summaryrefslogtreecommitdiffstats
path: root/standalone/tests/wrappers_c_test.cpp
blob: eed8f0319337b72a060db285a5da587868ce3841 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
//===-- wrappers_c_test.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "scudo/interface.h"
#include "tests/scudo_unit_test.h"

#include <errno.h>
#include <limits.h>
#include <malloc.h>
#include <stdlib.h>
#include <unistd.h>

extern "C" {
void malloc_enable(void);
void malloc_disable(void);
int malloc_iterate(uintptr_t base, size_t size,
                   void (*callback)(uintptr_t base, size_t size, void *arg),
                   void *arg);
void *valloc(size_t size);
void *pvalloc(size_t size);
}

// Note that every C allocation function in the test binary will be fulfilled
// by Scudo (this includes the gtest APIs, etc.), which is a test by itself.
// But this might also lead to unexpected side-effects, since the allocation and
// deallocation operations in the TEST functions will coexist with others (see
// the EXPECT_DEATH comment below).

// We have to use a small quarantine to make sure that our double-free tests
// trigger. Otherwise EXPECT_DEATH ends up reallocating the chunk that was just
// freed (this depends on the size obviously) and the following free succeeds.

static const size_t Size = 100U;

TEST(ScudoWrappersCTest, Malloc) {
  void *P = malloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size, malloc_usable_size(P));
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % FIRST_32_SECOND_64(8U, 16U), 0U);

  // An update to this warning in Clang now triggers in this line, but it's ok
  // because the check is expecting a bad pointer and should fail.
#if defined(__has_warning) && __has_warning("-Wfree-nonheap-object")
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfree-nonheap-object"
#endif
  EXPECT_DEATH(
      free(reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(P) | 1U)), "");
#if defined(__has_warning) && __has_warning("-Wfree-nonheap-object")
#pragma GCC diagnostic pop
#endif

  free(P);
  EXPECT_DEATH(free(P), "");

  P = malloc(0U);
  EXPECT_NE(P, nullptr);
  free(P);

  errno = 0;
  EXPECT_EQ(malloc(SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
}

TEST(ScudoWrappersCTest, Calloc) {
  void *P = calloc(1U, Size);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size, malloc_usable_size(P));
  for (size_t I = 0; I < Size; I++)
    EXPECT_EQ((reinterpret_cast<uint8_t *>(P))[I], 0U);
  free(P);

  P = calloc(1U, 0U);
  EXPECT_NE(P, nullptr);
  free(P);
  P = calloc(0U, 1U);
  EXPECT_NE(P, nullptr);
  free(P);

  errno = 0;
  EXPECT_EQ(calloc(SIZE_MAX, 1U), nullptr);
  EXPECT_EQ(errno, ENOMEM);
  errno = 0;
  EXPECT_EQ(calloc(static_cast<size_t>(LONG_MAX) + 1U, 2U), nullptr);
  if (SCUDO_ANDROID)
    EXPECT_EQ(errno, ENOMEM);
  errno = 0;
  EXPECT_EQ(calloc(SIZE_MAX, SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
}

TEST(ScudoWrappersCTest, SmallAlign) {
  void *P;
  for (size_t Size = 1; Size <= 0x10000; Size <<= 1) {
    for (size_t Align = 1; Align <= 0x10000; Align <<= 1) {
      for (size_t Count = 0; Count < 3; ++Count) {
        P = memalign(Align, Size);
        EXPECT_TRUE(reinterpret_cast<uintptr_t>(P) % Align == 0);
      }
    }
  }
}

TEST(ScudoWrappersCTest, Memalign) {
  void *P;
  for (size_t I = FIRST_32_SECOND_64(2U, 3U); I <= 18U; I++) {
    const size_t Alignment = 1U << I;

    P = memalign(Alignment, Size);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size, malloc_usable_size(P));
    EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
    free(P);

    P = nullptr;
    EXPECT_EQ(posix_memalign(&P, Alignment, Size), 0);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size, malloc_usable_size(P));
    EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
    free(P);
  }

  EXPECT_EQ(memalign(4096U, SIZE_MAX), nullptr);
  EXPECT_EQ(posix_memalign(&P, 15U, Size), EINVAL);
  EXPECT_EQ(posix_memalign(&P, 4096U, SIZE_MAX), ENOMEM);

  // Android's memalign accepts non power-of-2 alignments, and 0.
  if (SCUDO_ANDROID) {
    for (size_t Alignment = 0U; Alignment <= 128U; Alignment++) {
      P = memalign(Alignment, 1024U);
      EXPECT_NE(P, nullptr);
      free(P);
    }
  }
}

TEST(ScudoWrappersCTest, AlignedAlloc) {
  const size_t Alignment = 4096U;
  void *P = aligned_alloc(Alignment, Alignment * 4U);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Alignment * 4U, malloc_usable_size(P));
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
  free(P);

  errno = 0;
  P = aligned_alloc(Alignment, Size);
  EXPECT_EQ(P, nullptr);
  EXPECT_EQ(errno, EINVAL);
}

