aboutsummaryrefslogtreecommitdiffstats
path: root/include/pybind11/cast.h
diff options
context:
space:
mode:
authorJack He <siyuanh@google.com>2019-11-15 15:16:34 -0800
committerandroid-build-merger <android-build-merger@google.com>2019-11-15 15:16:34 -0800
commitebfe40da7e6ac93847ae5914e5d79d6c21c16662 (patch)
tree6c6db8bbcf299f3cd1cdfaf5f29367abb57fb6e1 /include/pybind11/cast.h
parentfe32e630e662bb249188bc0e407590e3f9b031cd (diff)
parentf7707b76f47cafc41f304db9aaeb016b97aeb376 (diff)
downloadplatform_external_python_pybind11-ebfe40da7e6ac93847ae5914e5d79d6c21c16662.tar.gz
platform_external_python_pybind11-ebfe40da7e6ac93847ae5914e5d79d6c21c16662.tar.bz2
platform_external_python_pybind11-ebfe40da7e6ac93847ae5914e5d79d6c21c16662.zip
[2.4.3] Merge commit '80d452484c5409444b0ec19383faa84bb7a4d351' into initial-merge-pybind11 am: bda94e38f5 am: 6c3ec047bb
am: f7707b76f4 Change-Id: Id16c84ea71d3dd559419d8310afec4fe726b2416
Diffstat (limited to 'include/pybind11/cast.h')
-rw-r--r--include/pybind11/cast.h2132
1 files changed, 2132 insertions, 0 deletions
diff --git a/include/pybind11/cast.h b/include/pybind11/cast.h
new file mode 100644
index 0000000..605acb3
--- /dev/null
+++ b/include/pybind11/cast.h
@@ -0,0 +1,2132 @@
+/*
+ pybind11/cast.h: Partial template specializations to cast between
+ C++ and Python types
+
+ Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
+
+ All rights reserved. Use of this source code is governed by a
+ BSD-style license that can be found in the LICENSE file.
+*/
+
+#pragma once
+
+#include "pytypes.h"
+#include "detail/typeid.h"
+#include "detail/descr.h"
+#include "detail/internals.h"
+#include <array>
+#include <limits>
+#include <tuple>
+#include <type_traits>
+
+#if defined(PYBIND11_CPP17)
+# if defined(__has_include)
+# if __has_include(<string_view>)
+# define PYBIND11_HAS_STRING_VIEW
+# endif
+# elif defined(_MSC_VER)
+# define PYBIND11_HAS_STRING_VIEW
+# endif
+#endif
+#ifdef PYBIND11_HAS_STRING_VIEW
+#include <string_view>
+#endif
+
+NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
+NAMESPACE_BEGIN(detail)
+
+/// A life support system for temporary objects created by `type_caster::load()`.
+/// Adding a patient will keep it alive up until the enclosing function returns.
+class loader_life_support {
+public:
+ /// A new patient frame is created when a function is entered
+ loader_life_support() {
+ get_internals().loader_patient_stack.push_back(nullptr);
+ }
+
+ /// ... and destroyed after it returns
+ ~loader_life_support() {
+ auto &stack = get_internals().loader_patient_stack;
+ if (stack.empty())
+ pybind11_fail("loader_life_support: internal error");
+
+ auto ptr = stack.back();
+ stack.pop_back();
+ Py_CLEAR(ptr);
+
+ // A heuristic to reduce the stack's capacity (e.g. after long recursive calls)
+ if (stack.capacity() > 16 && stack.size() != 0 && stack.capacity() / stack.size() > 2)
+ stack.shrink_to_fit();
+ }
+
+ /// This can only be used inside a pybind11-bound function, either by `argument_loader`
+ /// at argument preparation time or by `py::cast()` at execution time.
