig->VisitReferences(visitor, visitor);
  }
}


class ImageAddressVisitor {
 public:
  explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}

  template <typename T>
  T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
    return image_writer_->GetImageAddress(ptr);
  }

 private:
  ImageWriter* const image_writer_;
};


void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache,
                                mirror::DexCache* copy_dex_cache) {
  // Though the DexCache array fields are usually treated as native pointers, we set the full
  // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
  // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
  //     static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
  GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings();
  if (orig_strings != nullptr) {
    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(),
                                               NativeLocationInImage(orig_strings),
                                               /*pointer size*/8u);
    orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache),
                                 ImageAddressVisitor(this));
  }
  GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes();
  if (orig_types != nullptr) {
    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(),
                                               NativeLocationInImage(orig_types),
                                               /*pointer size*/8u);
    orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache),
                                       ImageAddressVisitor(this));
  }
  ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods();
  if (orig_methods != nullptr) {
    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(),
                                               NativeLocationInImage(orig_methods),
                                               /*pointer size*/8u);
    ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache);
    for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) {
      ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_);
      // NativeLocationInImage also handles runtime methods since these have relocation info.
      ArtMethod* copy = NativeLocationInImage(orig);
      mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_);
    }
  }
  ArtField** orig_fields = orig_dex_cache->GetResolvedFields();
  if (orig_fields != nullptr) {
    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(),
                                               NativeLocationInImage(orig_fields),
                                               /*pointer size*/8u);
    ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache);
    for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) {
      ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_);
      ArtField* copy = NativeLocationInImage(orig);
      mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_);
    }
  }

  // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
  // compiler pointers in here will make the output non-deterministic.
  copy_dex_cache->SetDexFile(nullptr);
}

const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const {
  DCHECK_LT(type, kOatAddressCount);
  // If we are compiling an app image, we need to use the stubs of the boot image.
  if (compile_app_image_) {
    // Use the current image pointers.
    const std::vector<gc::space::ImageSpace*>& image_spaces =
        Runtime::Current()->GetHeap()->GetBootImageSpaces();
    DCHECK(!image_spaces.empty());
    const OatFile* oat_file = image_spaces[0]->GetOatFile();
    CHECK(oat_file != nullptr);
    const OatHeader& header = oat_file->GetOatHeader();
    switch (type) {
      // TODO: We could maybe clean this up if we stored them in an array in the oat header.
      case kOatAddressQuickGenericJNITrampoline:
        return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
      case kOatAddressInterpreterToInterpreterBridge:
        return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge());
      case kOatAddressInterpreterToCompiledCodeBridge:
        return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge());
      case kOatAddressJNIDlsymLookup:
        return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
      case kOatAddressQuickIMTConflictTrampoline:
        return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
      case kOatAddressQuickResolutionTrampoline:
        return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
      case kOatAddressQuickToInterpreterBridge:
        return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
      default:
        UNREACHABLE();
    }
  }
  const ImageInfo& primary_image_info = GetImageInfo(0);
  return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info);
}

const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
                                         const ImageInfo& image_info,
                                         bool* quick_is_interpreted) {
  DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method);
  DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method);
  DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method);
  DCHECK(method->IsInvokable()) << PrettyMethod(method);
  DCHECK(!IsInBootImage(method)) << PrettyMethod(method);

  // Use original code if it exists. Otherwise, set the code pointer to the resolution
  // trampoline.

  // Quick entrypoint:
  const void* quick_oat_entry_point =
      method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
  const uint8_t* quick_code;

  if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) {
    DCHECK(method->IsCopied());
    // If the code is not in the oat file corresponding to this image (e.g. default methods)
    quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
  } else {
    uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
    quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
  }

  *quick_is_interpreted = false;
  if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
      method->GetDeclaringClass()->IsInitialized())) {
    // We have code for a non-static or initialized method, just use the code.
  } else if (quick_code == nullptr && method->IsNative() &&
      (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
    // Non-static or initialized native method missing compiled code, use generic JNI version.
    quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline);
  } else if (quick_code == nullptr && !method->IsNative()) {
    // We don't have code at all for a non-native method, use the interpreter.
    quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge);
    *quick_is_interpreted = true;
  } else {
    CHECK(!method->GetDeclaringClass()->IsInitialized());
    // We have code for a static method, but need to go through the resolution stub for class
    // initialization.
    quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline);
  }
  if (!IsInBootOatFile(quick_code)) {
    // DCHECK_GE(quick_code, oat_data_begin_);
  }
  return quick_code;
}

void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
                                     ArtMethod* copy,
                                     const ImageInfo& image_info) {
  memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));

  copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked()));
  ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_);
  copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_);
  GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_);
  copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_);

  // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
  // oat_begin_

  // The resolution method has a special trampoline to call.
  Runtime* runtime = Runtime::Current();
  if (orig->IsRuntimeMethod()) {
    ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
    if (orig_table != nullptr) {
      // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
      copy->SetEntryPointFromQuickCompiledCodePtrSize(
          GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_);
      copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_);
    } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
      copy->SetEntryPointFromQuickCompiledCodePtrSize(
          GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_);
    } else {
      bool found_one = false;
      for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) {
        auto idx = static_cast<Runtime::CalleeSaveType>(i);
        if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
          found_one = true;
          break;
        }
      }
      CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig);
      CHECK(copy->IsRuntimeMethod());
    }
  } else {
    // We assume all methods have code. If they don't currently then we set them to the use the
    // resolution trampoline. Abstract methods never have code and so we need to make sure their
    // use results in an AbstractMethodError. We use the interpreter to achieve this.
    if (UNLIKELY(!orig->IsInvokable())) {
      copy->SetEntryPointFromQuickCompiledCodePtrSize(
          GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_);
    } else {
      bool quick_is_interpreted;
      const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
      copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);