TEST(ScudoWrappersCTest, Realloc) {
  // realloc(nullptr, N) is malloc(N)
  void *P = realloc(nullptr, 0U);
  EXPECT_NE(P, nullptr);
  free(P);

  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  // realloc(P, 0U) is free(P) and returns nullptr
  EXPECT_EQ(realloc(P, 0U), nullptr);

  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size, malloc_usable_size(P));
  memset(P, 0x42, Size);

  P = realloc(P, Size * 2U);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size * 2U, malloc_usable_size(P));
  for (size_t I = 0; I < Size; I++)
    EXPECT_EQ(0x42, (reinterpret_cast<uint8_t *>(P))[I]);

  P = realloc(P, Size / 2U);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size / 2U, malloc_usable_size(P));
  for (size_t I = 0; I < Size / 2U; I++)
    EXPECT_EQ(0x42, (reinterpret_cast<uint8_t *>(P))[I]);
  free(P);

  EXPECT_DEATH(P = realloc(P, Size), "");

  errno = 0;
  EXPECT_EQ(realloc(nullptr, SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  errno = 0;
  EXPECT_EQ(realloc(P, SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
  free(P);

  // Android allows realloc of memalign pointers.
  if (SCUDO_ANDROID) {
    const size_t Alignment = 1024U;
    P = memalign(Alignment, Size);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size, malloc_usable_size(P));
    EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
    memset(P, 0x42, Size);

    P = realloc(P, Size * 2U);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size * 2U, malloc_usable_size(P));
    for (size_t I = 0; I < Size; I++)
      EXPECT_EQ(0x42, (reinterpret_cast<uint8_t *>(P))[I]);
    free(P);
  }
}

#if !SCUDO_FUCHSIA
TEST(ScudoWrappersCTest, MallOpt) {
  errno = 0;
  EXPECT_EQ(mallopt(-1000, 1), 0);
  // mallopt doesn't set errno.
  EXPECT_EQ(errno, 0);

  EXPECT_EQ(mallopt(M_PURGE, 0), 1);

  EXPECT_EQ(mallopt(M_DECAY_TIME, 1), 1);
  EXPECT_EQ(mallopt(M_DECAY_TIME, 0), 1);
  EXPECT_EQ(mallopt(M_DECAY_TIME, 1), 1);
  EXPECT_EQ(mallopt(M_DECAY_TIME, 0), 1);

  if (SCUDO_ANDROID) {
    EXPECT_EQ(mallopt(M_CACHE_COUNT_MAX, 100), 1);
    EXPECT_EQ(mallopt(M_CACHE_SIZE_MAX, 1024 * 1024 * 2), 1);
    EXPECT_EQ(mallopt(M_TSDS_COUNT_MAX, 10), 1);
  }
}
#endif

TEST(ScudoWrappersCTest, OtherAlloc) {
#if !SCUDO_FUCHSIA
  const size_t PageSize = sysconf(_SC_PAGESIZE);

  void *P = pvalloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) & (PageSize - 1), 0U);
  EXPECT_LE(PageSize, malloc_usable_size(P));
  free(P);

  EXPECT_EQ(pvalloc(SIZE_MAX), nullptr);

  P = pvalloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) & (PageSize - 1), 0U);
  free(P);
#endif

  EXPECT_EQ(valloc(SIZE_MAX), nullptr);
}

#if !SCUDO_FUCHSIA
TEST(ScudoWrappersCTest, MallInfo) {
  const size_t BypassQuarantineSize = 1024U;

  struct mallinfo MI = mallinfo();
  size_t Allocated = MI.uordblks;
  void *P = malloc(BypassQuarantineSize);
  EXPECT_NE(P, nullptr);
  MI = mallinfo();
  EXPECT_GE(static_cast<size_t>(MI.uordblks), Allocated + BypassQuarantineSize);
  EXPECT_GT(static_cast<size_t>(MI.hblkhd), 0U);
  size_t Free = MI.fordblks;
  free(P);
  MI = mallinfo();
  EXPECT_GE(static_cast<size_t>(MI.fordblks), Free + BypassQuarantineSize);
}
#endif

static uintptr_t BoundaryP;
static size_t Count;

static void callback(uintptr_t Base, size_t Size, void *Arg) {
  if (Base == BoundaryP)
    Count++;
}

// Verify that a block located on an iteration boundary is not mis-accounted.
// To achieve this, we allocate a chunk for which the backing block will be
// aligned on a page, then run the malloc_iterate on both the pages that the
// block is a boundary for. It must only be seen once by the callback function.
TEST(ScudoWrappersCTest, MallocIterateBoundary) {
  const size_t PageSize = sysconf(_SC_PAGESIZE);
  const size_t BlockDelta = FIRST_32_SECOND_64(8U, 16U);
  const size_t SpecialSize = PageSize - BlockDelta;

