/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This file contains codegen for the Mips ISA */ #include "codegen_mips.h" #include "dex/quick/mir_to_lir-inl.h" #include "entrypoints/quick/quick_entrypoints.h" #include "mips_lir.h" namespace art { bool MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special) { // TODO return false; } /* * The lack of pc-relative loads on Mips presents somewhat of a challenge * for our PIC switch table strategy. To materialize the current location * we'll do a dummy JAL and reference our tables using rRA as the * base register. Note that rRA will be used both as the base to * locate the switch table data and as the reference base for the switch * target offsets stored in the table. We'll use a special pseudo-instruction * to represent the jal and trigger the construction of the * switch table offsets (which will happen after final assembly and all * labels are fixed). * * The test loop will look something like: * * ori r_end, rZERO, #table_size ; size in bytes * jal BaseLabel ; stores "return address" (BaseLabel) in rRA * nop ; opportunistically fill * BaseLabel: * addiu r_base, rRA, - ; table relative to BaseLabel addu r_end, r_end, r_base ; end of table * lw r_val, [rSP, v_reg_off] ; Test Value * loop: * beq r_base, r_end, done * lw r_key, 0(r_base) * addu r_base, 8 * bne r_val, r_key, loop * lw r_disp, -4(r_base) * addu rRA, r_disp * jr rRA * done: * */ void MipsMir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) { const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; if (cu_->verbose) { DumpSparseSwitchTable(table); } // Add the table to the list - we'll process it later SwitchTable* tab_rec = static_cast(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); tab_rec->table = table; tab_rec->vaddr = current_dalvik_offset_; int elements = table[1]; tab_rec->targets = static_cast(arena_->Alloc(elements * sizeof(LIR*), kArenaAllocLIR)); switch_tables_.Insert(tab_rec); // The table is composed of 8-byte key/disp pairs int byte_size = elements * 8; int size_hi = byte_size >> 16; int size_lo = byte_size & 0xffff; RegStorage r_end = AllocTemp(); if (size_hi) { NewLIR2(kMipsLui, r_end.GetReg(), size_hi); } // Must prevent code motion for the curr pc pair GenBarrier(); // Scheduling barrier NewLIR0(kMipsCurrPC); // Really a jal to .+8 // Now, fill the branch delay slot if (size_hi) { NewLIR3(kMipsOri, r_end.GetReg(), r_end.GetReg(), size_lo); } else { NewLIR3(kMipsOri, r_end.GetReg(), rZERO, size_lo); } GenBarrier(); // Scheduling barrier // Construct BaseLabel and set up table base register LIR* base_label = NewLIR0(kPseudoTargetLabel); // Remember base label so offsets can be computed later tab_rec->anchor = base_label; RegStorage r_base = AllocTemp(); NewLIR4(kMipsDelta, r_base.GetReg(), 0, WrapPointer(base_label), WrapPointer(tab_rec)); OpRegRegReg(kOpAdd, r_end, r_end, r_base); // Grab switch test value rl_src = LoadValue(rl_src, kCoreReg); // Test loop RegStorage r_key = AllocTemp(); LIR* loop_label = NewLIR0(kPseudoTargetLabel); LIR* exit_branch = OpCmpBranch(kCondEq, r_base, r_end, NULL); Load32Disp(r_base, 0, r_key); OpRegImm(kOpAdd, r_base, 8); OpCmpBranch(kCondNe, rl_src.reg, r_key, loop_label); RegStorage r_disp = AllocTemp(); Load32Disp(r_base, -4, r_disp); OpRegRegReg(kOpAdd, rs_rRA, rs_rRA, r_disp); OpReg(kOpBx, rs_rRA); // Loop exit LIR* exit_label = NewLIR0(kPseudoTargetLabel); exit_branch->target = exit_label; } /* * Code pattern will look something like: * * lw r_val * jal BaseLabel ; stores "return address" (BaseLabel) in rRA * nop ; opportunistically fill * [subiu r_val, bias] ; Remove bias if low_val != 0 * bound check -> done * lw r_disp, [rRA, r_val] * addu rRA, r_disp * jr rRA * done: */ void