      // JNI entrypoint:
      if (orig->IsNative()) {
        // The native method's pointer is set to a stub to lookup via dlsym.
        // Note this is not the code_ pointer, that is handled above.
        copy->SetEntryPointFromJniPtrSize(
            GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_);
      }
    }
  }
}

size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const {
  DCHECK_LE(up_to, kBinSize);
  return std::accumulate(&image_info.bin_slot_sizes_[0],
                         &image_info.bin_slot_sizes_[up_to],
                         /*init*/0);
}

ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
  // These values may need to get updated if more bins are added to the enum Bin
  static_assert(kBinBits == 3, "wrong number of bin bits");
  static_assert(kBinShift == 27, "wrong number of shift");
  static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");

  DCHECK_LT(GetBin(), kBinSize);
  DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
}

ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
    : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
  DCHECK_EQ(index, GetIndex());
}

ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
  return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
}

uint32_t ImageWriter::BinSlot::GetIndex() const {
  return lockword_ & ~kBinMask;
}

ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
  switch (type) {
    case kNativeObjectRelocationTypeArtField:
    case kNativeObjectRelocationTypeArtFieldArray:
      return kBinArtField;
    case kNativeObjectRelocationTypeArtMethodClean:
    case kNativeObjectRelocationTypeArtMethodArrayClean:
      return kBinArtMethodClean;
    case kNativeObjectRelocationTypeArtMethodDirty:
    case kNativeObjectRelocationTypeArtMethodArrayDirty:
      return kBinArtMethodDirty;
    case kNativeObjectRelocationTypeDexCacheArray:
      return kBinDexCacheArray;
    case kNativeObjectRelocationTypeRuntimeMethod:
      return kBinRuntimeMethod;
    case kNativeObjectRelocationTypeIMTable:
      return kBinImTable;
    case kNativeObjectRelocationTypeIMTConflictTable:
      return kBinIMTConflictTable;
  }
  UNREACHABLE();
}

size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
  if (compile_app_image_) {
    return GetDefaultOatIndex();
  } else {
    mirror::DexCache* dex_cache =
        obj->IsDexCache() ? obj->AsDexCache()
                          : obj->IsClass() ? obj->AsClass()->GetDexCache()
                                           : obj->GetClass()->GetDexCache();
    return GetOatIndexForDexCache(dex_cache);
  }
}

size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
  if (compile_app_image_) {
    return GetDefaultOatIndex();
  } else {
    auto it = dex_file_oat_index_map_.find(dex_file);
    DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
    return it->second;
  }
}

size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const {
  if (dex_cache == nullptr) {
    return GetDefaultOatIndex();
  } else {
    return GetOatIndexForDexFile(dex_cache->GetDexFile());
  }
}

void ImageWriter::UpdateOatFileLayout(size_t oat_index,
                                      size_t oat_loaded_size,
                                      size_t oat_data_offset,
                                      size_t oat_data_size) {
  const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
  for (const ImageInfo& info : image_infos_) {
    DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
  }
  DCHECK(images_end != nullptr);  // Image space must be ready.

  ImageInfo& cur_image_info = GetImageInfo(oat_index);
  cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
  cur_image_info.oat_loaded_size_ = oat_loaded_size;
  cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
  cur_image_info.oat_size_ = oat_data_size;

  if (compile_app_image_) {
    CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
    return;
  }

  // Update the oat_offset of the next image info.
  if (oat_index + 1u != oat_filenames_.size()) {
    // There is a following one.
    ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
    next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
  }
}

void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
  ImageInfo& cur_image_info = GetImageInfo(oat_index);
  cur_image_info.oat_checksum_ = oat_header.GetChecksum();

  if (oat_index == GetDefaultOatIndex()) {
    // Primary oat file, read the trampolines.
    cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] =
        oat_header.GetInterpreterToInterpreterBridgeOffset();
    cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] =
        oat_header.GetInterpreterToCompiledCodeBridgeOffset();
    cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] =
        oat_header.GetJniDlsymLookupOffset();
    cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] =
        oat_header.GetQuickGenericJniTrampolineOffset();
    cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] =
        oat_header.GetQuickImtConflictTrampolineOffset();
    cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] =
        oat_header.GetQuickResolutionTrampolineOffset();
    cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] =
        oat_header.GetQuickToInterpreterBridgeOffset();
  }
}

ImageWriter::ImageWriter(
    const CompilerDriver& compiler_driver,
    uintptr_t image_begin,
    bool compile_pic,
    bool compile_app_image,
    ImageHeader::StorageMode image_storage_mode,
    const std::vector<const char*>& oat_filenames,
    const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map)
    : compiler_driver_(compiler_driver),
      global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
      image_objects_offset_begin_(0),
      compile_pic_(compile_pic),
      compile_app_image_(compile_app_image),
      target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())),
      image_infos_(oat_filenames.size()),
      dirty_methods_(0u),
      clean_methods_(0u),
      image_storage_mode_(image_storage_mode),
      oat_filenames_(oat_filenames),
      dex_file_oat_index_map_(dex_file_oat_index_map) {
  CHECK_NE(image_begin, 0U);
  std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
  CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
      << "Compiling a boot image should occur iff there are no boot image spaces loaded";
}

ImageWriter::ImageInfo::ImageInfo()
    : intern_table_(new InternTable),
      class_table_(new ClassTable) {}

}  // namespace art