/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bounds_check_elimination.h" #include "nodes.h" #include "utils/arena_containers.h" namespace art { class MonotonicValueRange; /** * A value bound is represented as a pair of value and constant, * e.g. array.length - 1. */ class ValueBound : public ValueObject { public: ValueBound(HInstruction* instruction, int constant) { if (instruction != nullptr && instruction->IsIntConstant()) { // Normalizing ValueBound with constant instruction. int instr_const = instruction->AsIntConstant()->GetValue(); if (constant >= 0 && (instr_const <= INT_MAX - constant)) { // No overflow. instruction_ = nullptr; constant_ = instr_const + constant; return; } if (constant < 0 && (instr_const >= INT_MIN - constant)) { // No underflow. instruction_ = nullptr; constant_ = instr_const + constant; return; } } instruction_ = instruction; constant_ = constant; } // Try to detect useful value bound format from an instruction, e.g. // a constant or array length related value. static ValueBound DetectValueBoundFromValue(HInstruction* instruction, bool* found) { DCHECK(instruction != nullptr); if (instruction->IsIntConstant()) { *found = true; return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); } if (instruction->IsArrayLength()) { *found = true; return ValueBound(instruction, 0); } // Try to detect (array.length + c) format. if (instruction->IsAdd()) { HAdd* add = instruction->AsAdd(); HInstruction* left = add->GetLeft(); HInstruction* right = add->GetRight(); if (left->IsArrayLength() && right->IsIntConstant()) { *found = true; return ValueBound(left, right->AsIntConstant()->GetValue()); } } // No useful bound detected. *found = false; return ValueBound::Max(); } HInstruction* GetInstruction() const { return instruction_; } int GetConstant() const { return constant_; } bool IsRelativeToArrayLength() const { return instruction_ != nullptr && instruction_->IsArrayLength(); } bool IsConstant() const { return instruction_ == nullptr; } static ValueBound Min() { return ValueBound(nullptr, INT_MIN); } static ValueBound Max() { return ValueBound(nullptr, INT_MAX); } bool Equals(ValueBound bound) const { return instruction_ == bound.instruction_ && constant_ == bound.constant_; } // Returns if it's certain bound1 >= bound2. bool GreaterThanOrEqual(ValueBound bound) const { if (instruction_ == bound.instruction_) { if (instruction_ == nullptr) { // Pure constant. return constant_ >= bound.constant_; } // There might be overflow/underflow. Be conservative for now. return false; } // Not comparable. Just return false. return false; } // Returns if it's certain bound1 <= bound2. bool LessThanOrEqual(ValueBound bound) const { if (instruction_ == bound.instruction_) { if (instruction_ == nullptr) { // Pure constant. return constant_ <= bound.constant_; } if (IsRelativeToArrayLength()) { // Array length is guaranteed to be no less than 0. // No overflow/underflow can happen if both constants are negative. if (constant_ <= 0 && bound.constant_ <= 0) { return constant_ <= bound.constant_; } // There might be overflow/underflow. Be conservative for now. return false; } } // In case the array length is some constant, we can // still compare. if (IsConstant() && bound.IsRelativeToArrayLength()) { HInstruction* array = bound.GetInstruction()->AsArrayLength()->InputAt(0); if (array->IsNullCheck()) { array = array->AsNullCheck()->InputAt(0); } if (array->IsNewArray()) { HInstruction* len = array->InputAt(0); if (len->IsIntConstant()) { int len_const = len->AsIntConstant()->GetValue(); return constant_ <= len_const + bound.GetConstant(); } } } // Not comparable. Just return false. return false; } // Try to narrow lower bound. Returns the greatest of the two if possible. // Pick one if they are not comparable. static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) { if (bound1.instruction_ == bound2.instruction_) { // Same instruction, compare the constant part. return ValueBound(bound1.instruction_, std::max(bound1.constant_, bound2.constant_)); } // Not comparable. Just pick one. We may lose some info, but that's ok. // Favor constant as lower bound. return bound1.IsConstant() ? bound1 : bound2; } // Try to narrow upper bound. Returns the lowest of the two if