+ PYBIND11_NOINLINE static void add_patient(handle h) {
+ auto &stack = get_internals().loader_patient_stack;
+ if (stack.empty())
+ throw cast_error("When called outside a bound function, py::cast() cannot "
+ "do Python -> C++ conversions which require the creation "
+ "of temporary values");
+
+ auto &list_ptr = stack.back();
+ if (list_ptr == nullptr) {
+ list_ptr = PyList_New(1);
+ if (!list_ptr)
+ pybind11_fail("loader_life_support: error allocating list");
+ PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr());
+ } else {
+ auto result = PyList_Append(list_ptr, h.ptr());
+ if (result == -1)
+ pybind11_fail("loader_life_support: error adding patient");
+ }
+ }
+};
+
+// Gets the cache entry for the given type, creating it if necessary. The return value is the pair
+// returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
+// just created.
+inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type);
+
+// Populates a just-created cache entry.
+PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
+ std::vector<PyTypeObject *> check;
+ for (handle parent : reinterpret_borrow<tuple>(t->tp_bases))
+ check.push_back((PyTypeObject *) parent.ptr());
+
+ auto const &type_dict = get_internals().registered_types_py;
+ for (size_t i = 0; i < check.size(); i++) {
+ auto type = check[i];
+ // Ignore Python2 old-style class super type:
+ if (!PyType_Check((PyObject *) type)) continue;
+
+ // Check `type` in the current set of registered python types:
+ auto it = type_dict.find(type);
+ if (it != type_dict.end()) {
+ // We found a cache entry for it, so it's either pybind-registered or has pre-computed
+ // pybind bases, but we have to make sure we haven't already seen the type(s) before: we
+ // want to follow Python/virtual C++ rules that there should only be one instance of a
+ // common base.
+ for (auto *tinfo : it->second) {
+ // NB: Could use a second set here, rather than doing a linear search, but since
+ // having a large number of immediate pybind11-registered types seems fairly
+ // unlikely, that probably isn't worthwhile.
+ bool found = false;
+ for (auto *known : bases) {
+ if (known == tinfo) { found = true; break; }
+ }
+ if (!found) bases.push_back(tinfo);
+ }
+ }
+ else if (type->tp_bases) {
+ // It's some python type, so keep follow its bases classes to look for one or more
+ // registered types
+ if (i + 1 == check.size()) {
+ // When we're at the end, we can pop off the current element to avoid growing
+ // `check` when adding just one base (which is typical--i.e. when there is no
+ // multiple inheritance)
+ check.pop_back();
+ i--;
+ }
+ for (handle parent : reinterpret_borrow<tuple>(type->tp_bases))
+ check.push_back((PyTypeObject *) parent.ptr());
+ }
+ }
+}
+
+/**
+ * Extracts vector of type_info pointers of pybind-registered roots of the given Python type. Will
+ * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
+ * derived class that uses single inheritance. Will contain as many types as required for a Python
+ * class that uses multiple inheritance to inherit (directly or indirectly) from multiple
+ * pybind-registered classes. Will be empty if neither the type nor any base classes are
+ * pybind-registered.
+ *
+ * The value is cached for the lifetime of the Python type.
+ */
+inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
+ auto ins = all_type_info_get_cache(type);
+ if (ins.second)
+ // New cache entry: populate it
+ all_type_info_populate(type, ins.first->second);
+
+ return ins.first->second;
+}
+
+/**
+ * Gets a single pybind11 type info for a python type. Returns nullptr if neither the type nor any
+ * ancestors are pybind11-registered. Throws an exception if there are multiple bases--use
+ * `all_type_info` instead if you want to support multiple bases.
+ */
+PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
+ auto &bases = all_type_info(type);
+ if (bases.size() == 0)
+ return nullptr;
+ if (bases.size() > 1)
+ pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
+ return bases.front();
+}
+
+inline detail::type_info *get_local_type_info(const std::type_index &tp) {
+ auto &locals = registered_local_types_cpp();
+ auto it = locals.find(tp);
+ if (it != locals.end())
+ return it->second;
+ return nullptr;
+}
+
+inline detail::type_info *get_global_type_info(const std::type_index &tp) {
+ auto &types = get_internals().registered_types_cpp;
+ auto it = types.find(tp);
+ if (it != types.end())
+ return it->second;
+ return nullptr;
+}
+
+/// Return the type info for a given C++ type; on lookup failure can either throw or return nullptr.
+PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_index &tp,
+ bool throw_if_missing = false) {
+ if (auto ltype = get_local_type_info(tp))
+ return ltype;
+ if (auto gtype = get_global_type_info(tp))
+ return gtype;
+
+ if (throw_if_missing) {
+ std::string tname = tp.name();
+ detail::clean_type_id(tname);
+ pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
+ }
+ return nullptr;
+}
+
+PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
+ detail::type_info *type_info = get_type_info(tp, throw_if_missing);
+ return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
+}
+
+struct value_and_holder {
+ instance *inst = nullptr;
+ size_t index = 0u;
+ const detail::type_info *type = nullptr;
+ void **vh = nullptr;
+
+ // Main constructor for a found value/holder:
+ value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) :
+ inst{i}, index{index}, type{type},
+ vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]}
+ {}
+
+ // Default constructor (used to signal a value-and-holder not found by get_value_and_holder())
+ value_and_holder() {}
+
+ // Used for past-the-end iterator
+ value_and_holder(size_t index) : index{index} {}
+
+ template <typename V = void> V *&value_ptr() const {
+ return reinterpret_cast<V *&>(vh[0]);
+ }
+ // True if this `value_and_holder` has a non-null value pointer
+ explicit operator bool() const { return value_ptr(); }
+
+ template <typename H> H &holder() const {
+ return reinterpret_cast<H &>(vh[1]);
+ }
+ bool holder_constructed() const {
+ return inst->simple_layout
+ ? inst->simple_holder_constructed
+ : inst->nonsimple.status[index] & instance::status_holder_constructed;
+ }
+ void set_holder_constructed(bool v = true) {
+ if (inst->simple_layout)
+ inst->simple_holder_constructed = v;
+ else if (v)
+ inst->nonsimple.status[index] |= instance::status_holder_constructed;
+ else
+ inst->nonsimple.status[index] &= (uint8_t) ~instance::status_holder_constructed;
+ }
+ bool instance_registered() const {
+ return inst->simple_layout
+ ? inst->simple_instance_registered
+ : inst->nonsimple.status[index] & instance::status_instance_registered;
+ }
+ void set_instance_registered(bool v = true) {
+ if (inst->simple_layout)
+ inst->simple_instance_registered = v;
+ else if (v)
+ inst->nonsimple.status[index] |= instance::status_instance_registered;
+ else
+ inst->nonsimple.status[index] &= (uint8_t) ~instance::status_instance_registered;
+ }
+};
+
+// Container for accessing and iterating over an instance's values/holders
+struct values_and_holders {
+private:
+ instance *inst;
+ using type_vec = std::vector<detail::type_info *>;
+ const type_vec &tinfo;
+
+public:
+ values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}
+
+ struct iterator {
+ private:
+ instance *inst = nullptr;
+ const type_vec *types = nullptr;
+ value_and_holder curr;
+ friend struct values_and_holders;
+ iterator(instance *inst, const type_vec *tinfo)
+ : inst{inst}, types{tinfo},
+ curr(inst /* instance */,
+ types->empty() ? nullptr : (*types)[0] /* type info */,
+ 0, /* vpos: (non-simple types only): the first vptr comes first */
+ 0 /* index */)
+ {}
+ // Past-the-end iterator:
+ iterator(size_t end) : curr(end) {}
+ public:
+ bool operator==(const iterator &other) { return curr.index == other.curr.index; }
+ bool operator!=(const iterator &other) { return curr.index != other.curr.index; }
+ iterator &operator++() {
+ if (!inst->simple_layout)
+ curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs;
+ ++curr.index;
+ curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr;
+ return *this;
+ }
+ value_and_holder &operator*() { return curr; }
+ value_and_holder *operator->() { return &curr; }
+ };
+
+ iterator begin() { return iterator(inst, &tinfo); }
+ iterator end() { return iterator(tinfo.size()); }
+
+ iterator find(const type_info *find_type) {
+ auto it = begin(), endit = end();
+ while (it != endit && it->type != find_type) ++it;
+ return it;
+ }
+
+ size_t size() { return tinfo.size(); }
+};
+
+/**
+ * Extracts C++ value and holder pointer references from an instance (which may contain multiple
+ * values/holders for python-side multiple inheritance) that match the given type. Throws an error
+ * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance. If
+ * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
+ * regardless of type (and the resulting .type will be nullptr).
