summaryrefslogtreecommitdiffstats
path: root/compiler/dex/quick/x86/utility_x86.cc
blob: d03d4f8577aa82e94b4d8f6e181193106113552e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "codegen_x86.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "x86_lir.h"

namespace art {

/* This file contains codegen for the X86 ISA */

LIR* X86Mir2Lir::OpFpRegCopy(int r_dest, int r_src) {
  int opcode;
  /* must be both DOUBLE or both not DOUBLE */
  DCHECK_EQ(X86_DOUBLEREG(r_dest), X86_DOUBLEREG(r_src));
  if (X86_DOUBLEREG(r_dest)) {
    opcode = kX86MovsdRR;
  } else {
    if (X86_SINGLEREG(r_dest)) {
      if (X86_SINGLEREG(r_src)) {
        opcode = kX86MovssRR;
      } else {  // Fpr <- Gpr
        opcode = kX86MovdxrRR;
      }
    } else {  // Gpr <- Fpr
      DCHECK(X86_SINGLEREG(r_src));
      opcode = kX86MovdrxRR;
    }
  }
  DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
  LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest, r_src);
  if (r_dest == r_src) {
    res->flags.is_nop = true;
  }
  return res;
}

bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
  return true;
}

bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
  return false;
}

bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
  return true;
}

bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
  return false;  // TUNING
}

/*
 * Load a immediate using a shortcut if possible; otherwise
 * grab from the per-translation literal pool.  If target is
 * a high register, build constant into a low register and copy.
 *
 * No additional register clobbering operation performed. Use this version when
 * 1) r_dest is freshly returned from AllocTemp or
 * 2) The codegen is under fixed register usage
 */
LIR* X86Mir2Lir::LoadConstantNoClobber(int r_dest, int value) {
  int r_dest_save = r_dest;
  if (X86_FPREG(r_dest)) {
    if (value == 0) {
      return NewLIR2(kX86XorpsRR, r_dest, r_dest);
    }
    DCHECK(X86_SINGLEREG(r_dest));
    r_dest = AllocTemp();
  }

  LIR *res;
  if (value == 0) {
    res = NewLIR2(kX86Xor32RR, r_dest, r_dest);
  } else {
    // Note, there is no byte immediate form of a 32 bit immediate move.
    res = NewLIR2(kX86Mov32RI, r_dest, value);
  }

  if (X86_FPREG(r_dest_save)) {
    NewLIR2(kX86MovdxrRR, r_dest_save, r_dest);
    FreeTemp(r_dest);
  }

  return res;
}

LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
  LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
  res->target = target;
  return res;
}

LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
  LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
                        X86ConditionEncoding(cc));
  branch->target = target;
  return branch;
}

LIR* X86Mir2Lir::OpReg(OpKind op, int r_dest_src) {
  X86OpCode opcode = kX86Bkpt;
  switch (op) {
    case kOpNeg: opcode = kX86Neg32R; break;
    case kOpNot: opcode = kX86Not32R; break;
    case kOpBlx: opcode = kX86CallR; break;
    default:
      LOG(FATAL) << "Bad case in OpReg " << op;
  }
  return NewLIR1(opcode, r_dest_src);
}

LIR* X86Mir2Lir::OpRegImm(OpKind op, int r_dest_src1, int value) {
  X86OpCode opcode = kX86Bkpt;
  bool byte_imm = IS_SIMM8(value);
  DCHECK(!X86_FPREG(r_dest_src1));
  switch (op) {
    case kOpLsl: opcode = kX86Sal32RI; break;
    case kOpLsr: opcode = kX86Shr32RI; break;
    case kOpAsr: opcode = kX86Sar32RI; break;
    case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
    case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
    case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
    // case kOpSbb: opcode = kX86Sbb32RI; break;
    case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
    case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
    case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
    case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
    case kOpMov: return LoadConstantNoClobber(r_dest_src1, value);
    case kOpMul:
      opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
      return NewLIR3(opcode, r_dest_src1, r_dest_src1, value);
    default:
      LOG(FATAL) << "Bad case in OpRegImm " << op;
  }
  return NewLIR2(opcode, r_dest_src1, value);
}

