/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_x86.h" #include #include "arch/x86/instruction_set_features_x86.h" #include "art_method.h" #include "base/bit_utils.h" #include "code_generator_x86.h" #include "entrypoints/quick/quick_entrypoints.h" #include "intrinsics.h" #include "intrinsics_utils.h" #include "mirror/array-inl.h" #include "mirror/string.h" #include "thread.h" #include "utils/x86/assembler_x86.h" #include "utils/x86/constants_x86.h" namespace art { namespace x86 { static constexpr int kDoubleNaNHigh = 0x7FF80000; static constexpr int kDoubleNaNLow = 0x00000000; static constexpr int64_t kDoubleNaN = INT64_C(0x7FF8000000000000); static constexpr int32_t kFloatNaN = INT32_C(0x7FC00000); IntrinsicLocationsBuilderX86::IntrinsicLocationsBuilderX86(CodeGeneratorX86* codegen) : arena_(codegen->GetGraph()->GetArena()), codegen_(codegen) { } X86Assembler* IntrinsicCodeGeneratorX86::GetAssembler() { return down_cast(codegen_->GetAssembler()); } ArenaAllocator* IntrinsicCodeGeneratorX86::GetAllocator() { return codegen_->GetGraph()->GetArena(); } bool IntrinsicLocationsBuilderX86::TryDispatch(HInvoke* invoke) { Dispatch(invoke); LocationSummary* res = invoke->GetLocations(); if (res == nullptr) { return false; } if (kEmitCompilerReadBarrier && res->CanCall()) { // Generating an intrinsic for this HInvoke may produce an // IntrinsicSlowPathX86 slow path. Currently this approach // does not work when using read barriers, as the emitted // calling sequence will make use of another slow path // (ReadBarrierForRootSlowPathX86 for HInvokeStaticOrDirect, // ReadBarrierSlowPathX86 for HInvokeVirtual). So we bail // out in this case. // // TODO: Find a way to have intrinsics work with read barriers. invoke->SetLocations(nullptr); return false; } return res->Intrinsified(); } static void MoveArguments(HInvoke* invoke, CodeGeneratorX86* codegen) { InvokeDexCallingConventionVisitorX86 calling_convention_visitor; IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor); } using IntrinsicSlowPathX86 = IntrinsicSlowPath; #define __ assembler-> static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke, bool is64bit) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); if (is64bit) { locations->AddTemp(Location::RequiresFpuRegister()); } } static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke, bool is64bit) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); if (is64bit) { locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); } } static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); if (is64bit) { // Need to use the temporary. XmmRegister temp = locations->GetTemp(0).AsFpuRegister(); __ movsd(temp, input.AsFpuRegister()); __ movd(output.AsRegisterPairLow(), temp); __ psrlq(temp, Immediate(32)); __ movd(output.AsRegisterPairHigh(), temp); } else { __ movd(output.AsRegister(), input.AsFpuRegister()); } } static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86Assembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); if (is64bit) { // Need to use the temporary. XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister(); XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister(); __ movd(temp1, input.AsRegisterPairLow()); __ movd(temp2, input.AsRegisterPairHigh()); __ punpckldq(temp1, temp2); __ movsd(output.AsFpuRegister(), temp1); } else { __ movd(output.AsFpuRegister(), input.AsRegister()); } } void IntrinsicLocationsBuilderX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke, /* is64bit */ true); } void IntrinsicLocationsBuilderX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(arena_, invoke, /* is64bit */ true); } void IntrinsicCodeGeneratorX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicCodeGeneratorX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke, /* is64bit */ false); } void IntrinsicLocationsBuilderX86::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(arena_, invoke, /* is64bit */ false); } void IntrinsicCodeGeneratorX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } void IntrinsicCodeGeneratorX86::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } static void CreateLongToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); } static void CreateLongToLongLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } static void GenReverseBytes(LocationSummary* locations, Primitive::Type size, X86Assembler* assembler) { Register out = locations->Out().AsRegister(); switch (size) { case Primitive::kPrimShort: // TODO: Can be done with an xchg of 8b registers. This is straight from Quick. __ bswapl(out); __ sarl(out, Immediate(16)); break; case Primitive::kPrimInt: __ bswapl(out); break; default: LOG(FATAL) << "Unexpected size for reverse-bytes: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitIntegerReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitLongReverseBytes(HInvoke* invoke) { CreateLongToLongLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitLongReverseBytes(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); Location input = locations->InAt(0); Register input_lo = input.AsRegisterPairLow(); Register input_hi = input.AsRegisterPairHigh(); Location output = locations->Out(); Register output_lo = output.AsRegisterPairLow(); Register output_hi = output.AsRegisterPairHigh(); X86Assembler* assembler = GetAssembler(); // Assign the inputs to the outputs, mixing low/high. __ movl(output_lo, input_hi); __ movl(output_hi, input_lo); __ bswapl(output_lo); __ bswapl(output_hi); } void IntrinsicLocationsBuilderX86::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitShortReverseBytes(HInvoke* invoke) { GenReverseBytes(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); } // TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we // need is 64b. static void CreateFloatToFloat(ArenaAllocator* arena, HInvoke* invoke) { // TODO: Enable memory operations when the assembler supports them. LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect(); DCHECK(static_or_direct != nullptr); if (static_or_direct->HasSpecialInput() && invoke->InputAt(static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) { // We need addressibility for the constant area. locations->SetInAt(1, Location::RequiresRegister()); // We need a temporary to hold the constant. locations->AddTemp(Location::RequiresFpuRegister()); } } static void MathAbsFP(LocationSummary* locations, bool is64bit, X86Assembler* assembler, CodeGeneratorX86* codegen) { Location output = locations->Out(); DCHECK(output.IsFpuRegister()); if (locations->GetInputCount() == 2 && locations->InAt(1).IsValid()) { DCHECK(locations->InAt(1).IsRegister()); // We also have a constant area pointer. Register constant_area = locations->InAt(1).AsRegister(); XmmRegister temp = locations->GetTemp(0).AsFpuRegister(); if (is64bit) { __ movsd(temp, codegen->LiteralInt64Address(INT64_C(0x7FFFFFFFFFFFFFFF), constant_area)); __ andpd(output.AsFpuRegister(), temp); } else { __ movss(temp, codegen->LiteralInt32Address(INT32_C(0x7FFFFFFF), constant_area)); __ andps(output.AsFpuRegister(), temp); } } else { // Create the right constant on an aligned stack. if (is64bit) { __ subl(ESP, Immediate(8)); __ pushl(Immediate(0x7FFFFFFF)); __ pushl(Immediate(0xFFFFFFFF)); __ andpd(output.AsFpuRegister(), Address(ESP, 0)); } else { __ subl(ESP, Immediate(12)); __ pushl(Immediate(0x7FFFFFFF)); __ andps(output.AsFpuRegister(), Address(ESP, 0)); } __ addl(ESP, Immediate(16)); } } void IntrinsicLocationsBuilderX86::VisitMathAbsDouble(HInvoke* invoke) { CreateFloatToFloat(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAbsDouble(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86::VisitMathAbsFloat(HInvoke* invoke) { CreateFloatToFloat(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAbsFloat(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler(), codegen_); } static void CreateAbsIntLocation(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RegisterLocation(EAX)); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RegisterLocation(EDX)); } static void GenAbsInteger(LocationSummary* locations, X86Assembler* assembler) { Location output = locations->Out(); Register out = output.AsRegister(); DCHECK_EQ(out, EAX); Register temp = locations->GetTemp(0).AsRegister(); DCHECK_EQ(temp, EDX); // Sign extend EAX into EDX. __ cdq(); // XOR EAX with sign. __ xorl(EAX, EDX); // Subtract out sign to correct. __ subl(EAX, EDX); // The result is in EAX. } static void CreateAbsLongLocation(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); locations->AddTemp(Location::RequiresRegister()); } static void GenAbsLong(LocationSummary* locations, X86Assembler* assembler) { Location input = locations->InAt(0); Register input_lo = input.AsRegisterPairLow(); Register input_hi = input.AsRegisterPairHigh(); Location output = locations->Out(); Register output_lo = output.AsRegisterPairLow(); Register output_hi = output.AsRegisterPairHigh(); Register temp = locations->GetTemp(0).AsRegister(); // Compute the sign into the temporary. __ movl(temp, input_hi); __ sarl(temp, Immediate(31)); // Store the sign into the output. __ movl(output_lo, temp); __ movl(output_hi, temp); // XOR the input to the output. __ xorl(output_lo, input_lo); __ xorl(output_hi, input_hi); // Subtract the sign. __ subl(output_lo, temp); __ sbbl(output_hi, temp); } void IntrinsicLocationsBuilderX86::VisitMathAbsInt(HInvoke* invoke) { CreateAbsIntLocation(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAbsInt(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMathAbsLong(HInvoke* invoke) { CreateAbsLongLocation(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAbsLong(HInvoke* invoke) { GenAbsLong(invoke->GetLocations(), GetAssembler()); } static void GenMinMaxFP(LocationSummary* locations, bool is_min, bool is_double, X86Assembler* assembler, CodeGeneratorX86* codegen) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); Location out_loc = locations->Out(); XmmRegister out = out_loc.AsFpuRegister(); // Shortcut for same input locations. if (op1_loc.Equals(op2_loc)) { DCHECK(out_loc.Equals(op1_loc)); return; } // (out := op1) // out <=? op2 // if Nan jmp Nan_label // if out is min jmp done // if op2 is min jmp op2_label // handle -0/+0 // jmp done // Nan_label: // out := NaN // op2_label: // out := op2 // done: // // This removes one jmp, but needs to copy one input (op1) to out. // // TODO: This is straight from Quick (except literal pool). Make NaN an out-of-line slowpath? XmmRegister op2 = op2_loc.AsFpuRegister(); NearLabel nan, done, op2_label; if (is_double) { __ ucomisd(out, op2); } else { __ ucomiss(out, op2); } __ j(Condition::kParityEven, &nan); __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label); __ j(is_min ? Condition::kBelow : Condition::kAbove, &done); // Handle 0.0/-0.0. if (is_min) { if (is_double) { __ orpd(out, op2); } else { __ orps(out, op2); } } else { if (is_double) { __ andpd(out, op2); } else { __ andps(out, op2); } } __ jmp(&done); // NaN handling. __ Bind(&nan); // Do we have a constant area pointer? if (locations->GetInputCount() == 3 && locations->InAt(2).IsValid()) { DCHECK(locations->InAt(2).IsRegister()); Register constant_area = locations->InAt(2).AsRegister(); if (is_double) { __ movsd(out, codegen->LiteralInt64Address(kDoubleNaN, constant_area)); } else { __ movss(out, codegen->LiteralInt32Address(kFloatNaN, constant_area)); } } else { if (is_double) { __ pushl(Immediate(kDoubleNaNHigh)); __ pushl(Immediate(kDoubleNaNLow)); __ movsd(out, Address(ESP, 0)); __ addl(ESP, Immediate(8)); } else { __ pushl(Immediate(kFloatNaN)); __ movss(out, Address(ESP, 0)); __ addl(ESP, Immediate(4)); } } __ jmp(&done); // out := op2; __ Bind(&op2_label); if (is_double) { __ movsd(out, op2); } else { __ movss(out, op2); } // Done. __ Bind(&done); } static void CreateFPFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); // The following is sub-optimal, but all we can do for now. It would be fine to also accept // the second input to be the output (we can simply swap inputs). locations->SetOut(Location::SameAsFirstInput()); HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect(); DCHECK(static_or_direct != nullptr); if (static_or_direct->HasSpecialInput() && invoke->InputAt(static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) { locations->SetInAt(2, Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86::VisitMathMinDoubleDouble(HInvoke* invoke) { CreateFPFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMinDoubleDouble(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ true, /* is_double */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86::VisitMathMinFloatFloat(HInvoke* invoke) { CreateFPFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMinFloatFloat(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ true, /* is_double */ false, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86::VisitMathMaxDoubleDouble(HInvoke* invoke) { CreateFPFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMaxDoubleDouble(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ false, /* is_double */ true, GetAssembler(), codegen_); } void IntrinsicLocationsBuilderX86::VisitMathMaxFloatFloat(HInvoke* invoke) { CreateFPFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMaxFloatFloat(HInvoke* invoke) { GenMinMaxFP(invoke->GetLocations(), /* is_min */ false, /* is_double */ false, GetAssembler(), codegen_); } static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long, X86Assembler* assembler) { Location op1_loc = locations->InAt(0); Location op2_loc = locations->InAt(1); // Shortcut for same input locations. if (op1_loc.Equals(op2_loc)) { // Can return immediately, as op1_loc == out_loc. // Note: if we ever support separate registers, e.g., output into memory, we need to check for // a copy here. DCHECK(locations->Out().Equals(op1_loc)); return; } if (is_long) { // Need to perform a subtract to get the sign right. // op1 is already in the same location as the output. Location output = locations->Out(); Register output_lo = output.AsRegisterPairLow(); Register output_hi = output.AsRegisterPairHigh(); Register op2_lo = op2_loc.AsRegisterPairLow(); Register op2_hi = op2_loc.AsRegisterPairHigh(); // Spare register to compute the subtraction to set condition code. Register temp = locations->GetTemp(0).AsRegister(); // Subtract off op2_low. __ movl(temp, output_lo); __ subl(temp, op2_lo); // Now use the same tempo and the borrow to finish the subtraction of op2_hi. __ movl(temp, output_hi); __ sbbl(temp, op2_hi); // Now the condition code is correct. Condition cond = is_min ? Condition::kGreaterEqual : Condition::kLess; __ cmovl(cond, output_lo, op2_lo); __ cmovl(cond, output_hi, op2_hi); } else { Register out = locations->Out().AsRegister(); Register op2 = op2_loc.AsRegister(); // (out := op1) // out <=? op2 // if out is min jmp done // out := op2 // done: __ cmpl(out, op2); Condition cond = is_min ? Condition::kGreater : Condition::kLess; __ cmovl(cond, out, op2); } } static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } static void CreateLongLongToLongLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); // Register to use to perform a long subtract to set cc. locations->AddTemp(Location::RequiresRegister()); } void IntrinsicLocationsBuilderX86::VisitMathMinIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMinIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ false, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMathMinLongLong(HInvoke* invoke) { CreateLongLongToLongLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMinLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ true, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMathMaxIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMaxIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ false, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMathMaxLongLong(HInvoke* invoke) { CreateLongLongToLongLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathMaxLongLong(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ true, GetAssembler()); } static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); } void IntrinsicLocationsBuilderX86::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathSqrt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); XmmRegister in = locations->InAt(0).AsFpuRegister(); XmmRegister out = locations->Out().AsFpuRegister(); GetAssembler()->sqrtsd(out, in); } static void InvokeOutOfLineIntrinsic(CodeGeneratorX86* codegen, HInvoke* invoke) { MoveArguments(invoke, codegen); DCHECK(invoke->IsInvokeStaticOrDirect()); codegen->GenerateStaticOrDirectCall(invoke->AsInvokeStaticOrDirect(), Location::RegisterLocation(EAX)); codegen->RecordPcInfo(invoke, invoke->GetDexPc()); // Copy the result back to the expected output. Location out = invoke->GetLocations()->Out(); if (out.IsValid()) { DCHECK(out.IsRegister()); codegen->MoveFromReturnRegister(out, invoke->GetType()); } } static void CreateSSE41FPToFPLocations(ArenaAllocator* arena, HInvoke* invoke, CodeGeneratorX86* codegen) { // Do we have instruction support? if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { CreateFPToFPLocations(arena, invoke); return; } // We have to fall back to a call to the intrinsic. LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); // Needs to be EAX for the