+ *
+ * The returned object should be short-lived: in particular, it must not outlive the called-upon
+ * instance.
+ */
+PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/, bool throw_if_missing /*= true in common.h*/) {
+ // Optimize common case:
+ if (!find_type || Py_TYPE(this) == find_type->type)
+ return value_and_holder(this, find_type, 0, 0);
+
+ detail::values_and_holders vhs(this);
+ auto it = vhs.find(find_type);
+ if (it != vhs.end())
+ return *it;
+
+ if (!throw_if_missing)
+ return value_and_holder();
+
+#if defined(NDEBUG)
+ pybind11_fail("pybind11::detail::instance::get_value_and_holder: "
+ "type is not a pybind11 base of the given instance "
+ "(compile in debug mode for type details)");
+#else
+ pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" +
+ std::string(find_type->type->tp_name) + "' is not a pybind11 base of the given `" +
+ std::string(Py_TYPE(this)->tp_name) + "' instance");
+#endif
+}
+
+PYBIND11_NOINLINE inline void instance::allocate_layout() {
+ auto &tinfo = all_type_info(Py_TYPE(this));
+
+ const size_t n_types = tinfo.size();
+
+ if (n_types == 0)
+ pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types");
+
+ simple_layout =
+ n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();
+
+ // Simple path: no python-side multiple inheritance, and a small-enough holder
+ if (simple_layout) {
+ simple_value_holder[0] = nullptr;
+ simple_holder_constructed = false;
+ simple_instance_registered = false;
+ }
+ else { // multiple base types or a too-large holder
+ // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
+ // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
+ // values that tracks whether each associated holder has been initialized. Each [block] is
+ // padded, if necessary, to an integer multiple of sizeof(void *).
+ size_t space = 0;
+ for (auto t : tinfo) {
+ space += 1; // value pointer
+ space += t->holder_size_in_ptrs; // holder instance
+ }
+ size_t flags_at = space;
+ space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered)
+
+ // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
+ // in particular, need to be 0). Use Python's memory allocation functions: in Python 3.6
+ // they default to using pymalloc, which is designed to be efficient for small allocations
+ // like the one we're doing here; in earlier versions (and for larger allocations) they are
+ // just wrappers around malloc.
+#if PY_VERSION_HEX >= 0x03050000
+ nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
+ if (!nonsimple.values_and_holders) throw std::bad_alloc();
+#else
+ nonsimple.values_and_holders = (void **) PyMem_New(void *, space);
+ if (!nonsimple.values_and_holders) throw std::bad_alloc();
+ std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *));
+#endif
+ nonsimple.status = reinterpret_cast<uint8_t *>(&nonsimple.values_and_holders[flags_at]);
+ }
+ owned = true;
+}
+
+PYBIND11_NOINLINE inline void instance::deallocate_layout() {
+ if (!simple_layout)
+ PyMem_Free(nonsimple.values_and_holders);
+}
+
+PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
+ handle type = detail::get_type_handle(tp, false);
+ if (!type)
+ return false;
+ return isinstance(obj, type);
+}
+
+PYBIND11_NOINLINE inline std::string error_string() {
+ if (!PyErr_Occurred()) {
+ PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
+ return "Unknown internal error occurred";
+ }
+
+ error_scope scope; // Preserve error state
+
+ std::string errorString;
+ if (scope.type) {
+ errorString += handle(scope.type).attr("__name__").cast<std::string>();
+ errorString += ": ";
+ }
+ if (scope.value)
+ errorString += (std::string) str(scope.value);
+
+ PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
+
+#if PY_MAJOR_VERSION >= 3
+ if (scope.trace != nullptr)
+ PyException_SetTraceback(scope.value, scope.trace);
+#endif
+
+#if !defined(PYPY_VERSION)
+ if (scope.trace) {
+ PyTracebackObject *trace = (PyTracebackObject *) scope.trace;
+
+ /* Get the deepest trace possible */
+ while (trace->tb_next)
+ trace = trace->tb_next;
+
+ PyFrameObject *frame = trace->tb_frame;