possible. // Pick one if they are not comparable. static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) { if (bound1.instruction_ == bound2.instruction_) { // Same instruction, compare the constant part. return ValueBound(bound1.instruction_, std::min(bound1.constant_, bound2.constant_)); } // Not comparable. Just pick one. We may lose some info, but that's ok. // Favor array length as upper bound. return bound1.IsRelativeToArrayLength() ? bound1 : bound2; } // Add a constant to a ValueBound. If the constant part of the ValueBound // overflows/underflows, then we can't accurately represent it. For correctness, // just return Max/Min() depending on whether the returned ValueBound is used for // lower/upper bound. ValueBound Add(int c, bool* overflow_or_underflow) const { *overflow_or_underflow = false; if (c == 0) { return *this; } int new_constant; if (c > 0) { if (constant_ > INT_MAX - c) { // Constant part overflows. *overflow_or_underflow = true; return Max(); } else { new_constant = constant_ + c; } } else { if (constant_ < INT_MIN - c) { // Constant part underflows. *overflow_or_underflow = true; return Max(); } else { new_constant = constant_ + c; } } return ValueBound(instruction_, new_constant); } private: HInstruction* instruction_; int constant_; }; /** * Represent a range of lower bound and upper bound, both being inclusive. * Currently a ValueRange may be generated as a result of the following: * comparisons related to array bounds, array bounds check, add/sub on top * of an existing value range, or a loop phi corresponding to an * incrementing/decrementing array index (MonotonicValueRange). */ class ValueRange : public ArenaObject { public: ValueRange(ArenaAllocator* allocator, ValueBound lower, ValueBound upper) : allocator_(allocator), lower_(lower), upper_(upper) {} virtual ~ValueRange() {} virtual const MonotonicValueRange* AsMonotonicValueRange() const { return nullptr; } bool IsMonotonicValueRange() const { return AsMonotonicValueRange() != nullptr; } ArenaAllocator* GetAllocator() const { return allocator_; } ValueBound GetLower() const { return lower_; } ValueBound GetUpper() const { return upper_; } // If it's certain that this value range fits in other_range. virtual bool FitsIn(ValueRange* other_range) const { if (other_range == nullptr) { return true; } DCHECK(!other_range->IsMonotonicValueRange()); return lower_.GreaterThanOrEqual(other_range->lower_) && upper_.LessThanOrEqual(other_range->upper_); } // Returns the intersection of this and range. // If it's not possible to do intersection because some // bounds are not comparable, it's ok to pick either bound. virtual ValueRange* Narrow(ValueRange* range) { if (range == nullptr) { return this; } if (range->IsMonotonicValueRange()) { return this; } return new (allocator_) ValueRange( allocator_, ValueBound::NarrowLowerBound(lower_, range->lower_), ValueBound::NarrowUpperBound(upper_, range->upper_)); } // Shift a range by a constant. If either bound can't be represented // as (instruction+c) format due to possible overflow/underflow, // return the full integer range. ValueRange* Add(int constant) const { bool overflow_or_underflow; ValueBound lower = lower_.Add(constant, &overflow_or_underflow); if (overflow_or_underflow) { // We can't accurately represent the bounds anymore. return FullIntRange(); } ValueBound upper = upper_.Add(constant, &overflow_or_underflow); if (overflow_or_underflow) { // We can't accurately represent the bounds anymore. return FullIntRange(); } return new (allocator_) ValueRange(allocator_, lower, upper); } // Return [INT_MIN, INT_MAX]. ValueRange* FullIntRange() const { return new (allocator_) ValueRange(allocator_, ValueBound::Min(), ValueBound::Max()); } private: ArenaAllocator* const allocator_; const ValueBound lower_; // inclusive const ValueBound upper_; // inclusive DISALLOW_COPY_AND_ASSIGN(ValueRange); }; /** * A monotonically incrementing/decrementing value range, e.g. * the variable i in "for (int i=0; iIsMonotonicValueRange()); return false; } // Try to narrow this MonotonicValueRange given another range. // Ideally it will return a normal ValueRange. But due to // possible overflow/underflow, that may not be possible. ValueRange* Narrow(ValueRange* range) OVERRIDE { if (range == nullptr) { return this; } DCHECK(!range->IsMonotonicValueRange()); if (increment_ > 0) { // Monotonically increasing. ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower()); // We currently conservatively assume max array length is INT_MAX. If we can // make assumptions about the max array length, e.g. due to the max heap size, // divided by the element size (such as 4 bytes for each integer array), we can // lower this number and rule out some possible overflows. int max_array_len = INT_MAX; int upper = INT_MAX; if (range->GetUpper().IsConstant()) { upper = range->GetUpper().GetConstant(); } else if (range->GetUpper().IsRelativeToArrayLength()) { int constant = range->GetUpper().GetConstant(); if (constant <= 0) { // Normal case. e.g. <= array.length - 1, <= array.length - 2, etc. upper = max_array_len + constant; } else { // There might be overflow. Give up narrowing. return this; } } else { // There might be overflow. Give up narrowing. return this; } // If we can prove for the last number in sequence of initial_, // initial_ + increment_, initial_ + 2 x increment_, ... // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow, // then this MonoticValueRange is narrowed to a normal value range. // Be conservative first, assume last number in the sequence hits upper. int last_num_in_sequence = upper; if (initial_->IsIntConstant()) { int initial_constant = initial_->AsIntConstant()->GetValue(); if (upper <= initial_constant) { last_num_in_sequence = upper; } else { // Cast to int64_t for the substraction part to avoid int overflow. last_num_in_sequence = initial_constant + ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_; } } if (last_num_in_sequence <= INT_MAX - increment_) { // No overflow. The sequence will be stopped by the upper bound test as expected. return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper()); } // There might be overflow. Give up narrowing. return this; } else { DCHECK_NE(increment_, 0); // Monotonically decreasing. ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper()); // Need to take care of underflow. Try to prove underflow won't happen // for common cases. Basically need to be able to prove for any value // that's >= range->GetLower(), it won't be positive with value+increment. if (range->GetLower().IsConstant()) { int constant = range->GetLower().GetConstant(); if (constant >= INT_MIN - increment_) { return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper); } } // There might be underflow. Give up narrowing. return this; } } private: HInstruction* const initial_; const int increment_; ValueBound bound_; // Additional value bound info for initial_; DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange); }; class BCEVisitor : public HGraphVisitor { public: explicit BCEVisitor(HGraph* graph) : HGraphVisitor(graph), maps_(graph->GetBlocks().Size()) {} private: // Return the map of proven value ranges at the beginning of a basic block. ArenaSafeMap* GetValueRangeMap(HBasicBlock* basic_block) { int block_id = basic_block->GetBlockId(); if (maps_.at(block_id) == nullptr) { std::unique_ptr> map( new ArenaSafeMap( std::less(), GetGraph()->GetArena()->Adapter())); maps_.at(block_id) = std::move(map); } return maps_.at(block_id).get(); } // Traverse up the dominator tree to look for value range info. ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) { while (basic_block != nullptr) { ArenaSafeMap* map = GetValueRangeMap(basic_block); if (map->find(instruction->GetId()) != map->end()) { return map->Get(instruction->GetId()); } basic_block = basic_block->GetDominator(); } // Didn't find any. return nullptr; } // Narrow the value range of 'instruction' at the end of 'basic_block' with 'range', // and push the narrowed value range to 'successor'. void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block, HBasicBlock* successor, ValueRange* range) { ValueRange* existing_range = LookupValueRange(instruction, basic_block); ValueRange* narrowed_range = (existing_range == nullptr) ? range : existing_range->Narrow(range); if (narrowed_range != nullptr) { GetValueRangeMap(successor)->Overwrite(instruction->GetId(), narrowed_range); } } // Handle "if (left cmp_cond right)". void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) { HBasicBlock* block = instruction->GetBlock(); HBasicBlock* true_successor = instruction->IfTrueSuccessor(); // There should be no critical edge at this point. DCHECK_EQ(true_successor->GetPredecessors().Size(), 1u); HBasicBlock* false_successor = instruction->IfFalseSuccessor(); // There should be no critical edge at this point. DCHECK_EQ(false_successor->GetPredecessors().Size(), 1u); bool found; ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found); ValueBound lower = bound; ValueBound upper = bound; if (!found) { // No constant or array.length+c bound found. // For iGetLower(); upper = range->GetUpper(); } else { lower = ValueBound::Min(); upper = ValueBound::Max(); } } bool overflow_or_underflow; if (cond == kCondLT || cond == kCondLE) { if (!upper.Equals(ValueBound::Max())) { int compensation = (cond == kCondLT) ? -1 : 0; // upper bound is inclusive ValueBound new_upper = upper.Add(compensation, &overflow_or_underflow); if (overflow_or_underflow) { new_upper = ValueBound::Max(); } ValueRange* new_range = new (GetGraph()->GetArena()) ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper); ApplyRangeFromComparison(left, block, true_successor, new_range); } // array.length as a lower bound isn't considered useful. if (!lower.Equals(ValueBound::Min()) && !lower.IsRelativeToArrayLength()) { int compensation = (cond == kCondLE) ? 1 : 0; // lower bound is inclusive ValueBound new_lower = lower.Add(compensation, &overflow_or_underflow); if (overflow_or_underflow) { new_lower = ValueBound::Min(); } ValueRange* new_range = new (GetGraph()->GetArena()) ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max()); ApplyRangeFromComparison(left, block, false_successor, new_range); } } else if (cond == kCondGT || cond == kCondGE) { // array.length as a lower bound isn't considered useful. if (!lower.Equals(ValueBound::Min()) && !lower.IsRelativeToArrayLength()) { int compensation = (cond == kCondGT) ? 1 : 0; // lower bound is inclusive ValueBound new_lower = lower.Add(compensation, &overflow_or_underflow); if (overflow_or_underflow) { new_lower = ValueBound::Min(); } ValueRange* new_range = new (GetGraph()->GetArena()) ValueRange(GetGraph()->GetArena(), new_lower, ValueBound::Max()); ApplyRangeFromComparison(left, block, true_successor, new_range); } if (!upper.Equals(ValueBound::Max())) { int compensation = (cond == kCondGE) ? -1 : 0; // upper bound is inclusive ValueBound new_upper = upper.Add(compensation, &overflow_or_underflow); if (overflow_or_underflow) { new_upper = ValueBound::Max(); } ValueRange* new_range = new (GetGraph()->GetArena()) ValueRange(GetGraph()->GetArena(), ValueBound::Min(), new_upper); ApplyRangeFromComparison(left, block, false_successor, new_range); } } } void VisitBoundsCheck(HBoundsCheck* bounds_check) { HBasicBlock* block = bounds_check->GetBlock(); HInstruction* index = bounds_check->InputAt(0); HInstruction* array_length = bounds_check->InputAt(1); ValueRange* index_range = LookupValueRange(index, block); if (index_range != nullptr) { ValueBound lower = ValueBound(nullptr, 0); // constant 0 ValueBound upper = ValueBound(array_length, -1); // array_length - 1 ValueRange* array_range = new (GetGraph()->GetArena()) ValueRange(GetGraph()->GetArena(), lower, upper); if (index_range->FitsIn(array_range)) { ReplaceBoundsCheck(bounds_check, index); return; } } if (index->IsIntConstant()) { ValueRange* array_length_range = LookupValueRange(array_length, block); int constant = index->AsIntConstant()->GetValue(); if (array_length_range != nullptr && array_length_range->GetLower().IsConstant()) { if (constant < array_length_range->GetLower().GetConstant()) { ReplaceBoundsCheck(bounds_check, index); return; } } // Once we have an array access like 'array[5] = 1', we record array.length >= 6. ValueBound lower = ValueBound(nullptr, constant + 1); ValueBound upper = ValueBound::Max(); ValueRange* range = new (GetGraph()->GetArena()) ValueRange(GetGraph()->GetArena(), lower, upper); ValueRange* existing_range = LookupValueRange(array_length, block); ValueRange* new_range = range; if (existing_range != nullptr) { new_range = range->Narrow(existing_range); } GetValueRangeMap(block)->Overwrite(array_length->GetId(), new_range); } } void