invoke. locations->AddTemp(Location::RegisterLocation(EAX)); } static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86* codegen, HInvoke* invoke, X86Assembler* assembler, int round_mode) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen, invoke); } else { XmmRegister in = locations->InAt(0).AsFpuRegister(); XmmRegister out = locations->Out().AsFpuRegister(); __ roundsd(out, in, Immediate(round_mode)); } } void IntrinsicLocationsBuilderX86::VisitMathCeil(HInvoke* invoke) { CreateSSE41FPToFPLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86::VisitMathCeil(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2); } void IntrinsicLocationsBuilderX86::VisitMathFloor(HInvoke* invoke) { CreateSSE41FPToFPLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86::VisitMathFloor(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1); } void IntrinsicLocationsBuilderX86::VisitMathRint(HInvoke* invoke) { CreateSSE41FPToFPLocations(arena_, invoke, codegen_); } void IntrinsicCodeGeneratorX86::VisitMathRint(HInvoke* invoke) { GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0); } // Note that 32 bit x86 doesn't have the capability to inline MathRoundDouble, // as it needs 64 bit instructions. void IntrinsicLocationsBuilderX86::VisitMathRoundFloat(HInvoke* invoke) { // See intrinsics.h. if (!kRoundIsPlusPointFive) { return; } // Do we have instruction support? if (codegen_->GetInstructionSetFeatures().HasSSE4_1()) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); return; } // We have to fall back to a call to the intrinsic. LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::RegisterLocation(EAX)); // Needs to be EAX for the invoke. locations->AddTemp(Location::RegisterLocation(EAX)); } void IntrinsicCodeGeneratorX86::VisitMathRoundFloat(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); if (locations->WillCall()) { InvokeOutOfLineIntrinsic(codegen_, invoke); return; } // Implement RoundFloat as t1 = floor(input + 0.5f); convert to int. XmmRegister in = locations->InAt(0).AsFpuRegister(); Register out = locations->Out().AsRegister(); XmmRegister maxInt = locations->GetTemp(0).AsFpuRegister(); XmmRegister inPlusPointFive = locations->GetTemp(1).AsFpuRegister(); NearLabel done, nan; X86Assembler* assembler = GetAssembler(); // Generate 0.5 into inPlusPointFive. __ movl(out, Immediate(bit_cast(0.5f))); __ movd(inPlusPointFive, out); // Add in the input. __ addss(inPlusPointFive, in); // And truncate to an integer. __ roundss(inPlusPointFive, inPlusPointFive, Immediate(1)); __ movl(out, Immediate(kPrimIntMax)); // maxInt = int-to-float(out) __ cvtsi2ss(maxInt, out); // if inPlusPointFive >= maxInt goto done __ comiss(inPlusPointFive, maxInt); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = float-to-int-truncate(input) __ cvttss2si(out, inPlusPointFive); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(out, out); __ Bind(&done); } static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); } static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86* codegen, QuickEntrypointEnum entry) { LocationSummary* locations = invoke->GetLocations(); DCHECK(locations->WillCall()); DCHECK(invoke->IsInvokeStaticOrDirect()); X86Assembler* assembler = codegen->GetAssembler(); // We need some place to pass the parameters. __ subl(ESP, Immediate(16)); __ cfi().AdjustCFAOffset(16); // Pass the parameters at the bottom of the stack. __ movsd(Address(ESP, 0), XMM0); // If we have a second parameter, pass it next. if (invoke->GetNumberOfArguments() == 2) { __ movsd(Address(ESP, 8), XMM1); } // Now do the actual call. __ fs()->call(Address::Absolute(GetThreadOffset(entry))); // Extract the return value from the FP stack. __ fstpl(Address(ESP, 0)); __ movsd(XMM0, Address(ESP, 0)); // And clean up the stack. __ addl(ESP, Immediate(16)); __ cfi().AdjustCFAOffset(-16); codegen->RecordPcInfo(invoke, invoke->GetDexPc()); } void IntrinsicLocationsBuilderX86::VisitMathCos(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathCos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCos); } void IntrinsicLocationsBuilderX86::VisitMathSin(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathSin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSin); } void IntrinsicLocationsBuilderX86::VisitMathAcos(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAcos(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAcos); } void IntrinsicLocationsBuilderX86::VisitMathAsin(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAsin(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAsin); } void IntrinsicLocationsBuilderX86::VisitMathAtan(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAtan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan); } void IntrinsicLocationsBuilderX86::VisitMathCbrt(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathCbrt(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCbrt); } void IntrinsicLocationsBuilderX86::VisitMathCosh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathCosh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickCosh); } void IntrinsicLocationsBuilderX86::VisitMathExp(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathExp(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExp); } void IntrinsicLocationsBuilderX86::VisitMathExpm1(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathExpm1(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickExpm1); } void IntrinsicLocationsBuilderX86::VisitMathLog(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathLog(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog); } void IntrinsicLocationsBuilderX86::VisitMathLog10(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathLog10(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickLog10); } void IntrinsicLocationsBuilderX86::VisitMathSinh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathSinh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickSinh); } void IntrinsicLocationsBuilderX86::VisitMathTan(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathTan(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTan); } void IntrinsicLocationsBuilderX86::VisitMathTanh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathTanh(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickTanh); } static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); locations->SetOut(Location::FpuRegisterLocation(XMM0)); } void IntrinsicLocationsBuilderX86::VisitMathAtan2(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathAtan2(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickAtan2); } void IntrinsicLocationsBuilderX86::VisitMathHypot(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathHypot(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickHypot); } void IntrinsicLocationsBuilderX86::VisitMathNextAfter(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMathNextAfter(HInvoke* invoke) { GenFPToFPCall(invoke, codegen_, kQuickNextAfter); } void IntrinsicLocationsBuilderX86::VisitStringCharAt(HInvoke* invoke) { // The inputs plus one temp. LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void IntrinsicCodeGeneratorX86::VisitStringCharAt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); // Location of reference to data array. const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count. const int32_t count_offset = mirror::String::CountOffset().Int32Value(); Register obj = locations->InAt(0).AsRegister(); Register idx = locations->InAt(1).AsRegister(); Register out = locations->Out().AsRegister(); // TODO: Maybe we can support range check elimination. Overall, though, I think it's not worth // the cost. // TODO: For simplicity, the index parameter is requested in a register, so different from Quick // we will not optimize the code for constants (which would save a register). SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); codegen_->AddSlowPath(slow_path); X86Assembler* assembler = GetAssembler(); __ cmpl(idx, Address(obj, count_offset)); codegen_->MaybeRecordImplicitNullCheck(invoke); __ j(kAboveEqual, slow_path->GetEntryLabel()); // out = out[2*idx]. __ movzxw(out, Address(out, idx, ScaleFactor::TIMES_2, value_offset)); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86::VisitSystemArrayCopyChar(HInvoke* invoke) { // We need at least two of the positions or length to be an integer constant, // or else we won't have enough free registers. HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); int num_constants = ((src_pos != nullptr) ? 1 : 0) + ((dest_pos != nullptr) ? 1 : 0) + ((length != nullptr) ? 