MipsMir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) { const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; if (cu_->verbose) { DumpPackedSwitchTable(table); } // Add the table to the list - we'll process it later SwitchTable* tab_rec = static_cast(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); tab_rec->table = table; tab_rec->vaddr = current_dalvik_offset_; int size = table[1]; tab_rec->targets = static_cast(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR)); switch_tables_.Insert(tab_rec); // Get the switch value rl_src = LoadValue(rl_src, kCoreReg); // Prepare the bias. If too big, handle 1st stage here int low_key = s4FromSwitchData(&table[2]); bool large_bias = false; RegStorage r_key; if (low_key == 0) { r_key = rl_src.reg; } else if ((low_key & 0xffff) != low_key) { r_key = AllocTemp(); LoadConstant(r_key, low_key); large_bias = true; } else { r_key = AllocTemp(); } // Must prevent code motion for the curr pc pair GenBarrier(); NewLIR0(kMipsCurrPC); // Really a jal to .+8 // Now, fill the branch delay slot with bias strip if (low_key == 0) { NewLIR0(kMipsNop); } else { if (large_bias) { OpRegRegReg(kOpSub, r_key, rl_src.reg, r_key); } else { OpRegRegImm(kOpSub, r_key, rl_src.reg, low_key); } } GenBarrier(); // Scheduling barrier // Construct BaseLabel and set up table base register LIR* base_label = NewLIR0(kPseudoTargetLabel); // Remember base label so offsets can be computed later tab_rec->anchor = base_label; // Bounds check - if < 0 or >= size continue following switch LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL); // Materialize the table base pointer RegStorage r_base = AllocTemp(); NewLIR4(kMipsDelta, r_base.GetReg(), 0, WrapPointer(base_label), WrapPointer(tab_rec)); // Load the displacement from the switch table RegStorage r_disp = AllocTemp(); LoadBaseIndexed(r_base, r_key, r_disp, 2, k32); // Add to rAP and go OpRegRegReg(kOpAdd, rs_rRA, rs_rRA, r_disp); OpReg(kOpBx, rs_rRA); /* branch_over target here */ LIR* target = NewLIR0(kPseudoTargetLabel); branch_over->target = target; } /* * Array data table format: * ushort ident = 0x0300 magic value * ushort width width of each element in the table * uint size number of elements in the table * ubyte data[size*width] table of data values (may contain a single-byte * padding at the end) * * Total size is 4+(width * size + 1)/2 16-bit code units. */ void MipsMir2Lir::GenFillArrayData(DexOffset table_offset, RegLocation rl_src) { const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset; // Add the table to the list - we'll process it later FillArrayData* tab_rec = reinterpret_cast(arena_->Alloc(sizeof(FillArrayData), kArenaAllocData)); tab_rec->table = table; tab_rec->vaddr = current_dalvik_offset_; uint16_t width = tab_rec->table[1]; uint32_t size = tab_rec->table[2] | ((static_cast(tab_rec->table[3])) << 16); tab_rec->size = (size * width) + 8; fill_array_data_.Insert(tab_rec); // Making a call - use explicit registers FlushAllRegs(); /* Everything to home location */ LockCallTemps(); LoadValueDirectFixed(rl_src, rs_rMIPS_ARG0); // Must prevent code motion for the curr pc pair GenBarrier(); NewLIR0(kMipsCurrPC); // Really a jal to .+8 // Now, fill the branch delay slot with the helper load RegStorage r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pHandleFillArrayData)); GenBarrier(); // Scheduling barrier // Construct BaseLabel and set up table base register LIR* base_label = NewLIR0(kPseudoTargetLabel); // Materialize a pointer to the fill data image NewLIR4(kMipsDelta, rMIPS_ARG1, 0, WrapPointer(base_label), WrapPointer(tab_rec)); // And go... ClobberCallerSave(); LIR* call_inst = OpReg(kOpBlx, r_tgt); // ( array*, fill_data* ) MarkSafepointPC(call_inst); } void MipsMir2Lir::GenMoveException(RegLocation