LIR* X86Mir2Lir::OpRegReg(OpKind op, int r_dest_src1, int r_src2) {
    X86OpCode opcode = kX86Nop;
    bool src2_must_be_cx = false;
    switch (op) {
        // X86 unary opcodes
      case kOpMvn:
        OpRegCopy(r_dest_src1, r_src2);
        return OpReg(kOpNot, r_dest_src1);
      case kOpNeg:
        OpRegCopy(r_dest_src1, r_src2);
        return OpReg(kOpNeg, r_dest_src1);
        // X86 binary opcodes
      case kOpSub: opcode = kX86Sub32RR; break;
      case kOpSbc: opcode = kX86Sbb32RR; break;
      case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
      case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
      case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
      case kOpMov: opcode = kX86Mov32RR; break;
      case kOpCmp: opcode = kX86Cmp32RR; break;
      case kOpAdd: opcode = kX86Add32RR; break;
      case kOpAdc: opcode = kX86Adc32RR; break;
      case kOpAnd: opcode = kX86And32RR; break;
      case kOpOr:  opcode = kX86Or32RR; break;
      case kOpXor: opcode = kX86Xor32RR; break;
      case kOp2Byte:
        // Use shifts instead of a byte operand if the source can't be byte accessed.
        if (r_src2 >= 4) {
          NewLIR2(kX86Mov32RR, r_dest_src1, r_src2);
          NewLIR2(kX86Sal32RI, r_dest_src1, 24);
          return NewLIR2(kX86Sar32RI, r_dest_src1, 24);
        } else {
          opcode = kX86Movsx8RR;
        }
        break;
      case kOp2Short: opcode = kX86Movsx16RR; break;
      case kOp2Char: opcode = kX86Movzx16RR; break;
      case kOpMul: opcode = kX86Imul32RR; break;
      default:
        LOG(FATAL) << "Bad case in OpRegReg " << op;
        break;
    }
    CHECK(!src2_must_be_cx || r_src2 == rCX);
    return NewLIR2(opcode, r_dest_src1, r_src2);
}

LIR* X86Mir2Lir::OpRegMem(OpKind op, int r_dest, int rBase,
              int offset) {
  X86OpCode opcode = kX86Nop;
  switch (op) {
      // X86 binary opcodes
    case kOpSub: opcode = kX86Sub32RM; break;
    case kOpMov: opcode = kX86Mov32RM; break;
    case kOpCmp: opcode = kX86Cmp32RM; break;
    case kOpAdd: opcode = kX86Add32RM; break;
    case kOpAnd: opcode = kX86And32RM; break;
    case kOpOr:  opcode = kX86Or32RM; break;
    case kOpXor: opcode = kX86Xor32RM; break;
    case kOp2Byte: opcode = kX86Movsx8RM; break;
    case kOp2Short: opcode = kX86Movsx16RM; break;
    case kOp2Char: opcode = kX86Movzx16RM; break;
    case kOpMul:
    default:
      LOG(FATAL) << "Bad case in OpRegMem " << op;
      break;
  }
  return NewLIR3(opcode, r_dest, rBase, offset);
}

LIR* X86Mir2Lir::OpRegRegReg(OpKind op, int r_dest, int r_src1,
                 int r_src2) {
  if (r_dest != r_src1 && r_dest != r_src2) {
    if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
      if (r_src1 == r_src2) {
        OpRegCopy(r_dest, r_src1);
        return OpRegImm(kOpLsl, r_dest, 1);
      } else if (r_src1 != rBP) {
        return NewLIR5(kX86Lea32RA, r_dest, r_src1 /* base */,
                       r_src2 /* index */, 0 /* scale */, 0 /* disp */);
      } else {
        return NewLIR5(kX86Lea32RA, r_dest, r_src2 /* base */,
                       r_src1 /* index */, 0 /* scale */, 0 /* disp */);
      }
    } else {
      OpRegCopy(r_dest, r_src1);
      return OpRegReg(op, r_dest, r_src2);
    }
  } else if (r_dest == r_src1) {
    return OpRegReg(op, r_dest, r_src2);
  } else {  // r_dest == r_src2
    switch (op) {
      case kOpSub:  // non-commutative
        OpReg(kOpNeg, r_dest);
        op = kOpAdd;
        break;
      case kOpSbc:
      case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
        int t_reg = AllocTemp();
        OpRegCopy(t_reg, r_src1);
        OpRegReg(op, t_reg, r_src2);
        LIR* res = OpRegCopy(r_dest, t_reg);
        FreeTemp(t_reg);
        return res;
      }
      case kOpAdd:  // commutative
      case kOpOr:
      case kOpAdc:
      case kOpAnd:
      case kOpXor:
        break;
      default:
        LOG(FATAL) << "Bad case in OpRegRegReg " << op;
    }
    return OpRegReg(op, r_dest, r_src1);
  }
}

