/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "codegen_mips.h" #include #include #include "dex/compiler_internals.h" #include "dex/quick/mir_to_lir-inl.h" #include "mips_lir.h" namespace art { static constexpr RegStorage core_regs_arr[] = {rs_rZERO, rs_rAT, rs_rV0, rs_rV1, rs_rA0, rs_rA1, rs_rA2, rs_rA3, rs_rT0, rs_rT1, rs_rT2, rs_rT3, rs_rT4, rs_rT5, rs_rT6, rs_rT7, rs_rS0, rs_rS1, rs_rS2, rs_rS3, rs_rS4, rs_rS5, rs_rS6, rs_rS7, rs_rT8, rs_rT9, rs_rK0, rs_rK1, rs_rGP, rs_rSP, rs_rFP, rs_rRA}; static constexpr RegStorage sp_regs_arr[] = {rs_rF0, rs_rF1, rs_rF2, rs_rF3, rs_rF4, rs_rF5, rs_rF6, rs_rF7, rs_rF8, rs_rF9, rs_rF10, rs_rF11, rs_rF12, rs_rF13, rs_rF14, rs_rF15}; static constexpr RegStorage dp_regs_arr[] = {rs_rD0, rs_rD1, rs_rD2, rs_rD3, rs_rD4, rs_rD5, rs_rD6, rs_rD7}; static constexpr RegStorage reserved_regs_arr[] = {rs_rZERO, rs_rAT, rs_rS0, rs_rS1, rs_rK0, rs_rK1, rs_rGP, rs_rSP, rs_rRA}; static constexpr RegStorage core_temps_arr[] = {rs_rV0, rs_rV1, rs_rA0, rs_rA1, rs_rA2, rs_rA3, rs_rT0, rs_rT1, rs_rT2, rs_rT3, rs_rT4, rs_rT5, rs_rT6, rs_rT7, rs_rT8}; static constexpr RegStorage sp_temps_arr[] = {rs_rF0, rs_rF1, rs_rF2, rs_rF3, rs_rF4, rs_rF5, rs_rF6, rs_rF7, rs_rF8, rs_rF9, rs_rF10, rs_rF11, rs_rF12, rs_rF13, rs_rF14, rs_rF15}; static constexpr RegStorage dp_temps_arr[] = {rs_rD0, rs_rD1, rs_rD2, rs_rD3, rs_rD4, rs_rD5, rs_rD6, rs_rD7}; static constexpr ArrayRef empty_pool; static constexpr ArrayRef core_regs(core_regs_arr); static constexpr ArrayRef sp_regs(sp_regs_arr); static constexpr ArrayRef dp_regs(dp_regs_arr); static constexpr ArrayRef reserved_regs(reserved_regs_arr); static constexpr ArrayRef core_temps(core_temps_arr); static constexpr ArrayRef sp_temps(sp_temps_arr); static constexpr ArrayRef dp_temps(dp_temps_arr); RegLocation MipsMir2Lir::LocCReturn() { return mips_loc_c_return; } RegLocation MipsMir2Lir::LocCReturnRef() { return mips_loc_c_return; } RegLocation MipsMir2Lir::LocCReturnWide() { return mips_loc_c_return_wide; } RegLocation MipsMir2Lir::LocCReturnFloat() { return mips_loc_c_return_float; } RegLocation MipsMir2Lir::LocCReturnDouble() { return mips_loc_c_return_double; } // Return a target-dependent special register. RegStorage MipsMir2Lir::TargetReg(SpecialTargetRegister reg) { RegStorage res_reg; switch (reg) { case kSelf: res_reg = rs_rMIPS_SELF; break; case kSuspend: res_reg = rs_rMIPS_SUSPEND; break; case kLr: res_reg = rs_rMIPS_LR; break; case kPc: res_reg = rs_rMIPS_PC; break; case kSp: res_reg = rs_rMIPS_SP; break; case kArg0: res_reg = rs_rMIPS_ARG0; break; case kArg1: res_reg = rs_rMIPS_ARG1; break; case kArg2: res_reg = rs_rMIPS_ARG2; break; case kArg3: res_reg = rs_rMIPS_ARG3; break; case kFArg0: res_reg = rs_rMIPS_FARG0; break; case kFArg1: res_reg = rs_rMIPS_FARG1; break; case kFArg2: res_reg = rs_rMIPS_FARG2; break; case kFArg3: res_reg = rs_rMIPS_FARG3; break; case kRet0: res_reg = rs_rMIPS_RET0; break; case kRet1: res_reg = rs_rMIPS_RET1; break; case kInvokeTgt: res_reg = rs_rMIPS_INVOKE_TGT; break; case kHiddenArg: res_reg = rs_rT0; break; case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break; case kCount: res_reg = rs_rMIPS_COUNT; break; } return res_reg; } RegStorage MipsMir2Lir::GetArgMappingToPhysicalReg(int arg_num) { // For the 32-bit internal ABI, the first 3 arguments are passed in registers. switch (arg_num) { case 0: return rs_rMIPS_ARG1; case 1: return rs_rMIPS_ARG2; case 2: return rs_rMIPS_ARG3; default: return RegStorage::InvalidReg(); } } /* * Decode the register id. */ uint64_t MipsMir2Lir::GetRegMaskCommon(RegStorage reg) { uint64_t seed; int shift; int reg_id = reg.GetRegNum(); /* Each double register is equal to a pair of single-precision FP registers */ if (reg.IsDouble()) { seed = 0x3; reg_id = reg_id << 1; } else { seed = 1; } /* FP register starts at bit position 32 */ shift = reg.IsFloat() ? kMipsFPReg0 : 0; /* Expand the double register id into single offset */ shift += reg_id; return (seed << shift); } uint64_t MipsMir2Lir::GetPCUseDefEncoding() { return ENCODE_MIPS_REG_PC; } void MipsMir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) { DCHECK_EQ(cu_->instruction_set, kMips); DCHECK(!lir->flags.use_def_invalid); // Mips-specific resource map setup here. if (flags & REG_DEF_SP) { lir->u.m.def_mask |= ENCODE_MIPS_REG_SP; } if (flags & REG_USE_SP) { lir->u.m.use_mask |= ENCODE_MIPS_REG_SP; } if (flags & REG_DEF_LR) { lir->u.m.def_mask |= ENCODE_MIPS_REG_LR; } if (flags & REG_DEF_HI) { lir->u.m.def_mask |= ENCODE_MIPS_REG_HI; } if (flags & REG_DEF_LO) { lir->u.m.def_mask |= ENCODE_MIPS_REG_LO; } if (flags & REG_USE_HI) { lir->u.m.use_mask |= ENCODE_MIPS_REG_HI; } if (flags & REG_USE_LO) { lir->u.m.use_mask |= ENCODE_MIPS_REG_LO; } } /* For dumping instructions */ #define MIPS_REG_COUNT 32 static const char *mips_reg_name[MIPS_REG_COUNT] = { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra" }; /* * Interpret a format string and build a string no longer than size * See format key in Assemble.c. */ std::string MipsMir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) { std::string buf; int i; const char *fmt_end = &fmt[strlen(fmt)]; char tbuf[256]; char nc; while (fmt < fmt_end) { int operand; if (*fmt == '!') { fmt++; DCHECK_LT(fmt, fmt_end); nc = *fmt++; if (nc == '!') { strcpy(tbuf, "!"); } else { DCHECK_LT(fmt, fmt_end); DCHECK_LT(static_cast(nc-'0'), 4u); operand = lir->operands[nc-'0']; switch (*fmt++) { case 'b': strcpy(tbuf, "0000"); for (i = 3; i >= 0; i--) { tbuf[i] += operand & 1; operand >>= 1; } break; case 's': snprintf(tbuf, arraysize(tbuf), "$f%d", RegStorage::RegNum(operand)); break; case 'S': DCHECK_EQ(RegStorage::RegNum(operand) & 1, 0); snprintf(tbuf, arraysize(tbuf), "$f%d", RegStorage::RegNum(operand)); break; case 'h': snprintf(tbuf, arraysize(tbuf), "%04x", operand); break; case 'M': case 'd': snprintf(tbuf, arraysize(tbuf), "%d", operand); break; case 