/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex/compiler_ir.h" #include "dex/compiler_internals.h" #include "dex/quick/arm/arm_lir.h" #include "dex/quick/mir_to_lir-inl.h" #include "entrypoints/quick/quick_entrypoints.h" #include "mirror/array.h" #include "mirror/object_array-inl.h" #include "mirror/object-inl.h" #include "verifier/method_verifier.h" #include namespace art { // Shortcuts to repeatedly used long types. typedef mirror::ObjectArray ObjArray; typedef mirror::ObjectArray ClassArray; /* * This source files contains "gen" codegen routines that should * be applicable to most targets. Only mid-level support utilities * and "op" calls may be used here. */ /* * Generate a kPseudoBarrier marker to indicate the boundary of special * blocks. */ void Mir2Lir::GenBarrier() { LIR* barrier = NewLIR0(kPseudoBarrier); /* Mark all resources as being clobbered */ DCHECK(!barrier->flags.use_def_invalid); barrier->u.m.def_mask = ENCODE_ALL; } void Mir2Lir::GenDivZeroException() { LIR* branch = OpUnconditionalBranch(nullptr); AddDivZeroCheckSlowPath(branch); } void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) { LIR* branch = OpCondBranch(c_code, nullptr); AddDivZeroCheckSlowPath(branch); } void Mir2Lir::GenDivZeroCheck(RegStorage reg) { LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr); AddDivZeroCheckSlowPath(branch); } void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) { class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath { public: DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch) : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) { } void Compile() OVERRIDE { m2l_->ResetRegPool(); m2l_->ResetDefTracking(); GenerateTargetLabel(kPseudoThrowTarget); m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowDivZero), true); } }; AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch)); } void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) { class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath { public: ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length) : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch), index_(index), length_(length) { } void Compile() OVERRIDE { m2l_->ResetRegPool(); m2l_->ResetDefTracking(); GenerateTargetLabel(kPseudoThrowTarget); m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds), index_, length_, true); } private: const RegStorage index_; const RegStorage length_; }; LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr); AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length)); } void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) { class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath { public: ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length) : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch), index_(index), length_(length) { } void Compile() OVERRIDE { m2l_->ResetRegPool(); m2l_->ResetDefTracking(); GenerateTargetLabel(kPseudoThrowTarget); m2l_->OpRegCopy(m2l_->TargetReg(kArg1), length_); m2l_->LoadConstant(m2l_->TargetReg(kArg0), index_); m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds), m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true); } private: const int32_t index_; const RegStorage length_; }; LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr); AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length)); } LIR* Mir2Lir::GenNullCheck(RegStorage reg) { class NullCheckSlowPath : public Mir2Lir::LIRSlowPath { public: NullCheckSlowPath(Mir2Lir* m2l, LIR* branch) : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) { } void Compile() OVERRIDE { m2l_->ResetRegPool(); m2l_->ResetDefTracking(); GenerateTargetLabel(kPseudoThrowTarget); m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowNullPointer), true); } }; LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr); AddSlowPath(new (arena_) NullCheckSlowPath(this, branch)); return branch; } /* Perform null-check on a register. */ LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) { if (Runtime::Current()->ExplicitNullChecks()) { return GenExplicitNullCheck(m_reg, opt_flags); } return nullptr; } /* Perform an explicit null-check on a register. */ LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) { if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) { return NULL; } return GenNullCheck(m_reg); } void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) { if (!Runtime::Current()->ExplicitNullChecks()) { if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) { return; } MarkSafepointPC(last_lir_insn_); } } void Mir2Lir::MarkPossibleStackOverflowException() { if (!Runtime::Current()->ExplicitStackOverflowChecks()) { MarkSafepointPC(last_lir_insn_); } } void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) { if (!Runtime::Current()->ExplicitNullChecks()) { if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) { return; } // Force an implicit null check by performing a memory operation (load) from the given // register with offset 0. This will cause a signal if the register contains 0 (null). RegStorage tmp = AllocTemp(); // TODO: for Mips, would be best to use rZERO as the bogus register target. LIR* load = Load32Disp(reg, 0, tmp); FreeTemp(tmp); MarkSafepointPC(load); } } void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, RegLocation rl_src2, LIR* taken, LIR* fall_through) { ConditionCode cond; switch (opcode) { case Instruction::IF_EQ: cond = kCondEq; break; case Instruction::IF_NE: cond = kCondNe; break; case Instruction::IF_LT: cond = kCondLt; break; case Instruction::IF_GE: cond = kCondGe; break; case Instruction::IF_GT: cond = kCondGt; break; case Instruction::IF_LE: cond = kCondLe; break; default: cond = static_cast(0); LOG(FATAL) << "Unexpected opcode " << opcode; } // Normalize such that if either operand is constant, src2 will be constant if (rl_src1.is_const) { RegLocation rl_temp = rl_src1; rl_src1 = rl_src2; rl_src2 = rl_temp; cond = FlipComparisonOrder(cond); } rl_src1 = LoadValue(rl_src1, kCoreReg); // Is this really an immediate comparison? if (rl_src2.is_const) { // If it's already live in a register or not easily materialized, just keep going RegLocation rl_temp = UpdateLoc(rl_src2); if ((rl_temp.location == kLocDalvikFrame) && InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) { // OK - convert this to a compare immediate and branch OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken); return; } } rl_src2 = LoadValue(rl_src2, kCoreReg); OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken); } void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken, LIR* fall_through) { ConditionCode cond; rl_src = LoadValue(rl_src, kCoreReg); switch (opcode) { case Instruction::IF_EQZ: cond = kCondEq; break; case Instruction::IF_NEZ: cond = kCondNe; break; case Instruction::IF_LTZ: cond = kCondLt; break; case Instruction::IF_GEZ: cond = kCondGe; break; case Instruction::IF_GTZ: cond = kCondGt; break; case Instruction::IF_LEZ: cond = kCondLe; break; default: cond = static_cast(0); LOG(FATAL) << "Unexpected opcode " << opcode; } OpCmpImmBranch(cond, rl_src.reg, 0, taken); } void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) { RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (rl_src.location == kLocPhysReg) { OpRegCopy(rl_result.reg, rl_src.reg); } else { LoadValueDirect(rl_src, rl_result.reg.GetLow()); } OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31); StoreValueWide(rl_dest, rl_result); } void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src) { rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); OpKind op = kOpInvalid; switch (opcode) { case Instruction::INT_TO_BYTE: op = kOp2Byte; break; case Instruction::INT_TO_SHORT: op = kOp2Short; break; case Instruction::INT_TO_CHAR: op = kOp2Char; break; default: LOG(ERROR) << "Bad int conversion type"; } OpRegReg(op, rl_result.reg, rl_src.reg); StoreValue(rl_dest, rl_result); } /* * Let helper