  // We aren't guaranteed that any size class is exactly a page wide. So we need
  // to keep making allocations until we succeed.
  //
  // With a 16-byte block alignment and 4096-byte page size, each allocation has
  // a probability of (1 - (16/4096)) of failing to meet the alignment
  // requirements, and the probability of failing 65536 times is
  // (1 - (16/4096))^65536 < 10^-112. So if we still haven't succeeded after
  // 65536 tries, give up.
  uintptr_t Block;
  void *P = nullptr;
  for (unsigned I = 0; I != 65536; ++I) {
    void *PrevP = P;
    P = malloc(SpecialSize);
    EXPECT_NE(P, nullptr);
    *reinterpret_cast<void **>(P) = PrevP;
    BoundaryP = reinterpret_cast<uintptr_t>(P);
    Block = BoundaryP - BlockDelta;
    if ((Block & (PageSize - 1)) == 0U)
      break;
  }
  EXPECT_EQ((Block & (PageSize - 1)), 0U);

  Count = 0U;
  malloc_disable();
  malloc_iterate(Block - PageSize, PageSize, callback, nullptr);
  malloc_iterate(Block, PageSize, callback, nullptr);
  malloc_enable();
  EXPECT_EQ(Count, 1U);

  while (P) {
    void *NextP = *reinterpret_cast<void **>(P);
    free(P);
    P = NextP;
  }
}

// Fuchsia doesn't have alarm, fork or malloc_info.
#if !SCUDO_FUCHSIA
TEST(ScudoWrappersCTest, MallocDisableDeadlock) {
  // We expect heap operations within a disable/enable scope to deadlock.
  EXPECT_DEATH(
      {
        void *P = malloc(Size);
        EXPECT_NE(P, nullptr);
        free(P);
        malloc_disable();
        alarm(1);
        P = malloc(Size);
        malloc_enable();
      },
      "");
}

TEST(ScudoWrappersCTest, MallocInfo) {
  // Use volatile so that the allocations don't get optimized away.
  void *volatile P1 = malloc(1234);
  void *volatile P2 = malloc(4321);

  char Buffer[16384];
  FILE *F = fmemopen(Buffer, sizeof(Buffer), "w+");
  EXPECT_NE(F, nullptr);
  errno = 0;
  EXPECT_EQ(malloc_info(0, F), 0);
  EXPECT_EQ(errno, 0);
  fclose(F);
  EXPECT_EQ(strncmp(Buffer, "<malloc version=\"scudo-", 23), 0);
  EXPECT_NE(nullptr, strstr(Buffer, "<alloc size=\"1234\" count=\""));
  EXPECT_NE(nullptr, strstr(Buffer, "<alloc size=\"4321\" count=\""));

  free(P1);
  free(P2);
}

TEST(ScudoWrappersCTest, Fork) {
  void *P;
  pid_t Pid = fork();
  EXPECT_GE(Pid, 0);
  if (Pid == 0) {
    P = malloc(Size);
    EXPECT_NE(P, nullptr);
    memset(P, 0x42, Size);
    free(P);
    _exit(0);
  }
  waitpid(Pid, nullptr, 0);
  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  memset(P, 0x42, Size);
  free(P);

  // fork should stall if the allocator has been disabled.
  EXPECT_DEATH(
      {
        malloc_disable();
        alarm(1);
        Pid = fork();
        EXPECT_GE(Pid, 0);
      },
      "");
}

static pthread_mutex_t Mutex;
static pthread_cond_t Conditional = PTHREAD_COND_INITIALIZER;
static bool Ready;

static void *enableMalloc(void *Unused) {
  // Initialize the allocator for this thread.
  void *P = malloc(Size);
  EXPECT_NE(P, nullptr);
  memset(P, 0x42, Size);
  free(P);

  // Signal the main thread we are ready.
  pthread_mutex_lock(&Mutex);
  Ready = true;
  pthread_cond_signal(&Conditional);
  pthread_mutex_unlock(&Mutex);

  // Wait for the malloc_disable & fork, then enable the allocator again.
  sleep(1);
  malloc_enable();

  return nullptr;
}

TEST(ScudoWrappersCTest, DisableForkEnable) {
  pthread_t ThreadId;
  Ready = false;
  EXPECT_EQ(pthread_create(&ThreadId, nullptr, &enableMalloc, nullptr), 0);

  // Wait for the thread to be warmed up.
  pthread_mutex_lock(&Mutex);
  while (!Ready)
    pthread_cond_wait(&Conditional, &Mutex);
  pthread_mutex_unlock(&Mutex);

  // Disable the allocator and fork. fork should succeed after malloc_enable.
  malloc_disable();
  pid_t Pid = fork();
  EXPECT_GE(Pid, 0);
  if (Pid == 0) {
    void *P = malloc(Size);
    EXPECT_NE(P, nullptr);
    memset(P, 0x42, Size);
    free(P);
    _exit(0);
  }
  waitpid(Pid, nullptr, 0);
  EXPECT_EQ(pthread_join(ThreadId, 0), 0);
}

#endif // SCUDO_FUCHSIA