+ errorString += "\n\nAt:\n";
+ while (frame) {
+ int lineno = PyFrame_GetLineNumber(frame);
+ errorString +=
+ " " + handle(frame->f_code->co_filename).cast<std::string>() +
+ "(" + std::to_string(lineno) + "): " +
+ handle(frame->f_code->co_name).cast<std::string>() + "\n";
+ frame = frame->f_back;
+ }
+ }
+#endif
+
+ return errorString;
+}
+
+PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
+ auto &instances = get_internals().registered_instances;
+ auto range = instances.equal_range(ptr);
+ for (auto it = range.first; it != range.second; ++it) {
+ for (auto vh : values_and_holders(it->second)) {
+ if (vh.type == type)
+ return handle((PyObject *) it->second);
+ }
+ }
+ return handle();
+}
+
+inline PyThreadState *get_thread_state_unchecked() {
+#if defined(PYPY_VERSION)
+ return PyThreadState_GET();
+#elif PY_VERSION_HEX < 0x03000000
+ return _PyThreadState_Current;
+#elif PY_VERSION_HEX < 0x03050000
+ return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
+#elif PY_VERSION_HEX < 0x03050200
+ return (PyThreadState*) _PyThreadState_Current.value;
+#else
+ return _PyThreadState_UncheckedGet();
+#endif
+}
+
+// Forward declarations
+inline void keep_alive_impl(handle nurse, handle patient);
+inline PyObject *make_new_instance(PyTypeObject *type);
+
+class type_caster_generic {
+public:
+ PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
+ : typeinfo(get_type_info(type_info)), cpptype(&type_info) { }
+
+ type_caster_generic(const type_info *typeinfo)
+ : typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) { }
+
+ bool load(handle src, bool convert) {
+ return load_impl<type_caster_generic>(src, convert);
+ }
+
+ PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
+ const detail::type_info *tinfo,
+ void *(*copy_constructor)(const void *),
+ void *(*move_constructor)(const void *),
+ const void *existing_holder = nullptr) {
+ if (!tinfo) // no type info: error will be set already
+ return handle();
+
+ void *src = const_cast<void *>(_src);
+ if (src == nullptr)
+ return none().release();
+
+ auto it_instances = get_internals().registered_instances.equal_range(src);
+ for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
+ for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
+ if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype))
+ return handle((PyObject *) it_i->second).inc_ref();
+ }
+ }
+
+ auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type));
+ auto wrapper = reinterpret_cast<instance *>(inst.ptr());
+ wrapper->owned = false;
+ void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();
+
+ switch (policy) {
+ case return_value_policy::automatic:
+ case return_value_policy::take_ownership:
+ valueptr = src;
+ wrapper->owned = true;
+ break;
+
+ case return_value_policy::automatic_reference:
+ case return_value_policy::reference:
+ valueptr = src;
+ wrapper->owned = false;
+ break;
+
+ case return_value_policy::copy:
+ if (copy_constructor)
+ valueptr = copy_constructor(src);
+ else
+ throw cast_error("return_value_policy = copy, but the "
+ "object is non-copyable!");
+ wrapper->owned = true;
+ break;
+
+ case return_value_policy::move:
+ if (move_constructor)
+ valueptr = move_constructor(src);
+ else if (copy_constructor)
+ valueptr = copy_constructor(src);
+ else
+ throw cast_error("return_value_policy = move, but the "
+ "object is neither movable nor copyable!");
+ wrapper->owned = true;
+ break;
+
+ case return_value_policy::reference_internal:
+ valueptr = src;
+ wrapper->owned = false;
+ keep_alive_impl(inst, parent);
+ break;
+
+ default:
+ throw cast_error("unhandled return_value_policy: should not happen!");
+ }
+
+ tinfo->init_instance(wrapper, existing_holder);
+
+ return inst.release();
+ }
+
+ // Base methods for generic caster; there are overridden in copyable_holder_caster
+ void load_value(value_and_holder &&v_h) {
+ auto *&vptr = v_h.value_ptr();
+ // Lazy allocation for unallocated values:
+ if (vptr == nullptr) {
+ auto *type = v_h.type ? v_h.type : typeinfo;
+ if (type->operator_new) {
+ vptr = type->operator_new(type->type_size);