'D': snprintf(tbuf, arraysize(tbuf), "%d", operand+1); break; case 'E': snprintf(tbuf, arraysize(tbuf), "%d", operand*4); break; case 'F': snprintf(tbuf, arraysize(tbuf), "%d", operand*2); break; case 't': snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)", reinterpret_cast(base_addr) + lir->offset + 4 + (operand << 1), lir->target); break; case 'T': snprintf(tbuf, arraysize(tbuf), "0x%08x", operand << 2); break; case 'u': { int offset_1 = lir->operands[0]; int offset_2 = NEXT_LIR(lir)->operands[0]; uintptr_t target = (((reinterpret_cast(base_addr) + lir->offset + 4) & ~3) + (offset_1 << 21 >> 9) + (offset_2 << 1)) & 0xfffffffc; snprintf(tbuf, arraysize(tbuf), "%p", reinterpret_cast(target)); break; } /* Nothing to print for BLX_2 */ case 'v': strcpy(tbuf, "see above"); break; case 'r': DCHECK(operand >= 0 && operand < MIPS_REG_COUNT); strcpy(tbuf, mips_reg_name[operand]); break; case 'N': // Placeholder for delay slot handling strcpy(tbuf, "; nop"); break; default: strcpy(tbuf, "DecodeError"); break; } buf += tbuf; } } else { buf += *fmt++; } } return buf; } // FIXME: need to redo resource maps for MIPS - fix this at that time void MipsMir2Lir::DumpResourceMask(LIR *mips_lir, uint64_t mask, const char *prefix) { char buf[256]; buf[0] = 0; if (mask == ENCODE_ALL) { strcpy(buf, "all"); } else { char num[8]; int i; for (i = 0; i < kMipsRegEnd; i++) { if (mask & (1ULL << i)) { snprintf(num, arraysize(num), "%d ", i); strcat(buf, num); } } if (mask & ENCODE_CCODE) { strcat(buf, "cc "); } if (mask & ENCODE_FP_STATUS) { strcat(buf, "fpcc "); } /* Memory bits */ if (mips_lir && (mask & ENCODE_DALVIK_REG)) { snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s", DECODE_ALIAS_INFO_REG(mips_lir->flags.alias_info), DECODE_ALIAS_INFO_WIDE(mips_lir->flags.alias_info) ? "(+1)" : ""); } if (mask & ENCODE_LITERAL) { strcat(buf, "lit "); } if (mask & ENCODE_HEAP_REF) { strcat(buf, "heap "); } if (mask & ENCODE_MUST_NOT_ALIAS) { strcat(buf, "noalias "); } } if (buf[0]) { LOG(INFO) << prefix << ": " << buf; } } /* * TUNING: is true leaf? Can't just use METHOD_IS_LEAF to determine as some * instructions might call out to C/assembly helper functions. Until * machinery is in place, always spill lr. */ void MipsMir2Lir::AdjustSpillMask() { core_spill_mask_ |= (1 << rs_rRA.GetRegNum()); num_core_spills_++; } /* * Mark a callee-save fp register as promoted. Note that * vpush/vpop uses contiguous register lists so we must * include any holes in the mask. Associate holes with * Dalvik register INVALID_VREG (0xFFFFU). */ void MipsMir2Lir::MarkPreservedSingle(int s_reg, RegStorage reg) { LOG(FATAL) << "No support yet for promoted FP regs"; } void MipsMir2Lir::MarkPreservedDouble(int s_reg, RegStorage reg) { LOG(FATAL) << "No support yet for promoted FP regs"; } /* Clobber all regs that might be used by an external C call */ void