1 : 0); if (num_constants < 2) { // Not enough free registers. return; } // As long as we are checking, we might as well check to see if the src and dest // positions are >= 0. if ((src_pos != nullptr && src_pos->GetValue() < 0) || (dest_pos != nullptr && dest_pos->GetValue() < 0)) { // We will have to fail anyways. return; } // And since we are already checking, check the length too. if (length != nullptr) { int32_t len = length->GetValue(); if (len < 0) { // Just call as normal. return; } } // Okay, it is safe to generate inline code. LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // arraycopy(Object src, int srcPos, Object dest, int destPos, int length). locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. locations->AddTemp(Location::RegisterLocation(ESI)); locations->AddTemp(Location::RegisterLocation(EDI)); locations->AddTemp(Location::RegisterLocation(ECX)); } static void CheckPosition(X86Assembler* assembler, Location pos, Register input, Register length, SlowPathCode* slow_path, Register input_len, Register temp) { // Where is the length in the String? const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); if (pos.IsConstant()) { int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); if (pos_const == 0) { // Check that length(input) >= length. __ cmpl(Address(input, length_offset), length); __ j(kLess, slow_path->GetEntryLabel()); } else { // Check that length(input) >= pos. __ movl(input_len, Address(input, length_offset)); __ cmpl(input_len, Immediate(pos_const)); __ j(kLess, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. __ leal(temp, Address(input_len, -pos_const)); __ cmpl(temp, length); __ j(kLess, slow_path->GetEntryLabel()); } } else { // Check that pos >= 0. Register pos_reg = pos.AsRegister(); __ testl(pos_reg, pos_reg); __ j(kLess, slow_path->GetEntryLabel()); // Check that pos <= length(input). __ cmpl(Address(input, length_offset), pos_reg); __ j(kLess, slow_path->GetEntryLabel()); // Check that (length(input) - pos) >= length. __ movl(temp, Address(input, length_offset)); __ subl(temp, pos_reg); __ cmpl(temp, length); __ j(kLess, slow_path->GetEntryLabel()); } } void IntrinsicCodeGeneratorX86::VisitSystemArrayCopyChar(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register src = locations->InAt(0).AsRegister(); Location srcPos = locations->InAt(1); Register dest = locations->InAt(2).AsRegister(); Location destPos = locations->InAt(3); Location length = locations->InAt(4); // Temporaries that we need for MOVSW. Register src_base = locations->GetTemp(0).AsRegister(); DCHECK_EQ(src_base, ESI); Register dest_base = locations->GetTemp(1).AsRegister(); DCHECK_EQ(dest_base, EDI); Register count = locations->GetTemp(2).AsRegister(); DCHECK_EQ(count, ECX); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); codegen_->AddSlowPath(slow_path); // Bail out if the source and destination are the same (to handle overlap). __ cmpl(src, dest); __ j(kEqual, slow_path->GetEntryLabel()); // Bail out if the source is null. __ testl(src, src); __ j(kEqual, slow_path->GetEntryLabel()); // Bail out if the destination is null. __ testl(dest, dest); __ j(kEqual, slow_path->GetEntryLabel()); // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant()) { __ cmpl(length.AsRegister(), length.AsRegister()); __ j(kLess, slow_path->GetEntryLabel()); } // We need the count in ECX. if (length.IsConstant()) { __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ movl(count, length.AsRegister()); } // Validity checks: source. CheckPosition(assembler, srcPos, src, count, slow_path, src_base, dest_base); // Validity checks: dest. CheckPosition(assembler, destPos, dest, count, slow_path, src_base, dest_base); // Okay, everything checks out. Finally time to do the copy. // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar); DCHECK_EQ(char_size, 2u); const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); if (srcPos.IsConstant()) { int32_t srcPos_const = srcPos.GetConstant()->AsIntConstant()->GetValue(); __ leal(src_base, Address(src, char_size * srcPos_const + data_offset)); } else { __ leal(src_base, Address(src, srcPos.AsRegister(), ScaleFactor::TIMES_2, data_offset)); } if (destPos.IsConstant()) { int32_t destPos_const = destPos.GetConstant()->AsIntConstant()->GetValue(); __ leal(dest_base, Address(dest, char_size * destPos_const + data_offset)); } else { __ leal(dest_base, Address(dest, destPos.AsRegister(), ScaleFactor::TIMES_2, data_offset)); } // Do the move. __ rep_movsw(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86::VisitStringCompareTo(HInvoke* invoke) { // The inputs plus one temp. LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(EAX)); } void IntrinsicCodeGeneratorX86::VisitStringCompareTo(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); Register argument = locations->InAt(1).AsRegister(); __ testl(argument, argument); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pStringCompareTo))); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86::VisitStringEquals(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Request temporary registers, ECX and EDI needed for repe_cmpsl instruction. locations->AddTemp(Location::RegisterLocation(ECX)); locations->AddTemp(Location::RegisterLocation(EDI)); // Set output, ESI needed for repe_cmpsl instruction anyways. locations->SetOut(Location::RegisterLocation(ESI), Location::kOutputOverlap); } void IntrinsicCodeGeneratorX86::VisitStringEquals(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register str = locations->InAt(0).AsRegister(); Register arg = locations->InAt(1).AsRegister(); Register ecx = locations->GetTemp(0).AsRegister(); Register edi = locations->GetTemp(1).AsRegister(); Register esi = locations->Out().AsRegister(); NearLabel end, return_true, return_false; // Get offsets of count, value, and class fields within a string object. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); StringEqualsOptimizations optimizations(invoke); if (!optimizations.GetArgumentNotNull()) { // Check if input is null, return false if it is. __ testl(arg, arg); __ j(kEqual, &return_false); } // Instanceof check for the argument by comparing class fields. // All string objects must have the same type since String cannot be subclassed. // Receiver must be a string object, so its class field is equal to all strings' class fields. // If the argument is a string object, its class field must be equal to receiver's class field. if (!optimizations.GetArgumentIsString()) { __ movl(ecx, Address(str, class_offset)); __ cmpl(ecx, Address(arg, class_offset)); __ j(kNotEqual, &return_false); } // Reference equality check, return true if same reference. __ cmpl(str, arg); __ j(kEqual, &return_true); // Load length of receiver string. __ movl(ecx, Address(str, count_offset)); // Check if lengths are equal, return false if they're not. __ cmpl(ecx, Address(arg, count_offset)); __ j(kNotEqual, &return_false); // Return true if both strings are empty. __ jecxz(&return_true); // Load starting addresses of string values into ESI/EDI as required for repe_cmpsl instruction. __ leal(esi, Address(str, value_offset)); __ leal(edi, Address(arg, value_offset)); // Divide string length by 2 to compare characters 2 at a time and adjust for odd lengths. __ addl(ecx, Immediate(1)); __ shrl(ecx, Immediate(1)); // Assertions that must hold in order to compare strings 2 characters at a time. DCHECK_ALIGNED(value_offset, 4); static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded"); // Loop to compare strings two characters at a time starting at the beginning of the string. __ repe_cmpsl(); // If strings are not equal, zero flag will be cleared. __ j(kNotEqual, &return_false); // Return true and exit the function. // If loop does not result in returning false, we return true. __ Bind(&return_true); __ movl(esi, Immediate(1)); __ jmp(&end); // Return false and exit the function. __ Bind(&return_false); __ xorl(esi, esi); __ Bind(&end); } static void CreateStringIndexOfLocations(HInvoke* invoke, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); // The data needs to be in EDI for scasw. So request that the string is there, anyways. locations->SetInAt(0, Location::RegisterLocation(EDI)); // If we look for a constant char, we'll still have to copy it into EAX. So just request the // allocator to do that, anyways. We can still do the constant check by checking the parameter // of the instruction explicitly. // Note: This works as we don't clobber EAX anywhere. locations->SetInAt(1, Location::RegisterLocation(EAX)); if (!start_at_zero) { locations->SetInAt(2, Location::RequiresRegister()); // The starting index. } // As we clobber EDI during execution anyways, also use it as the output. locations->SetOut(Location::SameAsFirstInput()); // repne