+ } else {
+ #if defined(PYBIND11_CPP17)
+ if (type->type_align > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
+ vptr = ::operator new(type->type_size,
+ (std::align_val_t) type->type_align);
+ else
+ #endif
+ vptr = ::operator new(type->type_size);
+ }
+ }
+ value = vptr;
+ }
+ bool try_implicit_casts(handle src, bool convert) {
+ for (auto &cast : typeinfo->implicit_casts) {
+ type_caster_generic sub_caster(*cast.first);
+ if (sub_caster.load(src, convert)) {
+ value = cast.second(sub_caster.value);
+ return true;
+ }
+ }
+ return false;
+ }
+ bool try_direct_conversions(handle src) {
+ for (auto &converter : *typeinfo->direct_conversions) {
+ if (converter(src.ptr(), value))
+ return true;
+ }
+ return false;
+ }
+ void check_holder_compat() {}
+
+ PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) {
+ auto caster = type_caster_generic(ti);
+ if (caster.load(src, false))
+ return caster.value;
+ return nullptr;
+ }
+
+ /// Try to load with foreign typeinfo, if available. Used when there is no
+ /// native typeinfo, or when the native one wasn't able to produce a value.
+ PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) {
+ constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID;
+ const auto pytype = src.get_type();
+ if (!hasattr(pytype, local_key))
+ return false;
+
+ type_info *foreign_typeinfo = reinterpret_borrow<capsule>(getattr(pytype, local_key));
+ // Only consider this foreign loader if actually foreign and is a loader of the correct cpp type
+ if (foreign_typeinfo->module_local_load == &local_load
+ || (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype)))
+ return false;
+
+ if (auto result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) {
+ value = result;
+ return true;
+ }
+ return false;
+ }
+
+ // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
+ // bits of code between here and copyable_holder_caster where the two classes need different
+ // logic (without having to resort to virtual inheritance).
+ template <typename ThisT>
+ PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
+ if (!src) return false;
+ if (!typeinfo) return try_load_foreign_module_local(src);
+ if (src.is_none()) {
+ // Defer accepting None to other overloads (if we aren't in convert mode):
+ if (!convert) return false;
+ value = nullptr;
+ return true;
+ }
+
+ auto &this_ = static_cast<ThisT &>(*this);
+ this_.check_holder_compat();
+
+ PyTypeObject *srctype = Py_TYPE(src.ptr());
+
+ // Case 1: If src is an exact type match for the target type then we can reinterpret_cast
+ // the instance's value pointer to the target type:
+ if (srctype == typeinfo->type) {
+ this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
+ return true;
+ }
+ // Case 2: We have a derived class
+ else if (PyType_IsSubtype(srctype, typeinfo->type)) {
+ auto &bases = all_type_info(srctype);
+ bool no_cpp_mi = typeinfo->simple_type;
+
+ // Case 2a: the python type is a Python-inherited derived class that inherits from just
+ // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
+ // the right type and we can use reinterpret_cast.
+ // (This is essentially the same as case 2b, but because not using multiple inheritance
+ // is extremely common, we handle it specially to avoid the loop iterator and type
+ // pointer lookup overhead)
+ if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
+ this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
+ return true;
+ }
+ // Case 2b: the python type inherits from multiple C++ bases. Check the bases to see if
+ // we can find an exact match (or, for a simple C++ type, an inherited match); if so, we
+ // can safely reinterpret_cast to the relevant pointer.
+ else if (bases.size() > 1) {
+ for (auto base : bases) {
+ if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) {
+ this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
+ return true;
+ }
+ }
+ }
+
+ // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match
+ // in the registered bases, above, so try implicit casting (needed for proper C++ casting
+ // when MI is involved).