function take care of everything. Will call * Array::AllocFromCode(type_idx, method, count); * Note: AllocFromCode will handle checks for errNegativeArraySize. */ void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { FlushAllRegs(); /* Everything to home location */ ThreadOffset<4> func_offset(-1); const DexFile* dex_file = cu_->dex_file; CompilerDriver* driver = cu_->compiler_driver; if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) { bool is_type_initialized; // Ignored as an array does not have an initializer. bool use_direct_type_ptr; uintptr_t direct_type_ptr; bool is_finalizable; if (kEmbedClassInCode && driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr, &direct_type_ptr, &is_finalizable)) { // The fast path. if (!use_direct_type_ptr) { LoadClassType(type_idx, kArg0); func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocArrayResolved); CallRuntimeHelperRegMethodRegLocation(func_offset, TargetReg(kArg0), rl_src, true); } else { // Use the direct pointer. func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocArrayResolved); CallRuntimeHelperImmMethodRegLocation(func_offset, direct_type_ptr, rl_src, true); } } else { // The slow path. DCHECK_EQ(func_offset.Int32Value(), -1); func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocArray); CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true); } DCHECK_NE(func_offset.Int32Value(), -1); } else { func_offset= QUICK_ENTRYPOINT_OFFSET(4, pAllocArrayWithAccessCheck); CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true); } RegLocation rl_result = GetReturn(false); StoreValue(rl_dest, rl_result); } /* * Similar to GenNewArray, but with post-allocation initialization. * Verifier guarantees we're dealing with an array class. Current * code throws runtime exception "bad Filled array req" for 'D' and 'J'. * Current code also throws internal unimp if not 'L', '[' or 'I'. */ void Mir2Lir::GenFilledNewArray(CallInfo* info) { int elems = info->num_arg_words; int type_idx = info->index; FlushAllRegs(); /* Everything to home location */ ThreadOffset<4> func_offset(-1); if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, type_idx)) { func_offset = QUICK_ENTRYPOINT_OFFSET(4, pCheckAndAllocArray); } else { func_offset = QUICK_ENTRYPOINT_OFFSET(4, pCheckAndAllocArrayWithAccessCheck); } CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true); FreeTemp(TargetReg(kArg2)); FreeTemp(TargetReg(kArg1)); /* * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the * return region. Because AllocFromCode placed the new array * in kRet0, we'll just lock it into place. When debugger support is * added, it may be necessary to additionally copy all return * values to a home location in thread-local storage */ LockTemp(TargetReg(kRet0)); // TODO: use the correct component size, currently all supported types // share array alignment with ints (see comment at head of function) size_t component_size = sizeof(int32_t); // Having a range of 0 is legal if (info->is_range && (elems > 0)) { /* * Bit of ugliness here. We're going generate a mem copy loop * on the register range, but it is possible that some regs * in the range have been promoted. This is unlikely, but * before generating the copy, we'll just force a flush * of any regs in the source range that have been promoted to * home location. */ for (int i = 0; i < elems; i++) { RegLocation loc = UpdateLoc(info->args[i]); if (loc.location == kLocPhysReg) { Store32Disp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg); } } /* * TUNING note: generated code here could be much improved, but * this is an uncommon operation and isn't especially performance * critical. */ RegStorage r_src = AllocTemp(); RegStorage r_dst = AllocTemp(); RegStorage r_idx = AllocTemp(); RegStorage r_val; switch (cu_->instruction_set) { case kThumb2: r_val = TargetReg(kLr); break; case kX86: case kX86_64: FreeTemp(TargetReg(kRet0)); r_val = AllocTemp(); break; case kMips: r_val = AllocTemp(); break; default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; } // Set up source pointer RegLocation rl_first = info->args[0]; OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low)); // Set up the target pointer OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0), mirror::Array::DataOffset(component_size).Int32Value()); // Set up the loop counter (known to be > 0) LoadConstant(r_idx, elems - 1); // Generate the copy loop. Going backwards for convenience LIR* target = NewLIR0(kPseudoTargetLabel); // Copy next element LoadBaseIndexed(r_src, r_idx, r_val, 2, k32); StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32); FreeTemp(r_val); OpDecAndBranch(kCondGe, r_idx, target); if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { // Restore the target pointer OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst, -mirror::Array::DataOffset(component_size).Int32Value()); } } else if (!info->is_range) { // TUNING: interleave for (int i = 0; i < elems; i++) { RegLocation rl_arg = LoadValue(info->args[i], kCoreReg); Store32Disp(TargetReg(kRet0), mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg); // If the LoadValue caused a temp to be allocated, free it if (IsTemp(rl_arg.reg)) { FreeTemp(rl_arg.reg); } } } if (info->result.location != kLocInvalid) { StoreValue(info->result, GetReturn(false /* not fp */)); } } // // Slow path to ensure a class is initialized for sget/sput. // class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath { public: StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index, RegStorage r_base) : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit), storage_index_(storage_index), r_base_(r_base) { } void Compile() { LIR* unresolved_target = GenerateTargetLabel(); uninit_->target = unresolved_target; m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeStaticStorage), storage_index_, true); // Copy helper's result into r_base, a no-op on all but MIPS. m2l_->OpRegCopy(r_base_, m2l_->TargetReg(kRet0)); m2l_->OpUnconditionalBranch(cont_); } private: LIR* const uninit_; const int storage_index_; const RegStorage r_base_; }; void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double, bool is_object) { const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir); cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass()); if (field_info.FastPut() && !SLOW_FIELD_PATH) { DCHECK_GE(field_info.FieldOffset().Int32Value(), 0); RegStorage r_base; if (field_info.IsReferrersClass()) { // Fast path, static storage base is this method's class RegLocation rl_method = LoadCurrMethod(); r_base = AllocTemp(); LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base); if (IsTemp(rl_method.reg)) { FreeTemp(rl_method.reg); } } else { // Medium path, static storage base in a different class which requires checks that the other // class is initialized. // TODO: remove initialized check now that we are initializing classes in the compiler driver. DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex); // May do runtime call so everything to home locations. FlushAllRegs(); // Using fixed register to sync with possible call to runtime support. RegStorage r_method = TargetReg(kArg1); LockTemp(r_method); LoadCurrMethodDirect(r_method); r_base = TargetReg(kArg0); LockTemp(r_base); LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base); int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value(); LoadRefDisp(r_base, offset_of_field, r_base); // r_base now points at static storage (Class*) or NULL if the type is not yet resolved. if (!field_info.IsInitialized() && (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) { // Check if r_base is NULL or a not yet initialized class. // The slow path is invoked if the r_base is NULL or the class pointed // to by it is not initialized. LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL); RegStorage r_tmp = TargetReg(kArg2); LockTemp(r_tmp); LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base, mirror::Class::StatusOffset().Int32Value(), mirror::Class::kStatusInitialized, NULL); LIR* cont = NewLIR0(kPseudoTargetLabel); AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont, field_info.StorageIndex(), r_base)); FreeTemp(r_tmp); } FreeTemp(r_method); } // rBase now holds static storage base if (is_long_or_double) { RegisterClass register_kind = kAnyReg; if (field_info.IsVolatile() && cu_->instruction_set == kX86) { // Force long/double volatile stores into SSE registers to avoid tearing. register_kind = kFPReg; } rl_src = LoadValueWide(rl_src, register_kind); } else { rl_src = LoadValue(rl_src, kAnyReg); } if (field_info.IsVolatile()) { // There might have been a store before this volatile one so insert StoreStore barrier. GenMemBarrier(kStoreStore); } if (is_long_or_double) { StoreBaseDispWide(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg); } else if (rl_src.ref) { StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg); } else { Store32Disp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg); } if (field_info.IsVolatile()) { // A load might follow the volatile store so insert a StoreLoad barrier. GenMemBarrier(kStoreLoad); } if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { MarkGCCard(rl_src.reg, r_base); } FreeTemp(r_base); } else { FlushAllRegs(); // Everything to home locations ThreadOffset<4> setter_offset = is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pSet64Static) : (is_object ? QUICK_ENTRYPOINT_OFFSET(4, pSetObjStatic) : QUICK_ENTRYPOINT_OFFSET(4, pSet32Static)); CallRuntimeHelperImmRegLocation(setter_offset, field_info.FieldIndex(), rl_src, true); } } void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest, bool is_long_or_double, bool is_object) { const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir); cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass()); if (field_info.FastGet() && !SLOW_FIELD_PATH) { DCHECK_GE(field_info.FieldOffset().Int32Value(), 0); RegStorage r_base; if (field_info.IsReferrersClass()) { // Fast path, static storage base is this method's class RegLocation rl_method = LoadCurrMethod(); r_base = AllocTemp(); LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base); } else { // Medium path, static storage base in a different class which requires checks that the other // class is initialized DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex); // May do runtime call so everything to home locations. FlushAllRegs(); // Using fixed register to sync with possible call to runtime support. RegStorage r_method = TargetReg(kArg1); LockTemp(r_method); LoadCurrMethodDirect(r_method); r_base = TargetReg(kArg0); LockTemp(r_base); LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base); int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value(); LoadRefDisp(r_base, offset_of_field, r_base); // r_base now points at static storage (Class*) or NULL if the type is not yet resolved. if (!field_info.IsInitialized() && (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) { // Check if r_base is NULL or a not yet initialized class. // The slow path is invoked if the r_base is NULL or the class pointed // to by it is not initialized. LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL); RegStorage r_tmp = TargetReg(kArg2); LockTemp(r_tmp); LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base, mirror::Class::StatusOffset().Int32Value(), mirror::Class::kStatusInitialized, NULL); LIR* cont = NewLIR0(kPseudoTargetLabel); AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont, field_info.StorageIndex(), r_base)); FreeTemp(r_tmp); } FreeTemp(r_method); } // r_base now holds static storage base RegisterClass result_reg_kind = kAnyReg; if (field_info.IsVolatile() && cu_->instruction_set == kX86) { // Force long/double volatile loads into SSE registers to avoid tearing. result_reg_kind = kFPReg; } RegLocation rl_result = EvalLoc(rl_dest, result_reg_kind, true); if (is_long_or_double) { LoadBaseDispWide(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg, INVALID_SREG); } else if (rl_result.ref) { LoadRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg); } else { Load32Disp(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg); } FreeTemp(r_base); if (field_info.IsVolatile()) { // Without context sensitive analysis, we must issue the most conservative barriers. // In this case, either a load or store may follow so we issue both barriers. GenMemBarrier(kLoadLoad); GenMemBarrier(kLoadStore); } if (is_long_or_double) { StoreValueWide(rl_dest, rl_result); } else { StoreValue(rl_dest, rl_result); } } else { FlushAllRegs(); // Everything to home locations ThreadOffset<4> getterOffset = is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pGet64Static) :(is_object ? QUICK_ENTRYPOINT_OFFSET(4, pGetObjStatic) : QUICK_ENTRYPOINT_OFFSET(4, pGet32Static)); CallRuntimeHelperImm(getterOffset, field_info.FieldIndex(), true); if (is_long_or_double) { RegLocation rl_result = GetReturnWide(rl_dest.fp); StoreValueWide(rl_dest, rl_result); } else { RegLocation rl_result = GetReturn(rl_dest.fp); StoreValue(rl_dest, rl_result); } } } // Generate code for all slow paths. void Mir2Lir::HandleSlowPaths() { int n = slow_paths_.Size(); for (int i = 0; i < n; ++i) { LIRSlowPath* slowpath = slow_paths_.Get(i); slowpath->Compile(); } slow_paths_.Reset(); } void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size, RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object) { const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir); cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet()); if (field_info.FastGet() && !SLOW_FIELD_PATH) { RegLocation rl_result; RegisterClass reg_class = RegClassBySize(size); DCHECK_GE(field_info.FieldOffset().Int32Value(), 0); rl_obj = LoadValue(rl_obj, kCoreReg); if (is_long_or_double) { DCHECK(rl_dest.wide); GenNullCheck(rl_obj.reg, opt_flags); if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { RegisterClass result_reg_kind = kAnyReg; if (field_info.IsVolatile() && cu_->instruction_set == kX86) { // Force long/double volatile loads into SSE registers to avoid tearing. result_reg_kind = kFPReg; } rl_result = EvalLoc(rl_dest, result_reg_kind, true); LoadBaseDispWide(rl_obj.reg, field_info.FieldOffset().Int32Value(), rl_result.reg, rl_obj.s_reg_low); MarkPossibleNullPointerException(opt_flags); if (field_info.IsVolatile()) { // Without context sensitive analysis, we must issue the most conservative barriers. // In this case, either a load or store may follow so we issue both barriers. GenMemBarrier(kLoadLoad); GenMemBarrier(kLoadStore); } } else { RegStorage reg_ptr = AllocTemp(); OpRegRegImm(kOpAdd, reg_ptr, rl_obj.reg, field_info.FieldOffset().Int32Value()); rl_result = EvalLoc(rl_dest, reg_class, true); LoadBaseDispWide(reg_ptr, 0, rl_result.reg, INVALID_SREG); MarkPossibleNullPointerException(opt_flags); if (field_info.IsVolatile()) { // Without context sensitive analysis, we must issue the most conservative barriers. // In this case, either a load or store may follow so we issue both barriers. GenMemBarrier(kLoadLoad); GenMemBarrier(kLoadStore); } FreeTemp(reg_ptr); } StoreValueWide(rl_dest, rl_result); } else { rl_result = EvalLoc(rl_dest, reg_class, true); GenNullCheck(rl_obj.reg, opt_flags); LoadBaseDisp(rl_obj.reg, field_info.FieldOffset().Int32Value(), rl_result.reg, k32, rl_obj.s_reg_low); MarkPossibleNullPointerException(opt_flags); if (field_info.IsVolatile()) { // Without context sensitive analysis, we must issue the most conservative barriers. // In this case, either a load or store may follow so we issue both barriers. GenMemBarrier(kLoadLoad); GenMemBarrier(kLoadStore); } StoreValue(rl_dest, rl_result); } } else { ThreadOffset<4> getterOffset = is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pGet64Instance) : (is_object ? QUICK_ENTRYPOINT_OFFSET(4, pGetObjInstance) : QUICK_ENTRYPOINT_OFFSET(4, pGet32Instance)); CallRuntimeHelperImmRegLocation(getterOffset, field_info.FieldIndex(), rl_obj, true); if (is_long_or_double) { RegLocation rl_result = GetReturnWide(rl_dest.fp); StoreValueWide(rl_dest, rl_result); } else { RegLocation rl_result = GetReturn(rl_dest.fp); StoreValue(rl_dest, rl_result); } } } void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size, RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object) { const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir); cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut()); if (field_info.FastPut() && !SLOW_FIELD_PATH) { RegisterClass reg_class = RegClassBySize(size); DCHECK_GE(field_info.FieldOffset().Int32Value(), 0); rl_obj = LoadValue(rl_obj, kCoreReg); if (is_long_or_double) { RegisterClass src_reg_kind = kAnyReg; if (field_info.IsVolatile() && cu_->instruction_set == kX86) { // Force long/double volatile stores into SSE registers to avoid tearing. src_reg_kind = kFPReg; } rl_src = LoadValueWide(rl_src, src_reg_kind); GenNullCheck(rl_obj.reg, opt_flags); RegStorage reg_ptr = AllocTemp(); OpRegRegImm(kOpAdd, reg_ptr, rl_obj.reg, field_info.FieldOffset().Int32Value()); if (field_info.IsVolatile()) { // There might have been a store before this volatile one so insert StoreStore barrier. GenMemBarrier(kStoreStore); } StoreBaseDispWide(reg_ptr, 0, rl_src.reg); MarkPossibleNullPointerException(opt_flags); if (field_info.IsVolatile()) { // A load might follow the volatile store so insert a StoreLoad barrier. GenMemBarrier(kStoreLoad); } FreeTemp(reg_ptr); } else { rl_src = LoadValue(rl_src, reg_class); GenNullCheck(rl_obj.reg, opt_flags); if (field_info.IsVolatile()) { // There might have been a store before this volatile one so insert StoreStore barrier. GenMemBarrier(kStoreStore); } Store32Disp(rl_obj.reg, field_info.FieldOffset().Int32Value(), rl_src.reg); MarkPossibleNullPointerException(opt_flags); if (field_info.IsVolatile()) { // A load might follow the volatile store so insert a StoreLoad barrier. GenMemBarrier(kStoreLoad); } if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { MarkGCCard(rl_src.reg, rl_obj.reg); } } } else { ThreadOffset<4> setter_offset = is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pSet64Instance) : (is_object ? QUICK_ENTRYPOINT_OFFSET(4, pSetObjInstance) : QUICK_ENTRYPOINT_OFFSET(4, pSet32Instance)); CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_info.FieldIndex(), rl_obj, rl_src, true); } } void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index, RegLocation rl_src) { bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK); bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)); ThreadOffset<4> helper = needs_range_check ? (needs_null_check ? QUICK_ENTRYPOINT_OFFSET(4, pAputObjectWithNullAndBoundCheck) : QUICK_ENTRYPOINT_OFFSET(4, pAputObjectWithBoundCheck)) : QUICK_ENTRYPOINT_OFFSET(4, pAputObject); CallRuntimeHelperRegLocationRegLocationRegLocation(helper, rl_array, rl_index, rl_src, true); } void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) { RegLocation rl_method = LoadCurrMethod(); RegStorage res_reg = AllocTemp(); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, type_idx)) { // Call out to helper which resolves type and verifies access. // Resolved type returned in kRet0. CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess), type_idx, rl_method.reg, true); RegLocation rl_result = GetReturn(false); StoreValue(rl_dest, rl_result); } else { // We're don't need access checks, load type from dex cache int32_t dex_cache_offset = mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(); Load32Disp(rl_method.reg, dex_cache_offset, res_reg); int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value(); Load32Disp(res_reg, offset_of_type, rl_result.reg); if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx) || SLOW_TYPE_PATH) { // Slow path, at runtime test if type is null and if so initialize FlushAllRegs(); LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL); LIR* cont = NewLIR0(kPseudoTargetLabel); // Object to generate the slow path for class resolution. class SlowPath : public LIRSlowPath { public: SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx, const RegLocation& rl_method, const RegLocation& rl_result) : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx), rl_method_(rl_method), rl_result_(rl_result) { } void Compile() { GenerateTargetLabel(); m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_, rl_method_.reg, true); m2l_->OpRegCopy(rl_result_.reg, m2l_->TargetReg(kRet0)); m2l_->OpUnconditionalBranch(cont_); } private: const int type_idx_; const RegLocation rl_method_; const RegLocation rl_result_; }; // Add to list for future. AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result)); StoreValue(rl_dest, rl_result); } else { // Fast path, we're done - just store result StoreValue(rl_dest, rl_result); } } } void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) { /* NOTE: Most strings should be available at compile time */ int32_t offset_of_string = mirror::ObjectArray::OffsetOfElement(string_idx). Int32Value(); if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache( *cu_->dex_file, string_idx) || SLOW_STRING_PATH) { // slow path, resolve string if not in dex cache FlushAllRegs(); LockCallTemps(); // Using explicit registers // If the Method* is already in a register, we can save a copy. RegLocation rl_method = mir_graph_->GetMethodLoc(); RegStorage r_method; if (rl_method.location == kLocPhysReg) { // A temp would conflict with register use below. DCHECK(!IsTemp(rl_method.reg)); r_method = rl_method.reg; } else { r_method = TargetReg(kArg2); LoadCurrMethodDirect(r_method); } LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), TargetReg(kArg0)); // Might call out to helper, which will return resolved string in kRet0 Load32Disp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0)); LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0), 0, NULL); LIR* cont = NewLIR0(kPseudoTargetLabel); { // Object to generate the slow path for string resolution. class SlowPath : public LIRSlowPath { public: SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), r_method_(r_method), string_idx_(string_idx) { } void Compile() { GenerateTargetLabel(); m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pResolveString), r_method_, string_idx_, true); m2l_->OpUnconditionalBranch(cont_); } private: const RegStorage r_method_; const int32_t string_idx_; }; AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx)); } GenBarrier(); StoreValue(rl_dest, GetReturn(false)); } else { RegLocation rl_method = LoadCurrMethod(); RegStorage res_reg = AllocTemp(); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg); Load32Disp(res_reg, offset_of_string, rl_result.reg); StoreValue(rl_dest, rl_result); } } /* * Let helper function take care of everything. Will * call Class::NewInstanceFromCode(type_idx, method); */ void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) { FlushAllRegs(); /* Everything to home location */ // alloc will always check for resolution, do we also need to verify // access because the verifier was unable to? ThreadOffset<4> func_offset(-1); const DexFile* dex_file = cu_->dex_file; CompilerDriver* driver = cu_->compiler_driver; if (driver->CanAccessInstantiableTypeWithoutChecks( cu_->method_idx, *dex_file, type_idx)) { bool is_type_initialized; bool use_direct_type_ptr; uintptr_t direct_type_ptr; bool is_finalizable; if (kEmbedClassInCode && driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr, &direct_type_ptr, &is_finalizable) && !is_finalizable) { // The fast path. if (!use_direct_type_ptr) { LoadClassType(type_idx, kArg0); if (!is_type_initialized) { func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectResolved); CallRuntimeHelperRegMethod(func_offset, TargetReg(kArg0), true); } else { func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectInitialized); CallRuntimeHelperRegMethod(func_offset, TargetReg(kArg0), true); } } else { // Use the direct pointer. if (!is_type_initialized) { func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectResolved); CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true); } else { func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectInitialized); CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true); } } } else { // The slow path. DCHECK_EQ(func_offset.Int32Value(), -1); func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObject); CallRuntimeHelperImmMethod(func_offset, type_idx, true); } DCHECK_NE(func_offset.Int32Value(), -1); } else { func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectWithAccessCheck); CallRuntimeHelperImmMethod(func_offset, type_idx, true); } RegLocation rl_result = GetReturn(false); StoreValue(rl_dest, rl_result); } void Mir2Lir::GenThrow(RegLocation rl_src) { FlushAllRegs(); CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pDeliverException), rl_src, true); } // For final classes there are no sub-classes to check and so we can answer the instance-of // question with simple comparisons. void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { // X86 has its own implementation. DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64); RegLocation object = LoadValue(rl_src, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); RegStorage result_reg = rl_result.reg; if (result_reg == object.reg) { result_reg = AllocTypedTemp(false, kCoreReg); } LoadConstant(result_reg, 0); // assume false LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL); RegStorage check_class = AllocTypedTemp(false, kCoreReg); RegStorage object_class = AllocTypedTemp(false, kCoreReg); LoadCurrMethodDirect(check_class); if (use_declaring_class) { LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class); LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class); } else { LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), check_class); LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class); int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value(); LoadRefDisp(check_class, offset_of_type, check_class); } LIR* ne_branchover = NULL; // FIXME: what should we be comparing here? compressed or decompressed references? if (cu_->instruction_set == kThumb2) { OpRegReg(kOpCmp, check_class, object_class); // Same? LIR* it = OpIT(kCondEq, ""); // if-convert the test LoadConstant(result_reg, 1); // .eq case - load true OpEndIT(it); } else { ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL); LoadConstant(result_reg, 1); // eq case - load true } LIR* target = NewLIR0(kPseudoTargetLabel); null_branchover->target = target; if (ne_branchover != NULL) { ne_branchover->target = target; } FreeTemp(object_class); FreeTemp(check_class); if (IsTemp(result_reg)) { OpRegCopy(rl_result.reg, result_reg); FreeTemp(result_reg); } StoreValue(rl_dest, rl_result); } void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final, bool type_known_abstract, bool use_declaring_class, bool can_assume_type_is_in_dex_cache, uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { // X86 has its own implementation. DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64); FlushAllRegs(); // May generate a call - use explicit registers LockCallTemps(); LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method* RegStorage class_reg = TargetReg(kArg2); // kArg2 will hold the Class* if (needs_access_check) { // Check we have access to type_idx and if not throw IllegalAccessError, // returns Class* in kArg0 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess), type_idx, true); OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref } else if (use_declaring_class) { LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg); } else { // Load dex cache entry into class_reg (kArg2) LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value(); LoadRefDisp(class_reg, offset_of_type, class_reg); if (!can_assume_type_is_in_dex_cache) { // Need to test presence of type in dex cache at runtime LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); // Not resolved // Call out to helper, which will return resolved type in kRet0 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true); OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* reload Ref */ // Rejoin code paths LIR* hop_target = NewLIR0(kPseudoTargetLabel); hop_branch->target = hop_target; } } /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */ RegLocation rl_result = GetReturn(false); if (cu_->instruction_set == kMips) { // On MIPS rArg0 != rl_result, place false in result if branch is taken. LoadConstant(rl_result.reg, 0); } LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); /* load object->klass_ */ DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); LoadRefDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */ LIR* branchover = NULL; if (type_known_final) { // rl_result == ref == null == 0. if (cu_->instruction_set == kThumb2) { OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same? LIR* it = OpIT(kCondEq, "E"); // if-convert the test LoadConstant(rl_result.reg, 1); // .eq case - load true LoadConstant(rl_result.reg, 0); // .ne case - load false OpEndIT(it); } else { LoadConstant(rl_result.reg, 0); // ne case - load false branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL); LoadConstant(rl_result.reg, 1); // eq case - load true } } else { if (cu_->instruction_set == kThumb2) { RegStorage r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial)); LIR* it = nullptr; if (!type_known_abstract) { /* Uses conditional nullification */ OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same? it = OpIT(kCondEq, "EE"); // if-convert the test LoadConstant(TargetReg(kArg0), 1); // .eq case - load true } OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) if (it != nullptr) { OpEndIT(it); } FreeTemp(r_tgt); } else { if (!type_known_abstract) { /* Uses branchovers */ LoadConstant(rl_result.reg, 1); // assume true branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL); } RegStorage r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial)); OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) FreeTemp(r_tgt); } } // TODO: only clobber when type isn't final? ClobberCallerSave(); /* branch targets here */ LIR* target = NewLIR0(kPseudoTargetLabel); StoreValue(rl_dest, rl_result); branch1->target = target; if (branchover != NULL) { branchover->target = target; } } void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { bool type_known_final, type_known_abstract, use_declaring_class; bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, type_idx, &type_known_final, &type_known_abstract, &use_declaring_class); bool can_assume_type_is_in_dex_cache = !needs_access_check && cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx); if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) { GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src); } else { GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract, use_declaring_class, can_assume_type_is_in_dex_cache, type_idx, rl_dest, rl_src); } } void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) { bool type_known_final, type_known_abstract, use_declaring_class; bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, type_idx, &type_known_final, &type_known_abstract, &use_declaring_class); // Note: currently type_known_final is unused, as optimizing will only improve the performance // of the exception throw path. DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit(); if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) { // Verifier type analysis proved this check cast would never cause an exception. return; } FlushAllRegs(); // May generate a call - use explicit registers LockCallTemps(); LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method* RegStorage