LIR* X86Mir2Lir::OpRegRegImm(OpKind op, int r_dest, int r_src,
                 int value) {
  if (op == kOpMul) {
    X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
    return NewLIR3(opcode, r_dest, r_src, value);
  } else if (op == kOpAnd) {
    if (value == 0xFF && r_src < 4) {
      return NewLIR2(kX86Movzx8RR, r_dest, r_src);
    } else if (value == 0xFFFF) {
      return NewLIR2(kX86Movzx16RR, r_dest, r_src);
    }
  }
  if (r_dest != r_src) {
    if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
      // TODO: fix bug in LEA encoding when disp == 0
      return NewLIR5(kX86Lea32RA, r_dest,  r5sib_no_base /* base */,
                     r_src /* index */, value /* scale */, 0 /* disp */);
    } else if (op == kOpAdd) {  // lea add special case
      return NewLIR5(kX86Lea32RA, r_dest, r_src /* base */,
                     r4sib_no_index /* index */, 0 /* scale */, value /* disp */);
    }
    OpRegCopy(r_dest, r_src);
  }
  return OpRegImm(op, r_dest, value);
}

LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset thread_offset) {
  X86OpCode opcode = kX86Bkpt;
  switch (op) {
    case kOpBlx: opcode = kX86CallT;  break;
    case kOpBx: opcode = kX86JmpT;  break;
    default:
      LOG(FATAL) << "Bad opcode: " << op;
      break;
  }
  return NewLIR1(opcode, thread_offset.Int32Value());
}

LIR* X86Mir2Lir::OpMem(OpKind op, int rBase, int disp) {
  X86OpCode opcode = kX86Bkpt;
  switch (op) {
    case kOpBlx: opcode = kX86CallM;  break;
    default:
      LOG(FATAL) << "Bad opcode: " << op;
      break;
  }
  return NewLIR2(opcode, rBase, disp);
}

LIR* X86Mir2Lir::LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) {
    int32_t val_lo = Low32Bits(value);
    int32_t val_hi = High32Bits(value);
    LIR *res;
    if (X86_FPREG(r_dest_lo)) {
      DCHECK(X86_FPREG(r_dest_hi));  // ignore r_dest_hi
      if (value == 0) {
        return NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
      } else {
        if (val_lo == 0) {
          res = NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
        } else {
          res = LoadConstantNoClobber(r_dest_lo, val_lo);
        }
        if (val_hi != 0) {
          LoadConstantNoClobber(r_dest_hi, val_hi);
          NewLIR2(kX86PsllqRI, r_dest_hi, 32);
          NewLIR2(kX86OrpsRR, r_dest_lo, r_dest_hi);
        }
      }
    } else {
      res = LoadConstantNoClobber(r_dest_lo, val_lo);
      LoadConstantNoClobber(r_dest_hi, val_hi);
    }
    return res;
}

LIR* X86Mir2Lir::LoadBaseIndexedDisp(int rBase, int r_index, int scale,
                                     int displacement, int r_dest, int r_dest_hi, OpSize size,
                                     int s_reg) {
  LIR *load = NULL;
  LIR *load2 = NULL;
  bool is_array = r_index != INVALID_REG;
  bool pair = false;
  bool is64bit = false;
  X86OpCode opcode = kX86Nop;
  switch (size) {
    case kLong:
    case kDouble:
      is64bit = true;
      if (X86_FPREG(r_dest)) {
        opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
        if (X86_SINGLEREG(r_dest)) {
          DCHECK(X86_FPREG(r_dest_hi));
          DCHECK_EQ(r_dest, (r_dest_hi - 1));
          r_dest = S2d(r_dest, r_dest_hi);
        }
        r_dest_hi = r_dest + 1;
      } else {
        pair = true;
        opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
      }
      // TODO: double store is to unaligned address
      DCHECK_EQ((displacement & 0x3), 0);
      break;
    case kWord:
    case kSingle:
      opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
      if (X86_FPREG(r_dest)) {
        opcode = is_array ? kX86MovssRA : kX86MovssRM;
        DCHECK(X86_SINGLEREG(r_dest));
      }
      DCHECK_EQ((displacement & 0x3), 0);
      break;
    case kUnsignedHalf:
      opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
      DCHECK_EQ((displacement & 0x1), 0);
      break;
    case kSignedHalf:
      opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
      DCHECK_EQ((displacement & 0x1), 0);
      break;
    case kUnsignedByte:
      opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
      break;
    case kSignedByte:
      opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
      break;
    default:
      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
  }

