/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_INSTRUCTION_SET_H_ #define ART_RUNTIME_INSTRUCTION_SET_H_ #include #include #include "base/logging.h" // Logging is required for FATAL in the helper functions. #include "base/macros.h" #include "base/value_object.h" #include "globals.h" // For KB. namespace art { enum InstructionSet { kNone, kArm, kArm64, kThumb2, kX86, kX86_64, kMips, kMips64 }; std::ostream& operator<<(std::ostream& os, const InstructionSet& rhs); #if defined(__arm__) static constexpr InstructionSet kRuntimeISA = kArm; #elif defined(__aarch64__) static constexpr InstructionSet kRuntimeISA = kArm64; #elif defined(__mips__) static constexpr InstructionSet kRuntimeISA = kMips; #elif defined(__i386__) static constexpr InstructionSet kRuntimeISA = kX86; #elif defined(__x86_64__) static constexpr InstructionSet kRuntimeISA = kX86_64; #else static constexpr InstructionSet kRuntimeISA = kNone; #endif // Architecture-specific pointer sizes static constexpr size_t kArmPointerSize = 4; static constexpr size_t kArm64PointerSize = 8; static constexpr size_t kMipsPointerSize = 4; static constexpr size_t kMips64PointerSize = 8; static constexpr size_t kX86PointerSize = 4; static constexpr size_t kX86_64PointerSize = 8; // ARM instruction alignment. ARM processors require code to be 4-byte aligned, // but ARM ELF requires 8.. static constexpr size_t kArmAlignment = 8; // ARM64 instruction alignment. This is the recommended alignment for maximum performance. static constexpr size_t kArm64Alignment = 16; // MIPS instruction alignment. MIPS processors require code to be 4-byte aligned. // TODO: Can this be 4? static constexpr size_t kMipsAlignment = 8; // X86 instruction alignment. This is the recommended alignment for maximum performance. static constexpr size_t kX86Alignment = 16; const char* GetInstructionSetString(InstructionSet isa); // Note: Returns kNone when the string cannot be parsed to a known value. InstructionSet GetInstructionSetFromString(const char* instruction_set); static inline size_t GetInstructionSetPointerSize(InstructionSet isa) { switch (isa) { case kArm: // Fall-through. case kThumb2: return kArmPointerSize; case kArm64: return kArm64PointerSize; case kX86: return kX86PointerSize; case kX86_64: return kX86_64PointerSize; case kMips: return kMipsPointerSize; case kMips64: return kMips64PointerSize; case kNone: LOG(FATAL) << "ISA kNone does not have pointer size."; return 0; default: LOG(FATAL) << "Unknown ISA " << isa; return 0; } } size_t GetInstructionSetAlignment(InstructionSet isa); static inline bool Is64BitInstructionSet(InstructionSet isa) { switch (isa) { case kArm: case kThumb2: case kX86: case kMips: return false; case kArm64: case kX86_64: case kMips64: return true; case kNone: LOG(FATAL) << "ISA kNone does not have bit width."; return 0; default: LOG(FATAL) << "Unknown ISA " << isa; return 0; } } static inline size_t GetBytesPerGprSpillLocation(InstructionSet isa) { switch (isa) { case kArm: // Fall-through. case kThumb2: return 4; case kArm64: return 8; case kX86: return 4; case kX86_64: return 8; case kMips: return 4; case kNone: LOG(FATAL) << "ISA kNone does not have spills."; return 0; default: LOG(FATAL) << "Unknown ISA " << isa; return 0; } } static inline size_t GetBytesPerFprSpillLocation(InstructionSet isa) { switch (isa) { case kArm: // Fall-through. case kThumb2: return 4; case kArm64: return 8; case kX86: return 8; case kX86_64: return 8; case kMips: return 4; case kNone: LOG(FATAL) << "ISA kNone does not have spills."; return 0; default: LOG(FATAL) << "Unknown ISA " << isa; return 0; } } size_t GetStackOverflowReservedBytes(InstructionSet isa); class ArmInstructionSetFeatures; // Abstraction