scasw uses ECX as the counter. locations->AddTemp(Location::RegisterLocation(ECX)); // Need another temporary to be able to compute the result. locations->AddTemp(Location::RequiresRegister()); } static void GenerateStringIndexOf(HInvoke* invoke, X86Assembler* assembler, CodeGeneratorX86* codegen, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); Register string_obj = locations->InAt(0).AsRegister(); Register search_value = locations->InAt(1).AsRegister(); Register counter = locations->GetTemp(0).AsRegister(); Register string_length = locations->GetTemp(1).AsRegister(); Register out = locations->Out().AsRegister(); // Check our assumptions for registers. DCHECK_EQ(string_obj, EDI); DCHECK_EQ(search_value, EAX); DCHECK_EQ(counter, ECX); DCHECK_EQ(out, EDI); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch if we have a constant. SlowPathCode* slow_path = nullptr; if (invoke->InputAt(1)->IsIntConstant()) { if (static_cast(invoke->InputAt(1)->AsIntConstant()->GetValue()) > std::numeric_limits::max()) { // Always needs the slow-path. We could directly dispatch to it, but this case should be // rare, so for simplicity just put the full slow-path down and branch unconditionally. slow_path = new (allocator) IntrinsicSlowPathX86(invoke); codegen->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else { __ cmpl(search_value, Immediate(std::numeric_limits::max())); slow_path = new (allocator) IntrinsicSlowPathX86(invoke); codegen->AddSlowPath(slow_path); __ j(kAbove, slow_path->GetEntryLabel()); } // From here down, we know that we are looking for a char that fits in 16 bits. // Location of reference to data array within the String object. int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Location of count within the String object. int32_t count_offset = mirror::String::CountOffset().Int32Value(); // Load string length, i.e., the count field of the string. __ movl(string_length, Address(string_obj, count_offset)); // Do a zero-length check. // TODO: Support jecxz. NearLabel not_found_label; __ testl(string_length, string_length); __ j(kEqual, ¬_found_label); if (start_at_zero) { // Number of chars to scan is the same as the string length. __ movl(counter, string_length); // Move to the start of the string. __ addl(string_obj, Immediate(value_offset)); } else { Register start_index = locations->InAt(2).AsRegister(); // Do a start_index check. __ cmpl(start_index, string_length); __ j(kGreaterEqual, ¬_found_label); // Ensure we have a start index >= 0; __ xorl(counter, counter); __ cmpl(start_index, Immediate(0)); __ cmovl(kGreater, counter, start_index); // Move to the start of the string: string_obj + value_offset + 2 * start_index. __ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); // Now update ecx (the repne scasw work counter). We have string.length - start_index left to // compare. __ negl(counter); __ leal(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0)); } // Everything is set up for repne scasw: // * Comparison address in EDI. // * Counter in ECX. __ repne_scasw(); // Did we find a match? __ j(kNotEqual, ¬_found_label); // Yes, we matched. Compute the index of the result. __ subl(string_length, counter); __ leal(out, Address(string_length, -1)); NearLabel done; __ jmp(&done); // Failed to match; return -1. __ Bind(¬_found_label); __ movl(out, Immediate(-1)); // And join up at the end. __ Bind(&done); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderX86::VisitStringIndexOf(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ true); } void IntrinsicCodeGeneratorX86::VisitStringIndexOf(HInvoke* invoke) { GenerateStringIndexOf(invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true); } void IntrinsicLocationsBuilderX86::VisitStringIndexOfAfter(HInvoke* invoke) { CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ false); } void IntrinsicCodeGeneratorX86::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateStringIndexOf( invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false); } void IntrinsicLocationsBuilderX86::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); locations->SetOut(Location::RegisterLocation(EAX)); } void IntrinsicCodeGeneratorX86::VisitStringNewStringFromBytes(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register byte_array = locations->InAt(0).AsRegister(); __ testl(byte_array, byte_array); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pAllocStringFromBytes))); CheckEntrypointTypes(); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(EAX)); } void IntrinsicCodeGeneratorX86::VisitStringNewStringFromChars(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); // No need to emit code checking whether `locations->InAt(2)` is a null // pointer, as callers of the native method // // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) // // all include a null check on `data` before calling that method. __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pAllocStringFromChars))); CheckEntrypointTypes(); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void IntrinsicLocationsBuilderX86::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetOut(Location::RegisterLocation(EAX)); } void IntrinsicCodeGeneratorX86::VisitStringNewStringFromString(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register string_to_copy = locations->InAt(0).AsRegister(); __ testl(string_to_copy, string_to_copy); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke); codegen_->AddSlowPath(slow_path); __ j(kEqual, slow_path->GetEntryLabel()); __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pAllocStringFromString))); CheckEntrypointTypes(); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderX86::VisitStringGetCharsNoCheck(HInvoke* invoke) { // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); // Place srcEnd in ECX to save a move below. locations->SetInAt(2, Location::RegisterLocation(ECX)); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. // We don't have enough registers to also grab ECX, so handle below. locations->AddTemp(Location::RegisterLocation(ESI)); locations->AddTemp(Location::RegisterLocation(EDI)); } void IntrinsicCodeGeneratorX86::VisitStringGetCharsNoCheck(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); size_t char_component_size = Primitive::ComponentSize(Primitive::kPrimChar); // Location of data in char array buffer. const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value(); // Location of char array data in string. const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); Register obj = locations->InAt(0).AsRegister(); Location srcBegin = locations->InAt(1); int srcBegin_value = srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0; Register srcEnd = locations->InAt(2).AsRegister(); Register dst = locations->InAt(3).AsRegister(); Register dstBegin = locations->InAt(4).AsRegister(); // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar); DCHECK_EQ(char_size, 2u); // Compute the address of the destination buffer. __ leal(EDI, Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); // Compute the address of the source string. if (srcBegin.IsConstant()) { // Compute the address of the source string by adding the number of chars from // the source beginning to the value offset of a string. __ leal(ESI, Address(obj, srcBegin_value * char_size + value_offset)); } else { __ leal(ESI, Address(obj, srcBegin.AsRegister(), ScaleFactor::TIMES_2, value_offset)); } // Compute the number of chars (words) to move. // Now is the time to save ECX, since we don't know if it will be used later. __ pushl(ECX); int stack_adjust = kX86WordSize; __ cfi().AdjustCFAOffset(stack_adjust); DCHECK_EQ(srcEnd, ECX); if (srcBegin.IsConstant()) { if (srcBegin_value != 0) { __ subl(ECX, Immediate(srcBegin_value)); } } else { DCHECK(srcBegin.IsRegister()); __ subl(ECX, srcBegin.AsRegister()); } // Do the move. __ rep_movsw(); // And restore ECX. __ popl(ECX); __ cfi().AdjustCFAOffset(-stack_adjust); } static void GenPeek(LocationSummary* locations, Primitive::Type size, X86Assembler* assembler) { Register address = locations->InAt(0).AsRegisterPairLow(); Location out_loc = locations->Out(); // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case Primitive::kPrimByte: __ movsxb(out_loc.AsRegister(), Address(address, 0)); break; case Primitive::kPrimShort: __ movsxw(out_loc.AsRegister(), Address(address, 0)); break; case Primitive::kPrimInt: __ movl(out_loc.AsRegister(), Address(address, 0)); break; case Primitive::kPrimLong: __ movl(out_loc.AsRegisterPairLow(), Address(address, 0)); __ movl(out_loc.AsRegisterPairHigh(), Address(address, 4)); break; default: LOG(FATAL) << "Type