class_reg = TargetReg(kArg2); // kArg2 will hold the Class* if (needs_access_check) { // Check we have access to type_idx and if not throw IllegalAccessError, // returns Class* in kRet0 // InitializeTypeAndVerifyAccess(idx, method) CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess), type_idx, TargetReg(kArg1), true); OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path } else if (use_declaring_class) { LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg); } else { // Load dex cache entry into class_reg (kArg2) LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value(); LoadRefDisp(class_reg, offset_of_type, class_reg); if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) { // Need to test presence of type in dex cache at runtime LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL); LIR* cont = NewLIR0(kPseudoTargetLabel); // Slow path to initialize the type. Executed if the type is NULL. class SlowPath : public LIRSlowPath { public: SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx, const RegStorage class_reg) : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx), class_reg_(class_reg) { } void Compile() { GenerateTargetLabel(); // Call out to helper, which will return resolved type in kArg0 // InitializeTypeFromCode(idx, method) m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_, m2l_->TargetReg(kArg1), true); m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0)); // Align usage with fast path m2l_->OpUnconditionalBranch(cont_); } public: const int type_idx_; const RegStorage class_reg_; }; AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg)); } } // At this point, class_reg (kArg2) has class LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref // Slow path for the case where the classes are not equal. In this case we need // to call a helper function to do the check. class SlowPath : public LIRSlowPath { public: SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load): LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) { } void Compile() { GenerateTargetLabel(); if (load_) { m2l_->LoadRefDisp(m2l_->TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), m2l_->TargetReg(kArg1)); } m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pCheckCast), m2l_->TargetReg(kArg2), m2l_->TargetReg(kArg1), true); m2l_->OpUnconditionalBranch(cont_); } private: const bool load_; }; if (type_known_abstract) { // Easier case, run slow path if target is non-null (slow path will load from target) LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0), 0, NULL); LIR* cont = NewLIR0(kPseudoTargetLabel); AddSlowPath(new (arena_) SlowPath(this, branch, cont, true)); } else { // Harder, more common case. We need to generate a forward branch over the load // if the target is null. If it's non-null we perform the load and branch to the // slow path if the classes are not equal. /* Null is OK - continue */ LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); /* load object->klass_ */ DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); LoadRefDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1), class_reg, NULL); LIR* cont = NewLIR0(kPseudoTargetLabel); // Add the slow path that will not perform load since this is already done. AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false)); // Set the null check to branch to the continuation. branch1->target = cont; } } void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { RegLocation rl_result; if (cu_->instruction_set == kThumb2) { /* * NOTE: This is the one place in the code in which we might have * as many as six live temporary registers. There are 5 in the normal * set for Arm. Until we have spill capabilities, temporarily add * lr to the temp set. It is safe to do this locally, but note that * lr is used explicitly elsewhere in the code generator and cannot * normally be used as a general temp register. */ MarkTemp(TargetReg(kLr)); // Add lr to the temp pool FreeTemp(TargetReg(kLr)); // and make it available } rl_src1 = LoadValueWide(rl_src1, kCoreReg); rl_src2 = LoadValueWide(rl_src2, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); // The longs may overlap - use intermediate temp if so if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) { RegStorage t_reg = AllocTemp(); OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow()); OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh()); OpRegCopy(rl_result.reg.GetLow(), t_reg); FreeTemp(t_reg); } else { OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow()); OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh()); } /* * NOTE: If rl_dest refers to a frame variable in a large frame, the * following StoreValueWide might need to allocate a temp register. * To further work around the lack of a spill capability, explicitly * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result. * Remove when spill is functional. */ FreeRegLocTemps(rl_result, rl_src1); FreeRegLocTemps(rl_result, rl_src2); StoreValueWide(rl_dest, rl_result); if (cu_->instruction_set == kThumb2) { Clobber(TargetReg(kLr)); UnmarkTemp(TargetReg(kLr)); // Remove lr from the temp pool } } void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_shift) { ThreadOffset<4> func_offset(-1); switch (opcode) { case Instruction::SHL_LONG: case Instruction::SHL_LONG_2ADDR: func_offset = QUICK_ENTRYPOINT_OFFSET(4, pShlLong); break; case Instruction::SHR_LONG: case Instruction::SHR_LONG_2ADDR: func_offset = QUICK_ENTRYPOINT_OFFSET(4, pShrLong); break; case Instruction::USHR_LONG: case Instruction::USHR_LONG_2ADDR: func_offset = QUICK_ENTRYPOINT_OFFSET(4, pUshrLong); break; default: LOG(FATAL) << "Unexpected case"; } FlushAllRegs(); /* Send everything to home location */ CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false); RegLocation rl_result = GetReturnWide(false); StoreValueWide(rl_dest, rl_result); } void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64); OpKind op = kOpBkpt; bool is_div_rem = false; bool check_zero = false; bool unary = false; RegLocation rl_result; bool shift_op = false; switch (opcode) { case Instruction::NEG_INT: op = kOpNeg; unary = true; break; case Instruction::NOT_INT: op = kOpMvn; unary = true; break; case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: op = kOpAdd; break; case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: op = kOpSub; break; case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: op = kOpMul; break; case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: check_zero = true; op = kOpDiv; is_div_rem = true; break; /* NOTE: returns in kArg1 */ case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: check_zero = true; op = kOpRem; is_div_rem = true; break; case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: op = kOpAnd; break; case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: op = kOpOr; break; case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: op = kOpXor; break; case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: shift_op = true; op = kOpLsl; break; case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: shift_op = true; op = kOpAsr; break; case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: shift_op = true; op = kOpLsr; break; default: LOG(FATAL) << "Invalid word arith op: " << opcode; } if (!is_div_rem) { if (unary) { rl_src1 = LoadValue(rl_src1, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegReg(op, rl_result.reg, rl_src1.reg); } else { if (shift_op) { rl_src2 = LoadValue(rl_src2, kCoreReg); RegStorage t_reg = AllocTemp(); OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31); rl_src1 = LoadValue(rl_src1, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg); FreeTemp(t_reg); } else { rl_src1 = LoadValue(rl_src1, kCoreReg); rl_src2 = LoadValue(rl_src2, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg); } } StoreValue(rl_dest, rl_result); } else { bool done = false; // Set to true if we happen to find a way to use a real instruction. if (cu_->instruction_set == kMips) { rl_src1 = LoadValue(rl_src1, kCoreReg); rl_src2 = LoadValue(rl_src2, kCoreReg); if (check_zero) { GenDivZeroCheck(rl_src2.reg); } rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv); done = true; } else if (cu_->instruction_set == kThumb2) { if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) { // Use ARM SDIV instruction for division. For remainder we also need to // calculate using a MUL and subtract. rl_src1 = LoadValue(rl_src1, kCoreReg); rl_src2 = LoadValue(rl_src2, kCoreReg); if (check_zero) { GenDivZeroCheck(rl_src2.reg); } rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv); done = true; } } // If we haven't already generated the code use the callout function. if (!done) { ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pIdivmod); FlushAllRegs(); /* Send everything to home location */ LoadValueDirectFixed(rl_src2, TargetReg(kArg1)); RegStorage r_tgt = CallHelperSetup(func_offset); LoadValueDirectFixed(rl_src1, TargetReg(kArg0)); if (check_zero) { GenDivZeroCheck(TargetReg(kArg1)); } // NOTE: callout here is not a safepoint. CallHelper(r_tgt, func_offset, false /* not a safepoint */); if (op == kOpDiv) rl_result = GetReturn(false); else rl_result = GetReturnAlt(); } StoreValue(rl_dest, rl_result); } } /* * The following are the first-level codegen routines that analyze the format * of each bytecode then either dispatch special purpose codegen routines * or produce corresponding Thumb instructions directly. */ // Returns true if no more than two bits are set in 'x'. static bool IsPopCountLE2(unsigned int x) { x &= x - 1; return (x & (x - 1)) == 0; } // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' // and store the result in 'rl_dest'. bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src, RegLocation rl_dest, int lit) { if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) { return false; } // No divide instruction for Arm, so check for more special cases if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) { return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit); } int k = LowestSetBit(lit); if (k >= 30) { // Avoid special cases. return false; } rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (is_div) { RegStorage t_reg = AllocTemp(); if (lit == 2) { // Division by 2 is by far the most common division by constant. OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k); OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg); OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k); } else { OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31); OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k); OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg); OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k); } } else { RegStorage t_reg1 = AllocTemp(); RegStorage t_reg2 = AllocTemp(); if (lit == 2) { OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k); OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg); OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1); OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1); } else { OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31); OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k); OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg); OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1); OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1); } } StoreValue(rl_dest, rl_result); return true; } // Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit' // and store the result in 'rl_dest'. bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) { if (lit < 0) { return false; } if (lit == 0) { RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); LoadConstant(rl_result.reg, 0); StoreValue(rl_dest, rl_result); return true; } if (lit == 1) { rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); OpRegCopy(rl_result.reg, rl_src.reg); StoreValue(rl_dest, rl_result); return true; } // There is RegRegRegShift on Arm, so check for more special cases if (cu_->instruction_set == kThumb2) { return EasyMultiply(rl_src, rl_dest, lit); } // Can we simplify this multiplication? bool power_of_two = false; bool pop_count_le2 = false; bool power_of_two_minus_one = false; if (IsPowerOfTwo(lit)) { power_of_two = true; } else if (IsPopCountLE2(lit)) { pop_count_le2 = true; } else if (IsPowerOfTwo(lit + 1)) { power_of_two_minus_one = true; } else { return false; } rl_src = LoadValue(rl_src, kCoreReg); RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); if (power_of_two) { // Shift. OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit)); } else if (pop_count_le2) { // Shift and add and shift. int first_bit = LowestSetBit(lit); int second_bit = LowestSetBit(lit ^ (1 << first_bit)); GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit); } else { // Reverse subtract: (src << (shift + 1)) - src. DCHECK(power_of_two_minus_one); // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1) RegStorage t_reg = AllocTemp(); OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1)); OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg); } StoreValue(rl_dest, rl_result); return true; } void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src, int lit) { RegLocation rl_result; OpKind op = static_cast(0); /* Make gcc happy */ int shift_op = false; bool is_div = false; switch (opcode) { case Instruction::RSUB_INT_LIT8: case Instruction::RSUB_INT: { rl_src = LoadValue(rl_src, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); if (cu_->instruction_set == kThumb2) { OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit); } else { OpRegReg(kOpNeg, rl_result.reg, rl_src.reg); OpRegImm(kOpAdd, rl_result.reg, lit); } StoreValue(rl_dest, rl_result); return; } case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: lit = -lit; // Intended fallthrough case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: case Instruction::ADD_INT_LIT8: case Instruction::ADD_INT_LIT16: op = kOpAdd; break; case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: case Instruction::MUL_INT_LIT8: case Instruction::MUL_INT_LIT16: { if (HandleEasyMultiply(rl_src, rl_dest, lit)) { return; } op = kOpMul; break; } case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: case Instruction::AND_INT_LIT8: case Instruction::AND_INT_LIT16: op = kOpAnd; break; case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: case Instruction::OR_INT_LIT8: case Instruction::OR_INT_LIT16: op = kOpOr; break; case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: case Instruction::XOR_INT_LIT8: case Instruction::XOR_INT_LIT16: op = kOpXor; break; case Instruction::SHL_INT_LIT8: case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: lit &= 31; shift_op = true; op = kOpLsl; break; case Instruction::SHR_INT_LIT8: case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: lit &= 31; shift_op = true; op = kOpAsr; break; case Instruction::USHR_INT_LIT8: case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: lit &= 31; shift_op = true; op = kOpLsr; break; case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: case Instruction::DIV_INT_LIT8: case Instruction::DIV_INT_LIT16: case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: case Instruction::REM_INT_LIT8: case Instruction::REM_INT_LIT16: { if (lit == 0) { GenDivZeroException(); return; } if ((opcode == Instruction::DIV_INT) || (opcode == Instruction::DIV_INT_2ADDR) || (opcode == Instruction::DIV_INT_LIT8) || (opcode == Instruction::DIV_INT_LIT16)) { is_div = true; } else { is_div = false; } if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) { return; } bool done = false; if (cu_->instruction_set == kMips) { rl_src = LoadValue(rl_src, kCoreReg); rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div); done = true; } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div); done = true; } else if (cu_->instruction_set == kThumb2) { if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) { // Use ARM SDIV instruction for division. For remainder we also need to // calculate using a MUL and subtract. rl_src = LoadValue(rl_src, kCoreReg); rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div); done = true; } } if (!done) { FlushAllRegs(); /* Everything to home location. */ LoadValueDirectFixed(rl_src, TargetReg(kArg0)); Clobber(TargetReg(kArg0)); ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pIdivmod); CallRuntimeHelperRegImm(func_offset, TargetReg(kArg0), lit, false); if (is_div) rl_result = GetReturn(false); else rl_result = GetReturnAlt(); } StoreValue(rl_dest, rl_result); return; } default: LOG(FATAL) << "Unexpected opcode " << opcode; } rl_src = LoadValue(rl_src, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); // Avoid shifts by literal 0 - no support in Thumb. Change to copy. if (shift_op && (lit == 0)) { OpRegCopy(rl_result.reg, rl_src.reg); } else { OpRegRegImm(op, rl_result.reg, rl_src.reg, lit); } StoreValue(rl_dest, rl_result); } void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { RegLocation rl_result; OpKind first_op = kOpBkpt; OpKind second_op = kOpBkpt; bool call_out = false; bool check_zero = false; ThreadOffset<4> func_offset(-1); int ret_reg = TargetReg(kRet0).GetReg(); switch (opcode) { case Instruction::NOT_LONG: rl_src2 = LoadValueWide(rl_src2, kCoreReg); rl_result = EvalLoc(rl_dest, kCoreReg, true); // Check for destructive overlap if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) { RegStorage t_reg = AllocTemp(); OpRegCopy(t_reg, rl_src2.reg.GetHigh()); OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow()); OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg); FreeTemp(t_reg); } else { OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow()); OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh()); } StoreValueWide(rl_dest, rl_result); return; case Instruction::ADD_LONG: case Instruction::ADD_LONG_2ADDR: if (cu_->instruction_set != kThumb2) { GenAddLong(opcode, rl_dest, rl_src1, rl_src2); return; } first_op = kOpAdd; second_op = kOpAdc; break; case Instruction::SUB_LONG: case Instruction::SUB_LONG_2ADDR: if (cu_->instruction_set != kThumb2) { GenSubLong(opcode, rl_dest, rl_src1, rl_src2); return; } first_op = kOpSub; second_op = kOpSbc; break; case Instruction::MUL_LONG: case Instruction::MUL_LONG_2ADDR: if (cu_->instruction_set != kMips) { GenMulLong(opcode, rl_dest, rl_src1, rl_src2); return; } else { call_out = true; ret_reg = TargetReg(kRet0).GetReg(); func_offset = QUICK_ENTRYPOINT_OFFSET(4, pLmul); } break; case Instruction::DIV_LONG: case Instruction::DIV_LONG_2ADDR: call_out = true; check_zero = true; ret_reg = TargetReg(kRet0).GetReg(); func_offset = QUICK_ENTRYPOINT_OFFSET(4, pLdiv); break; case Instruction::REM_LONG: case Instruction::REM_LONG_2ADDR: call_out = true; check_zero = true; func_offset = QUICK_ENTRYPOINT_OFFSET(4, pLmod); /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */ ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2).GetReg() : TargetReg(kRet0).GetReg(); break; case Instruction::AND_LONG_2ADDR: case Instruction::AND_LONG: if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { return GenAndLong(opcode, rl_dest, rl_src1, rl_src2); } first_op = kOpAnd; second_op = kOpAnd; break; case Instruction::OR_LONG: case Instruction::OR_LONG_2ADDR: if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { GenOrLong(opcode, rl_dest, rl_src1, rl_src2); return; } first_op = kOpOr; second_op = kOpOr; break; case Instruction::XOR_LONG: case Instruction::XOR_LONG_2ADDR: if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { GenXorLong(opcode, rl_dest, rl_src1, rl_src2); return; } first_op = kOpXor; second_op = kOpXor; break; case Instruction::NEG_LONG: { GenNegLong(rl_dest, rl_src2); return; } default: LOG(FATAL) << "Invalid long arith op"; } if (!call_out) { GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2); } else { FlushAllRegs(); /* Send everything to home location */ if (check_zero) { RegStorage r_tmp1 = RegStorage::MakeRegPair(TargetReg(kArg0), TargetReg(kArg1)); RegStorage r_tmp2 = RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3)); LoadValueDirectWideFixed(rl_src2, r_tmp2); RegStorage r_tgt = CallHelperSetup(func_offset); GenDivZeroCheckWide(RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3))); LoadValueDirectWideFixed(rl_src1, r_tmp1); // NOTE: callout here is not a safepoint CallHelper(r_tgt, func_offset, false /* not safepoint */); } else { CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false); } // Adjust return regs in to handle case of rem returning kArg2/kArg3 if (ret_reg == TargetReg(kRet0).GetReg()) rl_result = GetReturnWide(false); else rl_result = GetReturnWideAlt(); StoreValueWide(rl_dest, rl_result); } } void Mir2Lir::GenConversionCall(ThreadOffset<4> func_offset, RegLocation rl_dest, RegLocation rl_src) { /* * Don't optimize the register usage since it calls out to support * functions */ FlushAllRegs(); /* Send everything to home location */ CallRuntimeHelperRegLocation(func_offset, rl_src, false); if (rl_dest.wide) { RegLocation rl_result; rl_result = GetReturnWide(rl_dest.fp); StoreValueWide(rl_dest, rl_result); } else { RegLocation rl_result; rl_result = GetReturn(rl_dest.fp); StoreValue(rl_dest, rl_result); } } class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath { public: SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont) : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) { } void Compile() OVERRIDE { m2l_->ResetRegPool(); m2l_->ResetDefTracking(); GenerateTargetLabel(kPseudoSuspendTarget); m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pTestSuspend), true); if (cont_ != nullptr) { m2l_->OpUnconditionalBranch(cont_); } } }; /* Check if we need to check for pending suspend request */ void Mir2Lir::GenSuspendTest(int opt_flags) { if (Runtime::Current()->ExplicitSuspendChecks()) { if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { return; } FlushAllRegs(); LIR* branch = OpTestSuspend(NULL); LIR* cont = NewLIR0(kPseudoTargetLabel); AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont)); } else { if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { return; } FlushAllRegs(); // TODO: needed? LIR* inst = CheckSuspendUsingLoad(); MarkSafepointPC(inst); } } /* Check if we need to check for pending suspend request */ void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) { if (Runtime::Current()->ExplicitSuspendChecks()) { if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { OpUnconditionalBranch(target); return; } OpTestSuspend(target); FlushAllRegs(); LIR* branch = OpUnconditionalBranch(nullptr); AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target)); } else { // For the implicit suspend check, just perform the trigger // load and branch to the target. if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { OpUnconditionalBranch(target); return; } FlushAllRegs(); LIR* inst = CheckSuspendUsingLoad(); MarkSafepointPC(inst); OpUnconditionalBranch(target); } } /* Call out to helper assembly routine that will null check obj and then lock it. */ void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) { FlushAllRegs(); CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pLockObject), rl_src, true); } /* Call out to helper assembly routine that will null check obj and then unlock it. */ void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) { FlushAllRegs(); CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject), rl_src, true); } /* Generic code for generating a wide constant into a VR. */ void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) { RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true); LoadConstantWide(rl_result.reg, value); StoreValueWide(rl_dest, rl_result); } } // namespace art