ReplaceBoundsCheck(HInstruction* bounds_check, HInstruction* index) { bounds_check->ReplaceWith(index); bounds_check->GetBlock()->RemoveInstruction(bounds_check); } void VisitPhi(HPhi* phi) { if (phi->IsLoopHeaderPhi() && phi->GetType() == Primitive::kPrimInt) { DCHECK_EQ(phi->InputCount(), 2U); HInstruction* instruction = phi->InputAt(1); if (instruction->IsAdd()) { HAdd* add = instruction->AsAdd(); HInstruction* left = add->GetLeft(); HInstruction* right = add->GetRight(); if (left == phi && right->IsIntConstant()) { HInstruction* initial_value = phi->InputAt(0); ValueRange* range = nullptr; int increment = right->AsIntConstant()->GetValue(); if (increment == 0) { // Add constant 0. It's really a fixed value. range = new (GetGraph()->GetArena()) ValueRange( GetGraph()->GetArena(), ValueBound(initial_value, 0), ValueBound(initial_value, 0)); } else { // Monotonically increasing/decreasing. bool found; ValueBound bound = ValueBound::DetectValueBoundFromValue( initial_value, &found); if (!found) { // No constant or array.length+c bound found. // For i=j, we can still use j's upper bound as i's upper bound. // Same for lower. ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock()); if (initial_range != nullptr) { bound = increment > 0 ? initial_range->GetLower() : initial_range->GetUpper(); } else { bound = increment > 0 ? ValueBound::Min() : ValueBound::Max(); } } range = new (GetGraph()->GetArena()) MonotonicValueRange( GetGraph()->GetArena(), initial_value, increment, bound); } GetValueRangeMap(phi->GetBlock())->Overwrite(phi->GetId(), range); } } } } void VisitIf(HIf* instruction) { if (instruction->InputAt(0)->IsCondition()) { HCondition* cond = instruction->InputAt(0)->AsCondition(); IfCondition cmp = cond->GetCondition(); if (cmp == kCondGT || cmp == kCondGE || cmp == kCondLT || cmp == kCondLE) { HInstruction* left = cond->GetLeft(); HInstruction* right = cond->GetRight(); HandleIf(instruction, left, right, cmp); } } } void VisitAdd(HAdd* add) { HInstruction* right = add->GetRight(); if (right->IsIntConstant()) { ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock()); if (left_range == nullptr) { return; } ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue()); if (range != nullptr) { GetValueRangeMap(add->GetBlock())->Overwrite(add->GetId(), range); } } } void VisitSub(HSub* sub) { HInstruction* left = sub->GetLeft(); HInstruction* right = sub->GetRight(); if (right->IsIntConstant()) { ValueRange* left_range = LookupValueRange(left, sub->GetBlock()); if (left_range == nullptr) { return; } ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue()); if (range != nullptr) { GetValueRangeMap(sub->GetBlock())->Overwrite(sub->GetId(), range); return; } } // Here we are interested in the typical triangular case of nested loops, // such as the inner loop 'for (int j=0; jIsArrayLength()) { HInstruction* array_length = left->AsArrayLength(); ValueRange* right_range = LookupValueRange(right, sub->GetBlock()); if (right_range != nullptr) { ValueBound lower = right_range->GetLower(); ValueBound upper = right_range->GetUpper(); if (lower.IsConstant() && upper.IsRelativeToArrayLength()) { HInstruction* upper_inst = upper.GetInstruction(); if (upper_inst->IsArrayLength() && upper_inst->AsArrayLength() == array_length) { // (array.length - v) where v is in [c1, array.length + c2] // gets [-c2, array.length - c1] as its value range. ValueRange* range = new (GetGraph()->GetArena()) ValueRange( GetGraph()->GetArena(), ValueBound(nullptr, - upper.GetConstant()), ValueBound(array_length, - lower.GetConstant())); GetValueRangeMap(sub->GetBlock())->Overwrite(sub->GetId(), range); } } } } } std::vector>> maps_; DISALLOW_COPY_AND_ASSIGN(BCEVisitor); }; void BoundsCheckElimination::Run() { BCEVisitor visitor(graph_); // Reverse post order guarantees a node's dominators are visited first. // We want to visit in the dominator-based order since if a value is known to // be bounded by a range at one instruction, it must be true that all uses of // that value dominated by that instruction fits in that range. Range of that // value can be narrowed further down in the dominator tree. // // TODO: only visit blocks that dominate some array accesses. visitor.VisitReversePostOrder(); } } // namespace art