used to describe features of a different instruction sets. class InstructionSetFeatures { public: // Process a CPU variant string for the given ISA and create an InstructionSetFeatures. static const InstructionSetFeatures* FromVariant(InstructionSet isa, const std::string& variant, std::string* error_msg); // Parse a string of the form "div,lpae" and create an InstructionSetFeatures. static const InstructionSetFeatures* FromFeatureString(InstructionSet isa, const std::string& feature_list, std::string* error_msg); // Parse a bitmap for the given isa and create an InstructionSetFeatures. static const InstructionSetFeatures* FromBitmap(InstructionSet isa, uint32_t bitmap); // Turn C pre-processor #defines into the equivalent instruction set features for kRuntimeISA. static const InstructionSetFeatures* FromCppDefines(); // Process /proc/cpuinfo and use kRuntimeISA to produce InstructionSetFeatures. static const InstructionSetFeatures* FromCpuInfo(); // Process the auxiliary vector AT_HWCAP entry and use kRuntimeISA to produce // InstructionSetFeatures. static const InstructionSetFeatures* FromHwcap(); // Use assembly tests of the current runtime (ie kRuntimeISA) to determine the // InstructionSetFeatures. This works around kernel bugs in AT_HWCAP and /proc/cpuinfo. static const InstructionSetFeatures* FromAssembly(); // Are these features the same as the other given features? virtual bool Equals(const InstructionSetFeatures* other) const = 0; // Return the ISA these features relate to. virtual InstructionSet GetInstructionSet() const = 0; // Return a bitmap that represents the features. ISA specific. virtual uint32_t AsBitmap() const = 0; // Return a string of the form "div,lpae" or "none". virtual std::string GetFeatureString() const = 0; // Down cast this ArmInstructionFeatures. const ArmInstructionSetFeatures* AsArmInstructionSetFeatures() const; virtual ~InstructionSetFeatures() {} protected: InstructionSetFeatures() {} private: DISALLOW_COPY_AND_ASSIGN(InstructionSetFeatures); }; std::ostream& operator<<(std::ostream& os, const InstructionSetFeatures& rhs); // Instruction set features relevant to the ARM architecture. class ArmInstructionSetFeatures FINAL : public InstructionSetFeatures { public: // Process a CPU variant string like "krait" or "cortex-a15" and create InstructionSetFeatures. static const ArmInstructionSetFeatures* FromVariant(const std::string& variant, std::string* error_msg); // Parse a string of the form "div,lpae" and create an InstructionSetFeatures. static const ArmInstructionSetFeatures* FromFeatureString(const std::string& feature_list, std::string* error_msg); // Parse a bitmap and create an InstructionSetFeatures. static const ArmInstructionSetFeatures* FromBitmap(uint32_t bitmap); // Turn C pre-processor #defines into the equivalent instruction set features. static const ArmInstructionSetFeatures* FromCppDefines(); // Process /proc/cpuinfo and use kRuntimeISA to produce InstructionSetFeatures. static const ArmInstructionSetFeatures* FromCpuInfo(); // Process the auxiliary vector AT_HWCAP entry and use kRuntimeISA to produce // InstructionSetFeatures. static const ArmInstructionSetFeatures* FromHwcap(); // Use assembly tests of the current runtime (ie kRuntimeISA) to determine the // InstructionSetFeatures. This works around kernel bugs in AT_HWCAP and /proc/cpuinfo. static const ArmInstructionSetFeatures* FromAssembly(); bool Equals(const InstructionSetFeatures* other) const OVERRIDE; InstructionSet GetInstructionSet() const OVERRIDE { return kArm; } uint32_t AsBitmap() const OVERRIDE; // Return a string of the form "div,lpae" or "none". std::string GetFeatureString() const OVERRIDE; // Is the divide