not recognized for peek: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86::VisitMemoryPeekByte(HInvoke* invoke) { CreateLongToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPeekByte(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateLongToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPeekIntNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateLongToLongLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPeekLongNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateLongToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPeekShortNative(HInvoke* invoke) { GenPeek(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); } static void CreateLongIntToVoidLocations(ArenaAllocator* arena, Primitive::Type size, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); HInstruction* value = invoke->InputAt(1); if (size == Primitive::kPrimByte) { locations->SetInAt(1, Location::ByteRegisterOrConstant(EDX, value)); } else { locations->SetInAt(1, Location::RegisterOrConstant(value)); } } static void GenPoke(LocationSummary* locations, Primitive::Type size, X86Assembler* assembler) { Register address = locations->InAt(0).AsRegisterPairLow(); Location value_loc = locations->InAt(1); // x86 allows unaligned access. We do not have to check the input or use specific instructions // to avoid a SIGBUS. switch (size) { case Primitive::kPrimByte: if (value_loc.IsConstant()) { __ movb(Address(address, 0), Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); } else { __ movb(Address(address, 0), value_loc.AsRegister()); } break; case Primitive::kPrimShort: if (value_loc.IsConstant()) { __ movw(Address(address, 0), Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); } else { __ movw(Address(address, 0), value_loc.AsRegister()); } break; case Primitive::kPrimInt: if (value_loc.IsConstant()) { __ movl(Address(address, 0), Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue())); } else { __ movl(Address(address, 0), value_loc.AsRegister()); } break; case Primitive::kPrimLong: if (value_loc.IsConstant()) { int64_t value = value_loc.GetConstant()->AsLongConstant()->GetValue(); __ movl(Address(address, 0), Immediate(Low32Bits(value))); __ movl(Address(address, 4), Immediate(High32Bits(value))); } else { __ movl(Address(address, 0), value_loc.AsRegisterPairLow()); __ movl(Address(address, 4), value_loc.AsRegisterPairHigh()); } break; default: LOG(FATAL) << "Type not recognized for poke: " << size; UNREACHABLE(); } } void IntrinsicLocationsBuilderX86::VisitMemoryPokeByte(HInvoke* invoke) { CreateLongIntToVoidLocations(arena_, Primitive::kPrimByte, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPokeByte(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateLongIntToVoidLocations(arena_, Primitive::kPrimInt, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPokeIntNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateLongIntToVoidLocations(arena_, Primitive::kPrimLong, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPokeLongNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateLongIntToVoidLocations(arena_, Primitive::kPrimShort, invoke); } void IntrinsicCodeGeneratorX86::VisitMemoryPokeShortNative(HInvoke* invoke) { GenPoke(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler()); } void IntrinsicLocationsBuilderX86::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86::VisitThreadCurrentThread(HInvoke* invoke) { Register out = invoke->GetLocations()->Out().AsRegister(); GetAssembler()->fs()->movl(out, Address::Absolute(Thread::PeerOffset())); } static void GenUnsafeGet(HInvoke* invoke, Primitive::Type type, bool is_volatile, CodeGeneratorX86* codegen) { X86Assembler* assembler = down_cast(codegen->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); Location base_loc = locations->InAt(1); Register base = base_loc.AsRegister(); Location offset_loc = locations->InAt(2); Register offset = offset_loc.AsRegisterPairLow(); Location output_loc = locations->Out(); switch (type) { case Primitive::kPrimInt: { Register output = output_loc.AsRegister(); __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); break; } case Primitive::kPrimNot: { Register output = output_loc.AsRegister(); if (kEmitCompilerReadBarrier) { if (kUseBakerReadBarrier) { Location temp = locations->GetTemp(0); codegen->GenerateArrayLoadWithBakerReadBarrier( invoke, output_loc, base, 0U, offset_loc, temp, /* needs_null_check */ false); } else { __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); codegen->GenerateReadBarrierSlow( invoke, output_loc, output_loc, base_loc, 0U, offset_loc); } } else { __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); __ MaybeUnpoisonHeapReference(output); } break; } case Primitive::kPrimLong: { Register output_lo = output_loc.AsRegisterPairLow(); Register output_hi = output_loc.AsRegisterPairHigh(); if (is_volatile) { // Need to use a XMM to read atomically. XmmRegister temp = locations->GetTemp(0).AsFpuRegister(); __ movsd(temp, Address(base, offset, ScaleFactor::TIMES_1, 0)); __ movd(output_lo, temp); __ psrlq(temp, Immediate(32)); __ movd(output_hi, temp); } else { __ movl(output_lo, Address(base, offset, ScaleFactor::TIMES_1, 0)); __ movl(output_hi, Address(base, offset, ScaleFactor::TIMES_1, 4)); } } break; default: LOG(FATAL) << "Unsupported op size " << type; UNREACHABLE(); } } static void CreateIntIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke, Primitive::Type type, bool is_volatile) { bool can_call = kEmitCompilerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); LocationSummary* locations = new (arena) LocationSummary(invoke, can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); if (type == Primitive::kPrimLong) { if (is_volatile) { // Need to use XMM to read volatile. locations->AddTemp(Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } else { locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } } else { locations->SetOut(Location::RequiresRegister()); } if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // We need a temporary register for the read barrier marking slow // path in InstructionCodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier. locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderX86::VisitUnsafeGet(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafeGetVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt, /* is_volatile */ true); } void IntrinsicLocationsBuilderX86::VisitUnsafeGetLong(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong, /* is_volatile */ true); } void IntrinsicLocationsBuilderX86::VisitUnsafeGetObject(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot, /* is_volatile */ true); } void IntrinsicCodeGeneratorX86::VisitUnsafeGet(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* arena, Primitive::Type type, HInvoke* invoke, bool is_volatile) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); if (type == Primitive::kPrimNot) { // Need temp registers for card-marking. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. // Ensure the value is in a byte register. locations->AddTemp(Location::RegisterLocation(ECX)); } else if (type == Primitive::kPrimLong && is_volatile) { locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); } } void IntrinsicLocationsBuilderX86::VisitUnsafePut(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( arena_, Primitive::kPrimInt, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( arena_, Primitive::kPrimInt, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( arena_, Primitive::kPrimInt, invoke, /* is_volatile */ true); } void IntrinsicLocationsBuilderX86::VisitUnsafePutObject(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( arena_, Primitive::kPrimNot, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( arena_, Primitive::kPrimNot, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( arena_, Primitive::kPrimNot, invoke, /* is_volatile */ true); } void IntrinsicLocationsBuilderX86::VisitUnsafePutLong(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( arena_, Primitive::kPrimLong, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutLongOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( arena_, Primitive::kPrimLong, invoke, /* is_volatile */ false); } void IntrinsicLocationsBuilderX86::VisitUnsafePutLongVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoidPlusTempsLocations( arena_, Primitive::kPrimLong, invoke, /* is_volatile */ true); } // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86 // memory model. static void GenUnsafePut(LocationSummary* locations, Primitive::Type type, bool is_volatile, CodeGeneratorX86* codegen) { X86Assembler* assembler = down_cast(codegen->GetAssembler()); Register base = locations->InAt(1).AsRegister(); Register offset = locations->InAt(2).AsRegisterPairLow(); Location value_loc = locations->InAt(3); if (type == Primitive::kPrimLong) { Register value_lo = value_loc.AsRegisterPairLow(); Register value_hi = value_loc.AsRegisterPairHigh(); if (is_volatile) { XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister(); XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister(); __ movd(temp1, value_lo); __ movd(temp2, value_hi); __ punpckldq(temp1, temp2); __ movsd(Address(base, offset, ScaleFactor::TIMES_1, 0), temp1); } else { __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_lo); __ movl(Address(base, offset, ScaleFactor::TIMES_1, 4), value_hi); } } else if (kPoisonHeapReferences && type == Primitive::kPrimNot) { Register temp = locations->GetTemp(0).AsRegister(); __ movl(temp, value_loc.AsRegister()); __ PoisonHeapReference(temp); __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp); } else { __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_loc.AsRegister()); } if (is_volatile) { codegen->MemoryFence(); } if (type == Primitive::kPrimNot) { bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(locations->GetTemp(0).AsRegister(), locations->GetTemp(1).AsRegister(), base, value_loc.AsRegister(), value_can_be_null); } } void IntrinsicCodeGeneratorX86::VisitUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutObject(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafePutLongVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntIntToInt(ArenaAllocator* arena, Primitive::Type type, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); // Offset is a long, but in 32 bit mode, we only need the low word. // Can we update the invoke here to remove a TypeConvert to Long? locations->SetInAt(2, Location::RequiresRegister()); // Expected value must be in EAX or EDX:EAX. // For long, new value must be in ECX:EBX. if (type == Primitive::kPrimLong) { locations->SetInAt(3, Location::RegisterPairLocation(EAX, EDX)); locations->SetInAt(4, Location::RegisterPairLocation(EBX, ECX)); } else { locations->SetInAt(3, Location::RegisterLocation(EAX)); locations->SetInAt(4, Location::RequiresRegister()); } // Force a byte register for the output. locations->SetOut(Location::RegisterLocation(EAX)); if (type == Primitive::kPrimNot) { // Need temp registers for card-marking. locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. // Need a byte register for marking. locations->AddTemp(Location::RegisterLocation(ECX)); } } void IntrinsicLocationsBuilderX86::VisitUnsafeCASInt(HInvoke* invoke) { CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimInt, invoke); } void IntrinsicLocationsBuilderX86::VisitUnsafeCASLong(HInvoke* invoke) { CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimLong, invoke); } void IntrinsicLocationsBuilderX86::VisitUnsafeCASObject(HInvoke* invoke) { // The UnsafeCASObject intrinsic is missing a read barrier, and // therefore sometimes does not work as expected (b/25883050). // Turn it off temporarily as a quick fix, until the read barrier is // implemented. // // TODO(rpl): Implement a read barrier in GenCAS below and re-enable // this intrinsic. if (kEmitCompilerReadBarrier) { return; } CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimNot, invoke); } static void GenCAS(Primitive::Type type, HInvoke* invoke, CodeGeneratorX86* codegen) { X86Assembler* assembler = down_cast(codegen->GetAssembler()); LocationSummary* locations = invoke->GetLocations(); Register base = locations->InAt(1).AsRegister(); Register offset = locations->InAt(2).AsRegisterPairLow(); Location out = locations->Out(); DCHECK_EQ(out.AsRegister(), EAX); if (type == Primitive::kPrimNot) { Register expected = locations->InAt(3).AsRegister(); // Ensure `expected` is in EAX (required by the CMPXCHG instruction). DCHECK_EQ(expected, EAX); Register value = locations->InAt(4).AsRegister(); // Mark card for object assuming new value is stored. bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(locations->GetTemp(0).AsRegister(), locations->GetTemp(1).AsRegister(), base, value, value_can_be_null); bool base_equals_value = (base == value); if (kPoisonHeapReferences) { if (base_equals_value) { // If `base` and `value` are the same register location, move // `value` to a temporary register. This way, poisoning // `value` won't invalidate `base`. value = locations->GetTemp(0).AsRegister(); __ movl(value, base); } // Check that the register allocator did not assign the location // of `expected` (EAX) to `value` nor to `base`, so that heap // poisoning (when enabled) works as intended below. // - If `value` were equal to `expected`, both references would // be poisoned twice, meaning they would not be poisoned at // all, as heap poisoning uses address negation. // - If `base` were equal to `expected`, poisoning `expected` // would invalidate `base`. DCHECK_NE(value, expected); DCHECK_NE(base, expected); __ PoisonHeapReference(expected); __ PoisonHeapReference(value); } // TODO: Add a read barrier for the reference stored in the object // before attempting the CAS, similar to the one in the // art::Unsafe_compareAndSwapObject JNI implementation. // // Note that this code is not (yet) used when read barriers are // enabled (see IntrinsicLocationsBuilderX86::VisitUnsafeCASObject). DCHECK(!kEmitCompilerReadBarrier); __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value); // LOCK CMPXCHG has full barrier semantics, and we don't need // scheduling barriers at this time. // Convert ZF into the boolean result. __ setb(kZero, out.AsRegister()); __ movzxb(out.AsRegister(), out.AsRegister()); // If heap poisoning is enabled, we need to unpoison the values // that were poisoned earlier. if (kPoisonHeapReferences) { if (base_equals_value) { // `value` has been moved to a temporary register, no need to // unpoison it. } else { // Ensure `value` is different from `out`, so that unpoisoning // the former does not invalidate the latter. DCHECK_NE(value, out.AsRegister()); __ UnpoisonHeapReference(value); } // Do not unpoison the reference contained in register // `expected`, as it is the same as register `out` (EAX). } } else { if (type == Primitive::kPrimInt) { // Ensure the expected value is in EAX (required by the CMPXCHG // instruction). DCHECK_EQ(locations->InAt(3).AsRegister(), EAX); __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), locations->InAt(4).AsRegister()); } else if (type == Primitive::kPrimLong) { // Ensure the expected value is in EAX:EDX and that the new // value is in EBX:ECX (required by the CMPXCHG8B instruction). DCHECK_EQ(locations->InAt(3).AsRegisterPairLow(), EAX); DCHECK_EQ(locations->InAt(3).AsRegisterPairHigh(), EDX); DCHECK_EQ(locations->InAt(4).AsRegisterPairLow(), EBX); DCHECK_EQ(locations->InAt(4).AsRegisterPairHigh(), ECX); __ LockCmpxchg8b(Address(base, offset, TIMES_1, 0)); } else { LOG(FATAL) << "Unexpected CAS type " << type; } // LOCK CMPXCHG/LOCK CMPXCHG8B have full barrier semantics, and we // don't need scheduling barriers at this time. // Convert ZF into the boolean result. __ setb(kZero, out.AsRegister()); __ movzxb(out.AsRegister(), out.AsRegister()); } } void IntrinsicCodeGeneratorX86::VisitUnsafeCASInt(HInvoke* invoke) { GenCAS(Primitive::kPrimInt, invoke, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeCASLong(HInvoke* invoke) { GenCAS(Primitive::kPrimLong, invoke, codegen_); } void IntrinsicCodeGeneratorX86::VisitUnsafeCASObject(HInvoke* invoke) { GenCAS(Primitive::kPrimNot, invoke, codegen_); } void IntrinsicLocationsBuilderX86::VisitIntegerReverse(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } static void SwapBits(Register reg, Register temp, int32_t shift, int32_t mask, X86Assembler* assembler) { Immediate imm_shift(shift); Immediate imm_mask(mask); __ movl(temp, reg); __ shrl(reg, imm_shift); __ andl(temp, imm_mask); __ andl(reg, imm_mask); __ shll(temp, imm_shift); __ orl(reg, temp); } void IntrinsicCodeGeneratorX86::VisitIntegerReverse(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register reg = locations->InAt(0).AsRegister(); Register temp = locations->GetTemp(0).AsRegister(); /* * Use one bswap instruction to reverse byte order first and then use 3 rounds of * swapping bits to reverse bits in a number x. Using bswap to save instructions * compared to generic luni implementation which has 5 rounds of swapping bits. * x = bswap x * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555; * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333; * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F; */ __ bswapl(reg); SwapBits(reg, temp, 1, 