  if (!is_array) {
    if (!pair) {
      load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
    } else {
      if (rBase == r_dest) {
        load2 = NewLIR3(opcode, r_dest_hi, rBase,
                        displacement + HIWORD_OFFSET);
        load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
      } else {
        load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
        load2 = NewLIR3(opcode, r_dest_hi, rBase,
                        displacement + HIWORD_OFFSET);
      }
    }
    if (rBase == rX86_SP) {
      AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
                              true /* is_load */, is64bit);
      if (pair) {
        AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
                                true /* is_load */, is64bit);
      }
    }
  } else {
    if (!pair) {
      load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
                     displacement + LOWORD_OFFSET);
    } else {
      if (rBase == r_dest) {
        load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
                        displacement + HIWORD_OFFSET);
        load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
                       displacement + LOWORD_OFFSET);
      } else {
        load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
                       displacement + LOWORD_OFFSET);
        load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
                        displacement + HIWORD_OFFSET);
      }
    }
  }

  return load;
}

/* Load value from base + scaled index. */
LIR* X86Mir2Lir::LoadBaseIndexed(int rBase,
                     int r_index, int r_dest, int scale, OpSize size) {
  return LoadBaseIndexedDisp(rBase, r_index, scale, 0,
                             r_dest, INVALID_REG, size, INVALID_SREG);
}

LIR* X86Mir2Lir::LoadBaseDisp(int rBase, int displacement,
                  int r_dest, OpSize size, int s_reg) {
  return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
                             r_dest, INVALID_REG, size, s_reg);
}

LIR* X86Mir2Lir::LoadBaseDispWide(int rBase, int displacement,
                      int r_dest_lo, int r_dest_hi, int s_reg) {
  return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
                             r_dest_lo, r_dest_hi, kLong, s_reg);
}

LIR* X86Mir2Lir::StoreBaseIndexedDisp(int rBase, int r_index, int scale,
                                      int displacement, int r_src, int r_src_hi, OpSize size,
                                      int s_reg) {
  LIR *store = NULL;
  LIR *store2 = NULL;
  bool is_array = r_index != INVALID_REG;
  bool pair = false;
  bool is64bit = false;
  X86OpCode opcode = kX86Nop;
  switch (size) {
    case kLong:
    case kDouble:
      is64bit = true;
      if (X86_FPREG(r_src)) {
        opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
        if (X86_SINGLEREG(r_src)) {
          DCHECK(X86_FPREG(r_src_hi));
          DCHECK_EQ(r_src, (r_src_hi - 1));
          r_src = S2d(r_src, r_src_hi);
        }
        r_src_hi = r_src + 1;
      } else {
        pair = true;
        opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
      }
      // TODO: double store is to unaligned address
      DCHECK_EQ((displacement & 0x3), 0);
      break;
    case kWord:
    case kSingle:
      opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
      if (X86_FPREG(r_src)) {
        opcode = is_array ? kX86MovssAR : kX86MovssMR;
        DCHECK(X86_SINGLEREG(r_src));
      }
      DCHECK_EQ((displacement & 0x3), 0);
      break;
    case kUnsignedHalf:
    case kSignedHalf:
      opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
      DCHECK_EQ((displacement & 0x1), 0);
      break;
    case kUnsignedByte:
    case kSignedByte:
      opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
      break;
    default:
      LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
  }

  if (!is_array) {
    if (!pair) {
      store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
    } else {
      store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
      store2 = NewLIR3(opcode, rBase, displacement + HIWORD_OFFSET, r_src_hi);
    }
    if (rBase == rX86_SP) {
      AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
                              false /* is_load */, is64bit);
      if (pair) {
        AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
                                false /* is_load */, is64bit);
      }
    }
  } else {
    if (!pair) {
      store = NewLIR5(opcode, rBase, r_index, scale,
                      displacement + LOWORD_OFFSET, r_src);
    } else {
      store = NewLIR5(opcode, rBase, r_index, scale,
                      displacement + LOWORD_OFFSET, r_src);
      store2 = NewLIR5(opcode, rBase, r_index, scale,
                       displacement + HIWORD_OFFSET, r_src_hi);
    }
  }

  return store;
}

/* store value base base + scaled index. */
LIR* X86Mir2Lir::StoreBaseIndexed(int rBase, int r_index, int r_src,
                      int scale, OpSize size) {
  return StoreBaseIndexedDisp(rBase, r_index, scale, 0,
                              r_src, INVALID_REG, size, INVALID_SREG);
}

LIR* X86Mir2Lir::StoreBaseDisp(int rBase, int displacement,
                               int r_src, OpSize size) {
    return StoreBaseIndexedDisp(rBase, INVALID_REG, 0,
                                displacement, r_src, INVALID_REG, size,
                                INVALID_SREG);
}

LIR* X86Mir2Lir::StoreBaseDispWide(int rBase, int displacement,
                                   int r_src_lo, int r_src_hi) {
  return StoreBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
                              r_src_lo, r_src_hi, kLong, INVALID_SREG);
}

}  // namespace art