/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ssa_liveness_analysis.h" #include "nodes.h" namespace art { void SsaLivenessAnalysis::Analyze() { NumberInstructions(); ComputeSets(); } void SsaLivenessAnalysis::NumberInstructions() { int ssa_index = 0; for (HReversePostOrderIterator it(graph_); !it.Done(); it.Advance()) { HBasicBlock* block = it.Current(); for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); if (current->HasUses()) { current->SetSsaIndex(ssa_index++); } } for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); if (current->HasUses()) { current->SetSsaIndex(ssa_index++); } } } number_of_ssa_values_ = ssa_index; } void SsaLivenessAnalysis::ComputeSets() { for (HReversePostOrderIterator it(graph_); !it.Done(); it.Advance()) { HBasicBlock* block = it.Current(); block_infos_.Put( block->GetBlockId(), new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_)); } // Compute the initial live_in, live_out, and kill sets. This method does not handle // backward branches, therefore live_in and live_out sets are not yet correct. ComputeInitialSets(); // Do a fixed point calculation to take into account backward branches, // that will update live_in of loop headers, and therefore live_out and live_in // of blocks in the loop. ComputeLiveInAndLiveOutSets(); } void SsaLivenessAnalysis::ComputeInitialSets() { // Do a post orderr visit, adding inputs of instructions live in the block where // that instruction is defined, and killing instructions that are being visited. for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) { HBasicBlock* block = it.Current(); BitVector* kill = GetKillSet(*block); BitVector* live_in = GetLiveInSet(*block); for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); if (current->HasSsaIndex()) { kill->SetBit(current->GetSsaIndex()); live_in->ClearBit(current->GetSsaIndex()); } // All inputs of an instruction must be live. for (size_t i = 0, e = current->InputCount(); i < e; ++i) { DCHECK(current->InputAt(i)->HasSsaIndex()); live_in->SetBit(current->InputAt(i)->GetSsaIndex()); } if (current->HasEnvironment()) { // All instructions in the environment must be live. GrowableArray* environment = current->GetEnvironment()->GetVRegs(); for (size_t i = 0, e = environment->Size(); i < e; ++i) { HInstruction* instruction = environment->Get(i); if (instruction != nullptr) { DCHECK(instruction->HasSsaIndex()); live_in->SetBit(instruction->GetSsaIndex()); } } } } for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); if (current->HasSsaIndex()) { kill->SetBit(current->GetSsaIndex()); live_in->ClearBit(current->GetSsaIndex()); } // Mark a phi input live_in for its corresponding predecessor. for (size_t i = 0, e = current->InputCount(); i < e; ++i) { HInstruction* input = current->InputAt(i); HBasicBlock* predecessor = block->GetPredecessors().Get(i); size_t ssa_index = input->GetSsaIndex(); BitVector* predecessor_kill = GetKillSet(*predecessor); BitVector* predecessor_live_in = GetLiveInSet(*predecessor); // Phi inputs from a back edge have already been visited. If the back edge // block defines that input, we should not add it to its live_in. if (!predecessor_kill->IsBitSet(ssa_index)) { predecessor_live_in->SetBit(ssa_index); } } } } } void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() { bool changed; do { changed = false; for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) { const HBasicBlock& block = *it.Current(); // The live_in set depends on the kill set (which does not // change in this loop), and the live_out set. If the live_out // set does not change, there is no need to update the live_in set. if (UpdateLiveOut(block) && UpdateLiveIn(block)) { changed = true; } } } while (changed); } bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) { BitVector* live_out = GetLiveOutSet(block); bool changed = false; // The live_out set of a block is the union of live_in sets of its successors. for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) { HBasicBlock* successor = block.GetSuccessors().Get(i); if (live_out->Union(GetLiveInSet(*successor))) { changed = true; } } return changed; } bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) { BitVector* live_out = GetLiveOutSet(block); BitVector* kill = GetKillSet(block); BitVector* live_in = GetLiveInSet(block); // If live_out is updated (because of backward branches), we need to make // sure instructions in live_out are also in live_in, unless they are killed // by this block. return live_in->UnionIfNotIn(live_out, kill); } } // namespace art