/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "abstract_method.h" #include "abstract_method-inl.h" #include "base/stringpiece.h" #include "class-inl.h" #include "dex_file-inl.h" #include "gc/accounting/card_table-inl.h" #include "interpreter/interpreter.h" #include "jni_internal.h" #include "object-inl.h" #include "object_array.h" #include "object_array-inl.h" #include "string.h" #include "object_utils.h" namespace art { namespace mirror { extern "C" void art_portable_invoke_stub(AbstractMethod*, uint32_t*, uint32_t, Thread*, JValue*, char); extern "C" void art_quick_invoke_stub(AbstractMethod*, uint32_t*, uint32_t, Thread*, JValue*, char); // TODO: get global references for these Class* AbstractMethod::java_lang_reflect_Constructor_ = NULL; Class* AbstractMethod::java_lang_reflect_Method_ = NULL; InvokeType AbstractMethod::GetInvokeType() const { // TODO: kSuper? if (GetDeclaringClass()->IsInterface()) { return kInterface; } else if (IsStatic()) { return kStatic; } else if (IsDirect()) { return kDirect; } else { return kVirtual; } } void AbstractMethod::SetClasses(Class* java_lang_reflect_Constructor, Class* java_lang_reflect_Method) { CHECK(java_lang_reflect_Constructor_ == NULL); CHECK(java_lang_reflect_Constructor != NULL); java_lang_reflect_Constructor_ = java_lang_reflect_Constructor; CHECK(java_lang_reflect_Method_ == NULL); CHECK(java_lang_reflect_Method != NULL); java_lang_reflect_Method_ = java_lang_reflect_Method; } void AbstractMethod::ResetClasses() { CHECK(java_lang_reflect_Constructor_ != NULL); java_lang_reflect_Constructor_ = NULL; CHECK(java_lang_reflect_Method_ != NULL); java_lang_reflect_Method_ = NULL; } void AbstractMethod::SetDexCacheStrings(ObjectArray* new_dex_cache_strings) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_strings_), new_dex_cache_strings, false); } void AbstractMethod::SetDexCacheResolvedMethods(ObjectArray* new_dex_cache_methods) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_methods_), new_dex_cache_methods, false); } void AbstractMethod::SetDexCacheResolvedTypes(ObjectArray* new_dex_cache_classes) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_types_), new_dex_cache_classes, false); } void AbstractMethod::SetDexCacheInitializedStaticStorage(ObjectArray* new_value) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_initialized_static_storage_), new_value, false); } size_t AbstractMethod::NumArgRegisters(const StringPiece& shorty) { CHECK_LE(1, shorty.length()); uint32_t num_registers = 0; for (int i = 1; i < shorty.length(); ++i) { char ch = shorty[i]; if (ch == 'D' || ch == 'J') { num_registers += 2; } else { num_registers += 1; } } return num_registers; } bool AbstractMethod::IsProxyMethod() const { return GetDeclaringClass()->IsProxyClass(); } AbstractMethod* AbstractMethod::FindOverriddenMethod() const { if (IsStatic()) { return NULL; } Class* declaring_class = GetDeclaringClass(); Class* super_class = declaring_class->GetSuperClass(); uint16_t method_index = GetMethodIndex(); ObjectArray* super_class_vtable = super_class->GetVTable(); AbstractMethod* result = NULL; // Did this method override a super class method? If so load the result from the super class' // vtable if (super_class_vtable != NULL && method_index < super_class_vtable->GetLength()) { result = super_class_vtable->Get(method_index); } else { // Method didn't override superclass method so search interfaces if (IsProxyMethod()) { result = GetDexCacheResolvedMethods()->Get(GetDexMethodIndex()); CHECK_EQ(result, Runtime::Current()->GetClassLinker()->FindMethodForProxy(GetDeclaringClass(), this)); } else { MethodHelper mh(this); MethodHelper interface_mh; IfTable* iftable = GetDeclaringClass()->GetIfTable(); for (size_t i = 0; i < iftable->Count() && result == NULL; i++) { Class* interface = iftable->GetInterface(i); for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) { AbstractMethod* interface_method = interface->GetVirtualMethod(j); interface_mh.ChangeMethod(interface_method); if (mh.HasSameNameAndSignature(&interface_mh)) { result = interface_method; break; } } } } } #ifndef NDEBUG MethodHelper result_mh(result); DCHECK(result == NULL || MethodHelper(this).HasSameNameAndSignature(&result_mh)); #endif return result; } uintptr_t AbstractMethod::NativePcOffset(const uintptr_t pc) const { const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(this); return pc - reinterpret_cast(code); } // Find the lowest-address native safepoint pc for a given dex pc uintptr_t AbstractMethod::ToFirstNativeSafepointPc(const uint32_t dex_pc) const { #if !defined(ART_USE_PORTABLE_COMPILER) const uint32_t* mapping_table = GetPcToDexMappingTable(); if (mapping_table == NULL) { DCHECK(IsNative() || IsCalleeSaveMethod() || IsProxyMethod()) << PrettyMethod(this); return DexFile::kDexNoIndex; // Special no mapping case } size_t mapping_table_length = GetPcToDexMappingTableLength(); for (size_t i = 0; i < mapping_table_length; i += 2) { if (mapping_table[i + 1] == dex_pc) { const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(this); return mapping_table[i] + reinterpret_cast(code); } } LOG(FATAL) << "Failed to find native offset for dex pc 0x" << std::hex << dex_pc << " in " << PrettyMethod(this); return 0; #else // Compiler LLVM doesn't use the machine pc, we just use dex pc instead. return static_cast(dex_pc); #endif } uint32_t AbstractMethod::ToDexPc(const uintptr_t pc) const { #if !defined(ART_USE_PORTABLE_COMPILER) const uint32_t* mapping_table = GetPcToDexMappingTable(); if (mapping_table == NULL) { DCHECK(IsNative() || IsCalleeSaveMethod() || IsProxyMethod()) << PrettyMethod(this); return DexFile::kDexNoIndex; // Special no mapping case } size_t mapping_table_length = GetPcToDexMappingTableLength(); const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(this); uint32_t sought_offset = pc - reinterpret_cast(code); for (size_t i = 0; i < mapping_table_length; i += 2) { if (mapping_table[i] == sought_offset) { return mapping_table[i + 1]; } } LOG(FATAL) << "Failed to find Dex offset for PC offset " << reinterpret_cast(sought_offset) << "(PC " << reinterpret_cast(pc) << ", code=" << code << ") in " << PrettyMethod(this); return DexFile::kDexNoIndex; #else // Compiler LLVM doesn't use the machine pc, we just use dex pc instead. return static_cast(pc); #endif } uintptr_t AbstractMethod::ToNativePc(const uint32_t dex_pc) const { const uint32_t* mapping_table = GetDexToPcMappingTable(); if (mapping_table == NULL) { DCHECK_EQ(dex_pc, 0U); return 0; // Special no mapping/pc == 0 case } size_t mapping_table_length = GetDexToPcMappingTableLength(); for (size_t i = 0; i < mapping_table_length; i += 2) { uint32_t map_offset = mapping_table[i]; uint32_t map_dex_offset = mapping_table[i + 1]; if (map_dex_offset == dex_pc) { const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(this); return reinterpret_cast(code) + map_offset; } } LOG(FATAL) << "Looking up Dex PC not contained in method, 0x" << std::hex << dex_pc << " in " << PrettyMethod(this); return 0; } uint32_t AbstractMethod::FindCatchBlock(Class* exception_type, uint32_t dex_pc) const { MethodHelper mh(this); const DexFile::CodeItem* code_item = mh.GetCodeItem(); // Iterate over the catch handlers associated with dex_pc for (CatchHandlerIterator it(*code_item, dex_pc); it.HasNext(); it.Next()) { uint16_t iter_type_idx = it.GetHandlerTypeIndex(); // Catch all case if (iter_type_idx == DexFile::kDexNoIndex16) { return it.GetHandlerAddress(); } // Does this catch exception type apply? Class* iter_exception_type = mh.GetDexCacheResolvedType(iter_type_idx); if (iter_exception_type == NULL) { // The verifier should take care of resolving all exception classes early LOG(WARNING) << "Unresolved exception class when finding catch block: " << mh.GetTypeDescriptorFromTypeIdx(iter_type_idx); } else if (iter_exception_type->IsAssignableFrom(exception_type)) { return it.GetHandlerAddress(); } } // Handler not found return DexFile::kDexNoIndex; } void AbstractMethod::Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result, char result_type) { if (kIsDebugBuild) { self->AssertThreadSuspensionIsAllowable(); CHECK_EQ(kRunnable, self->GetState()); } // Push a transition back into managed code onto the linked list in thread. ManagedStack fragment; self->PushManagedStackFragment(&fragment); Runtime* runtime = Runtime::Current(); // Call the invoke stub, passing everything as arguments. if (UNLIKELY(!runtime->IsStarted())){ LOG(INFO) << "Not invoking " << PrettyMethod(this) << " for a runtime that isn't started"; if (result != NULL) { result->SetJ(0); } } else { const bool kLogInvocationStartAndReturn = false; if (GetEntryPointFromCompiledCode() != NULL) { if (kLogInvocationStartAndReturn) { LOG(INFO) << StringPrintf("Invoking '%s' code=%p", PrettyMethod(this).c_str(), GetEntryPointFromCompiledCode()); } #ifdef ART_USE_PORTABLE_COMPILER (*art_portable_invoke_stub)(this, args, args_size, self, result, result_type); #else (*art_quick_invoke_stub)(this, args, args_size, self, result, result_type); #endif if (UNLIKELY(reinterpret_cast(self->GetException(NULL)) == -1)) { // Unusual case where we were running LLVM generated code and an // exception was thrown to force the activations to be removed from the // stack. Continue execution in the interpreter. self->ClearException(); ShadowFrame* shadow_frame = self->GetAndClearDeoptimizationShadowFrame(result); self->SetTopOfStack(NULL, 0); self->SetTopOfShadowStack(shadow_frame); interpreter::EnterInterpreterFromDeoptimize(self, shadow_frame, result); } if (kLogInvocationStartAndReturn) { LOG(INFO) << StringPrintf("Returned '%s' code=%p", PrettyMethod(this).c_str(), GetEntryPointFromCompiledCode()); } } else { LOG(INFO) << "Not invoking '" << PrettyMethod(this) << "' code=" << reinterpret_cast(GetEntryPointFromCompiledCode()); if (result != NULL) { result->SetJ(0); } } } // Pop transition. self->PopManagedStackFragment(fragment); } bool AbstractMethod::IsRegistered() const { void* native_method = GetFieldPtr(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), false); CHECK(native_method != NULL); void* jni_stub = GetJniDlsymLookupStub(); return native_method != jni_stub; } void AbstractMethod::RegisterNative(Thread* self, const void* native_method) { DCHECK(Thread::Current() == self); CHECK(IsNative()) << PrettyMethod(this); CHECK(native_method != NULL) << PrettyMethod(this); if (!self->GetJniEnv()->vm->work_around_app_jni_bugs) { SetNativeMethod(native_method); } else { // We've been asked to associate this method with the given native method but are working // around JNI bugs, that include not giving Object** SIRT references to native methods. Direct // the native method to runtime support and store the target somewhere runtime support will // find it. #if defined(__arm__) && !defined(ART_USE_PORTABLE_COMPILER) SetNativeMethod(native_method); #else UNIMPLEMENTED(FATAL); #endif SetFieldPtr(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, gc_map_), reinterpret_cast(native_method), false); } } void AbstractMethod::UnregisterNative(Thread* self) { CHECK(IsNative()) << PrettyMethod(this); // restore stub to lookup native pointer via dlsym RegisterNative(self, GetJniDlsymLookupStub()); } void AbstractMethod::SetNativeMethod(const void* native_method) { SetFieldPtr(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), native_method, false); } } // namespace mirror } // namespace art