0x55555555, assembler); SwapBits(reg, temp, 2, 0x33333333, assembler); SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler); } void IntrinsicLocationsBuilderX86::VisitLongReverse(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorX86::VisitLongReverse(HInvoke* invoke) { X86Assembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register reg_low = locations->InAt(0).AsRegisterPairLow(); Register reg_high = locations->InAt(0).AsRegisterPairHigh(); Register temp = locations->GetTemp(0).AsRegister(); // We want to swap high/low, then bswap each one, and then do the same // as a 32 bit reverse. // Exchange high and low. __ movl(temp, reg_low); __ movl(reg_low, reg_high); __ movl(reg_high, temp); // bit-reverse low __ bswapl(reg_low); SwapBits(reg_low, temp, 1, 0x55555555, assembler); SwapBits(reg_low, temp, 2, 0x33333333, assembler); SwapBits(reg_low, temp, 4, 0x0f0f0f0f, assembler); // bit-reverse high __ bswapl(reg_high); SwapBits(reg_high, temp, 1, 0x55555555, assembler); SwapBits(reg_high, temp, 2, 0x33333333, assembler); SwapBits(reg_high, temp, 4, 0x0f0f0f0f, assembler); } static void CreateBitCountLocations( ArenaAllocator* arena, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) { if (!codegen->GetInstructionSetFeatures().HasPopCnt()) { // Do nothing if there is no popcnt support. This results in generating // a call for the intrinsic rather than direct code. return; } LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); if (is_long) { locations->AddTemp(Location::RequiresRegister()); } locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister()); } static void GenBitCount(X86Assembler* assembler, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); Register out = locations->Out().AsRegister(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); int32_t result = is_long ? POPCOUNT(static_cast(value)) : POPCOUNT(static_cast(value)); codegen->Load32BitValue(out, result); return; } // Handle the non-constant cases. if (!is_long) { if (src.IsRegister()) { __ popcntl(out, src.AsRegister()); } else { DCHECK(src.IsStackSlot()); __ popcntl(out, Address(ESP, src.GetStackIndex())); } } else { // The 64-bit case needs to worry about two parts. Register temp = locations->GetTemp(0).AsRegister(); if (src.IsRegisterPair()) { __ popcntl(temp, src.AsRegisterPairLow()); __ popcntl(out, src.AsRegisterPairHigh()); } else { DCHECK(src.IsDoubleStackSlot()); __ popcntl(temp, Address(ESP, src.GetStackIndex())); __ popcntl(out, Address(ESP, src.GetHighStackIndex(kX86WordSize))); } __ addl(out, temp); } } void IntrinsicLocationsBuilderX86::VisitIntegerBitCount(HInvoke* invoke) { CreateBitCountLocations(arena_, codegen_, invoke, /* is_long */ false); } void IntrinsicCodeGeneratorX86::VisitIntegerBitCount(HInvoke* invoke) { GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86::VisitLongBitCount(HInvoke* invoke) { CreateBitCountLocations(arena_, codegen_, invoke, /* is_long */ true); } void IntrinsicCodeGeneratorX86::VisitLongBitCount(HInvoke* invoke) { GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ true); } static void CreateLeadingZeroLocations(ArenaAllocator* arena, HInvoke* invoke, bool is_long) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); if (is_long) { locations->SetInAt(0, Location::RequiresRegister()); } else { locations->SetInAt(0, Location::Any()); } locations->SetOut(Location::RequiresRegister()); } static void GenLeadingZeros(X86Assembler* assembler, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); Register out = locations->Out().AsRegister(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { value = is_long ? 64 : 32; } else { value = is_long ? CLZ(static_cast(value)) : CLZ(static_cast(value)); } codegen->Load32BitValue(out, value); return; } // Handle the non-constant cases. if (!is_long) { if (src.IsRegister()) { __ bsrl(out, src.AsRegister()); } else { DCHECK(src.IsStackSlot()); __ bsrl(out, Address(ESP, src.GetStackIndex())); } // BSR sets ZF if the input was zero, and the output is undefined. NearLabel all_zeroes, done; __ j(kEqual, &all_zeroes); // Correct the result from BSR to get the final CLZ result. __ xorl(out, Immediate(31)); __ jmp(&done); // Fix the zero case with the expected result. __ Bind(&all_zeroes); __ movl(out, Immediate(32)); __ Bind(&done); return; } // 64 bit case needs to worry about both parts of the register. DCHECK(src.IsRegisterPair()); Register src_lo = src.AsRegisterPairLow(); Register src_hi = src.AsRegisterPairHigh(); NearLabel handle_low, done, all_zeroes; // Is the high word zero? __ testl(src_hi, src_hi); __ j(kEqual, &handle_low); // High word is not zero. We know that the BSR result is defined in this case. __ bsrl(out, src_hi); // Correct the result from BSR to get the final CLZ result. __ xorl(out, Immediate(31)); __ jmp(&done); // High word was zero. We have to compute the low word count and add 32. __ Bind(&handle_low); __ bsrl(out, src_lo); __ j(kEqual, &all_zeroes); // We had a valid result. Use an XOR to both correct the result and add 32. __ xorl(out, Immediate(63)); __ jmp(&done); // All zero case. __ Bind(&all_zeroes); __ movl(out, Immediate(64)); __ Bind(&done); } void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { CreateLeadingZeroLocations(arena_, invoke, /* is_long */ false); } void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { CreateLeadingZeroLocations(arena_, invoke, /* is_long */ true); } void IntrinsicCodeGeneratorX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); } static void CreateTrailingZeroLocations(ArenaAllocator* arena, HInvoke* invoke, bool is_long) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); if (is_long) { locations->SetInAt(0, Location::RequiresRegister()); } else { locations->SetInAt(0, Location::Any()); } locations->SetOut(Location::RequiresRegister()); } static void GenTrailingZeros(X86Assembler* assembler, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) { LocationSummary* locations = invoke->GetLocations(); Location src = locations->InAt(0); Register out = locations->Out().AsRegister(); if (invoke->InputAt(0)->IsConstant()) { // Evaluate this at compile time. int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); if (value == 0) { value = is_long ? 64 : 32; } else { value = is_long ? CTZ(static_cast(value)) : CTZ(static_cast(value)); } codegen->Load32BitValue(out, value); return; } // Handle the non-constant cases. if (!is_long) { if (src.IsRegister()) { __ bsfl(out, src.AsRegister()); } else { DCHECK(src.IsStackSlot()); __ bsfl(out, Address(ESP, src.GetStackIndex())); } // BSF sets ZF if the input was zero, and the output is undefined. NearLabel done; __ j(kNotEqual, &done); // Fix the zero case with the expected result. __ movl(out, Immediate(32)); __ Bind(&done); return; } // 64 bit case needs to worry about both parts of the register. DCHECK(src.IsRegisterPair()); Register src_lo = src.AsRegisterPairLow(); Register src_hi = src.AsRegisterPairHigh(); NearLabel done, all_zeroes; // If the low word is zero, then ZF will be set. If not, we have the answer. __ bsfl(out, src_lo); __ j(kNotEqual, &done); // Low word was zero. We have to compute the high word count and add 32. __ bsfl(out, src_hi); __ j(kEqual, &all_zeroes); // We had a valid result. Add 32 to account for the low word being zero. __ addl(out, Immediate(32)); __ jmp(&done); // All zero case. __ Bind(&all_zeroes); __ movl(out, Immediate(64)); __ Bind(&done); } void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { CreateTrailingZeroLocations(arena_, invoke, /* is_long */ false); } void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); } void IntrinsicLocationsBuilderX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { CreateTrailingZeroLocations(arena_, invoke, /* is_long */ true); } void IntrinsicCodeGeneratorX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); } UNIMPLEMENTED_INTRINSIC(X86, MathRoundDouble) UNIMPLEMENTED_INTRINSIC(X86, ReferenceGetReferent) UNIMPLEMENTED_INTRINSIC(X86, SystemArrayCopy) UNIMPLEMENTED_INTRINSIC(X86, FloatIsInfinite) UNIMPLEMENTED_INTRINSIC(X86, DoubleIsInfinite) UNIMPLEMENTED_INTRINSIC(X86, IntegerHighestOneBit) UNIMPLEMENTED_INTRINSIC(X86, LongHighestOneBit) UNIMPLEMENTED_INTRINSIC(X86, IntegerLowestOneBit) UNIMPLEMENTED_INTRINSIC(X86, LongLowestOneBit) // 1.8. UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndAddInt) UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndAddLong) UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetInt) UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetLong) UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetObject) UNREACHABLE_INTRINSICS(X86) #undef __ } // namespace x86 } // namespace art