instruction feature enabled? bool HasDivideInstruction() const { return has_div_; } // Is the Large Physical Address Extension (LPAE) instruction feature enabled? When true code can // be used that assumes double register loads and stores (ldrd, strd) don't tear. bool HasLpae() const { return has_lpae_; } virtual ~ArmInstructionSetFeatures() {} private: ArmInstructionSetFeatures(bool has_lpae, bool has_div) : has_lpae_(has_lpae), has_div_(has_div) { } // Bitmap positions for encoding features as a bitmap. enum { kDivBitfield = 1, kLpaeBitfield = 2, }; const bool has_lpae_; const bool has_div_; DISALLOW_COPY_AND_ASSIGN(ArmInstructionSetFeatures); }; // A class used for instruction set features on ISAs that don't yet have any features defined. class UnknownInstructionSetFeatures FINAL : public InstructionSetFeatures { public: static const UnknownInstructionSetFeatures* Unknown(InstructionSet isa) { return new UnknownInstructionSetFeatures(isa); } bool Equals(const InstructionSetFeatures* other) const OVERRIDE { return isa_ == other->GetInstructionSet(); } InstructionSet GetInstructionSet() const OVERRIDE { return isa_; } uint32_t AsBitmap() const OVERRIDE { return 0; } std::string GetFeatureString() const OVERRIDE { return "none"; } virtual ~UnknownInstructionSetFeatures() {} private: explicit UnknownInstructionSetFeatures(InstructionSet isa) : isa_(isa) {} const InstructionSet isa_; DISALLOW_COPY_AND_ASSIGN(UnknownInstructionSetFeatures); }; // The following definitions create return types for two word-sized entities that will be passed // in registers so that memory operations for the interface trampolines can be avoided. The entities // are the resolved method and the pointer to the code to be invoked. // // On x86, ARM32 and MIPS, this is given for a *scalar* 64bit value. The definition thus *must* be // uint64_t or long long int. // // On x86_64 and ARM64, structs are decomposed for allocation, so we can create a structs of two // size_t-sized values. // // We need two operations: // // 1) A flag value that signals failure. The assembly stubs expect the lower part to be "0". // GetTwoWordFailureValue() will return a value that has lower part == 0. // // 2) A value that combines two word-sized values. // GetTwoWordSuccessValue() constructs this. // // IMPORTANT: If you use this to transfer object pointers, it is your responsibility to ensure // that the object does not move or the value is updated. Simple use of this is NOT SAFE // when the garbage collector can move objects concurrently. Ensure that required locks // are held when using! #if defined(__i386__) || defined(__arm__) || defined(__mips__) typedef uint64_t TwoWordReturn; // Encodes method_ptr==nullptr and code_ptr==nullptr static inline constexpr TwoWordReturn GetTwoWordFailureValue() { return 0; } // Use the lower 32b for the method pointer and the upper 32b for the code pointer. static inline TwoWordReturn GetTwoWordSuccessValue(uintptr_t hi, uintptr_t lo) { static_assert(sizeof(uint32_t) == sizeof(uintptr_t), "Unexpected size difference"); uint32_t lo32 = lo; uint64_t hi64 = static_cast(hi); return ((hi64 << 32) | lo32); } #elif defined(__x86_64__) || defined(__aarch64__) struct TwoWordReturn { uintptr_t lo; uintptr_t hi; }; // Encodes method_ptr==nullptr. Leaves random value in code pointer. static inline TwoWordReturn GetTwoWordFailureValue() { TwoWordReturn ret; ret.lo = 0; return ret; } // Write values into their respective members. static inline TwoWordReturn GetTwoWordSuccessValue(uintptr_t hi, uintptr_t lo) { TwoWordReturn ret; ret.lo = lo; ret.hi = hi; return ret; } #else #error "Unsupported architecture" #endif } // namespace art #endif // ART_RUNTIME_INSTRUCTION_SET_H_