MipsMir2Lir::ClobberCallerSave() { Clobber(rs_rZERO); Clobber(rs_rAT); Clobber(rs_rV0); Clobber(rs_rV1); Clobber(rs_rA0); Clobber(rs_rA1); Clobber(rs_rA2); Clobber(rs_rA3); Clobber(rs_rT0); Clobber(rs_rT1); Clobber(rs_rT2); Clobber(rs_rT3); Clobber(rs_rT4); Clobber(rs_rT5); Clobber(rs_rT6); Clobber(rs_rT7); Clobber(rs_rT8); Clobber(rs_rT9); Clobber(rs_rK0); Clobber(rs_rK1); Clobber(rs_rGP); Clobber(rs_rFP); Clobber(rs_rRA); Clobber(rs_rF0); Clobber(rs_rF1); Clobber(rs_rF2); Clobber(rs_rF3); Clobber(rs_rF4); Clobber(rs_rF5); Clobber(rs_rF6); Clobber(rs_rF7); Clobber(rs_rF8); Clobber(rs_rF9); Clobber(rs_rF10); Clobber(rs_rF11); Clobber(rs_rF12); Clobber(rs_rF13); Clobber(rs_rF14); Clobber(rs_rF15); Clobber(rs_rD0); Clobber(rs_rD1); Clobber(rs_rD2); Clobber(rs_rD3); Clobber(rs_rD4); Clobber(rs_rD5); Clobber(rs_rD6); Clobber(rs_rD7); } RegLocation MipsMir2Lir::GetReturnWideAlt() { UNIMPLEMENTED(FATAL) << "No GetReturnWideAlt for MIPS"; RegLocation res = LocCReturnWide(); return res; } RegLocation MipsMir2Lir::GetReturnAlt() { UNIMPLEMENTED(FATAL) << "No GetReturnAlt for MIPS"; RegLocation res = LocCReturn(); return res; } /* To be used when explicitly managing register use */ void MipsMir2Lir::LockCallTemps() { LockTemp(rs_rMIPS_ARG0); LockTemp(rs_rMIPS_ARG1); LockTemp(rs_rMIPS_ARG2); LockTemp(rs_rMIPS_ARG3); } /* To be used when explicitly managing register use */ void MipsMir2Lir::FreeCallTemps() { FreeTemp(rs_rMIPS_ARG0); FreeTemp(rs_rMIPS_ARG1); FreeTemp(rs_rMIPS_ARG2); FreeTemp(rs_rMIPS_ARG3); } bool MipsMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { #if ANDROID_SMP != 0 NewLIR1(kMipsSync, 0 /* Only stype currently supported */); return true; #else return false; #endif } void MipsMir2Lir::CompilerInitializeRegAlloc() { reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs, empty_pool /* core64 */, sp_regs, dp_regs, reserved_regs, empty_pool /* reserved64 */, core_temps, empty_pool /* core64_temps */, sp_temps, dp_temps); // Target-specific adjustments. // Alias single precision floats to appropriate half of overlapping double. GrowableArray::Iterator it(®_pool_->sp_regs_); for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) { int sp_reg_num = info->GetReg().GetRegNum(); int dp_reg_num = sp_reg_num >> 1; RegStorage dp_reg = RegStorage::Solo64(RegStorage::kFloatingPoint | dp_reg_num); RegisterInfo* dp_reg_info = GetRegInfo(dp_reg); // Double precision register's master storage should refer to itself. DCHECK_EQ(dp_reg_info, dp_reg_info->Master()); // Redirect single precision's master storage to master. info->SetMaster(dp_reg_info); // Singles should show a single 32-bit mask bit, at first referring to the low half. DCHECK_EQ(info->StorageMask(), 0x1U); if (sp_reg_num & 1) { // For odd singles, change to user the high word of the backing double. info->SetStorageMask(0x2); } } // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods. // TODO: adjust when we roll to hard float calling convention. reg_pool_->next_core_reg_ = 