rl_dest) { int ex_offset = Thread::ExceptionOffset<4>().Int32Value(); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); RegStorage reset_reg = AllocTemp(); Load32Disp(rs_rMIPS_SELF, ex_offset, rl_result.reg); LoadConstant(reset_reg, 0); Store32Disp(rs_rMIPS_SELF, ex_offset, reset_reg); FreeTemp(reset_reg); StoreValue(rl_dest, rl_result); } /* * Mark garbage collection card. Skip if the value we're storing is null. */ void MipsMir2Lir::MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) { RegStorage reg_card_base = AllocTemp(); RegStorage reg_card_no = AllocTemp(); LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL); // NOTE: native pointer. LoadWordDisp(rs_rMIPS_SELF, Thread::CardTableOffset<4>().Int32Value(), reg_card_base); OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift); StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte); LIR* target = NewLIR0(kPseudoTargetLabel); branch_over->target = target; FreeTemp(reg_card_base); FreeTemp(reg_card_no); } void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) { int spill_count = num_core_spills_ + num_fp_spills_; /* * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live. Let the register * allocation mechanism know so it doesn't try to use any of them when * expanding the frame or flushing. This leaves the utility * code with a single temp: r12. This should be enough. */ LockTemp(rMIPS_ARG0); LockTemp(rMIPS_ARG1); LockTemp(rMIPS_ARG2); LockTemp(rMIPS_ARG3); /* * We can safely skip the stack overflow check if we're * a leaf *and* our frame size < fudge factor. */ bool skip_overflow_check = (mir_graph_->MethodIsLeaf() && (static_cast(frame_size_) < Thread::kStackOverflowReservedBytes)); NewLIR0(kPseudoMethodEntry); RegStorage check_reg = AllocTemp(); RegStorage new_sp = AllocTemp(); if (!skip_overflow_check) { /* Load stack limit */ Load32Disp(rs_rMIPS_SELF, Thread::StackEndOffset<4>().Int32Value(), check_reg); } /* Spill core callee saves */ SpillCoreRegs(); /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */ DCHECK_EQ(num_fp_spills_, 0); const int frame_sub = frame_size_ - spill_count * 4; if (!skip_overflow_check) { class StackOverflowSlowPath : public LIRSlowPath { public: StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace) : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, nullptr), sp_displace_(sp_displace) { } void Compile() OVERRIDE { m2l_->ResetRegPool(); m2l_->ResetDefTracking(); GenerateTargetLabel(kPseudoThrowTarget); // LR is offset 0 since we push in reverse order. m2l_->Load32Disp(rs_rMIPS_SP, 0, rs_rRA); m2l_->OpRegImm(kOpAdd, rs_rMIPS_SP, sp_displace_); m2l_->ClobberCallerSave(); ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pThrowStackOverflow); RegStorage r_tgt = m2l_->CallHelperSetup(func_offset); // Doesn't clobber LR. m2l_->CallHelper(r_tgt, func_offset, false /* MarkSafepointPC */, false /* UseLink */); } private: const size_t sp_displace_; }; OpRegRegImm(kOpSub, new_sp, rs_rMIPS_SP, frame_sub); LIR* branch = OpCmpBranch(kCondUlt, new_sp, check_reg, nullptr); AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, spill_count * 4)); // TODO: avoid copy for small frame sizes. OpRegCopy(rs_rMIPS_SP, new_sp); // Establish stack } else { OpRegImm(kOpSub, rs_rMIPS_SP, frame_sub); } FlushIns(ArgLocs, rl_method); FreeTemp(rMIPS_ARG0); FreeTemp(rMIPS_ARG1); FreeTemp(rMIPS_ARG2); FreeTemp(rMIPS_ARG3); } void MipsMir2Lir::GenExitSequence() { /* * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't * allocated by the register utilities as temps. */ LockTemp(rMIPS_RET0); LockTemp(rMIPS_RET1); NewLIR0(kPseudoMethodExit); UnSpillCoreRegs(); OpReg(kOpBx, rs_rRA); } void MipsMir2Lir::GenSpecialExitSequence() { OpReg(kOpBx, rs_rRA); } } // namespace art