2; reg_pool_->next_sp_reg_ = 2; reg_pool_->next_dp_reg_ = 1; } /* * In the Arm code a it is typical to use the link register * to hold the target address. However, for Mips we must * ensure that all branch instructions can be restarted if * there is a trap in the shadow. Allocate a temp register. */ RegStorage MipsMir2Lir::LoadHelper(ThreadOffset<4> offset) { // NOTE: native pointer. LoadWordDisp(rs_rMIPS_SELF, offset.Int32Value(), rs_rT9); return rs_rT9; } RegStorage MipsMir2Lir::LoadHelper(ThreadOffset<8> offset) { UNIMPLEMENTED(FATAL) << "Should not be called."; return RegStorage::InvalidReg(); } LIR* MipsMir2Lir::CheckSuspendUsingLoad() { RegStorage tmp = AllocTemp(); // NOTE: native pointer. LoadWordDisp(rs_rMIPS_SELF, Thread::ThreadSuspendTriggerOffset<4>().Int32Value(), tmp); LIR *inst = LoadWordDisp(tmp, 0, tmp); FreeTemp(tmp); return inst; } void MipsMir2Lir::SpillCoreRegs() { if (num_core_spills_ == 0) { return; } uint32_t mask = core_spill_mask_; int offset = num_core_spills_ * 4; OpRegImm(kOpSub, rs_rSP, offset); for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { offset -= 4; Store32Disp(rs_rMIPS_SP, offset, RegStorage::Solo32(reg)); } } } void MipsMir2Lir::UnSpillCoreRegs() { if (num_core_spills_ == 0) { return; } uint32_t mask = core_spill_mask_; int offset = frame_size_; for (int reg = 0; mask; mask >>= 1, reg++) { if (mask & 0x1) { offset -= 4; Load32Disp(rs_rMIPS_SP, offset, RegStorage::Solo32(reg)); } } OpRegImm(kOpAdd, rs_rSP, frame_size_); } bool MipsMir2Lir::IsUnconditionalBranch(LIR* lir) { return (lir->opcode == kMipsB); } bool MipsMir2Lir::SupportsVolatileLoadStore(OpSize size) { // No support for 64-bit atomic load/store on mips. return size != k64 && size != kDouble; } RegisterClass MipsMir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) { // No support for 64-bit atomic load/store on mips. DCHECK(size != k64 && size != kDouble); // TODO: Verify that both core and fp registers are suitable for smaller sizes. return RegClassBySize(size); } MipsMir2Lir::MipsMir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) : Mir2Lir(cu, mir_graph, arena) { for (int i = 0; i < kMipsLast; i++) { if (MipsMir2Lir::EncodingMap[i].opcode != i) { LOG(FATAL) << "Encoding order for " << MipsMir2Lir::EncodingMap[i].name << " is wrong: expecting " << i << ", seeing " << static_cast(MipsMir2Lir::EncodingMap[i].opcode); } } } Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph, ArenaAllocator* const arena) { return new MipsMir2Lir(cu, mir_graph, arena); } uint64_t MipsMir2Lir::GetTargetInstFlags(int opcode) { DCHECK(!IsPseudoLirOp(opcode)); return MipsMir2Lir::EncodingMap[opcode].flags; } const char* MipsMir2Lir::GetTargetInstName(int opcode) { DCHECK(!IsPseudoLirOp(opcode)); return MipsMir2Lir::EncodingMap[opcode].name; } const char* MipsMir2Lir::GetTargetInstFmt(int opcode) { DCHECK(!IsPseudoLirOp(opcode)); return MipsMir2Lir::EncodingMap[opcode].fmt; } } // namespace art