+ if (this_.try_implicit_casts(src, convert))
+ return true;
+ }
+
+ // Perform an implicit conversion
+ if (convert) {
+ for (auto &converter : typeinfo->implicit_conversions) {
+ auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
+ if (load_impl<ThisT>(temp, false)) {
+ loader_life_support::add_patient(temp);
+ return true;
+ }
+ }
+ if (this_.try_direct_conversions(src))
+ return true;
+ }
+
+ // Failed to match local typeinfo. Try again with global.
+ if (typeinfo->module_local) {
+ if (auto gtype = get_global_type_info(*typeinfo->cpptype)) {
+ typeinfo = gtype;
+ return load(src, false);
+ }
+ }
+
+ // Global typeinfo has precedence over foreign module_local
+ return try_load_foreign_module_local(src);
+ }
+
+
+ // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
+ // isn't needed or can't be used. If the type is unknown, sets the error and returns a pair
+ // with .second = nullptr. (p.first = nullptr is not an error: it becomes None).
+ PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type(
+ const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) {
+ if (auto *tpi = get_type_info(cast_type))
+ return {src, const_cast<const type_info *>(tpi)};
+
+ // Not found, set error:
+ std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
+ detail::clean_type_id(tname);
+ std::string msg = "Unregistered type : " + tname;
+ PyErr_SetString(PyExc_TypeError, msg.c_str());
+ return {nullptr, nullptr};
+ }
+
+ const type_info *typeinfo = nullptr;
+ const std::type_info *cpptype = nullptr;
+ void *value = nullptr;
+};
+
+/**
+ * Determine suitable casting operator for pointer-or-lvalue-casting type casters. The type caster
+ * needs to provide `operator T*()` and `operator T&()` operators.
+ *
+ * If the type supports moving the value away via an `operator T&&() &&` method, it should use
+ * `movable_cast_op_type` instead.
+ */
+template <typename T>
+using cast_op_type =
+ conditional_t<std::is_pointer<remove_reference_t<T>>::value,
+ typename std::add_pointer<intrinsic_t<T>>::type,
+ typename std::add_lvalue_reference<intrinsic_t<T>>::type>;
+
+/**
+ * Determine suitable casting operator for a type caster with a movable value. Such a type caster
+ * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`. The latter will be
+ * called in appropriate contexts where the value can be moved rather than copied.
+ *
+ * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
+ */
+template <typename T>
+using movable_cast_op_type =
+ conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
+ typename std::add_pointer<intrinsic_t<T>>::type,
+ conditional_t<std::is_rvalue_reference<T>::value,
+ typename std::add_rvalue_reference<intrinsic_t<T>>::type,
+ typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;
+
+// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
+// T is non-copyable, but code containing such a copy constructor fails to actually compile.
+template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
+
+// Specialization for types that appear to be copy constructible but also look like stl containers
+// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
+// so, copy constructability depends on whether the value_type is copy constructible.
+template <typename Container> struct is_copy_constructible<Container, enable_if_t<all_of<
+ std::is_copy_constructible<Container>,
+ std::is_same<typename Container::value_type &, typename Container::reference>,
+ // Avoid infinite recursion
+ negation<std::is_same<Container, typename Container::value_type>>
+ >::value>> : is_copy_constructible<typename Container::value_type> {};
+
+#if !defined(PYBIND11_CPP17)
+// Likewise for std::pair before C++17 (which mandates that the copy constructor not exist when the
+// two types aren't themselves copy constructible).
+template <typename T1, typename T2> struct is_copy_constructible<std::pair<T1, T2>>
+ : all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {};
+#endif
+
+NAMESPACE_END(detail)
+
+// polymorphic_type_hook<itype>::get(src, tinfo) determines whether the object pointed
+// to by `src` actually is an instance of some class derived from `itype`.
+// If so, it sets `tinfo` to point to the std::type_info representing that derived
+// type, and returns a pointer to the start of the most-derived object of that type
+// (in which `src` is a subobject; this will be the same address as `src` in most
+// single inheritance cases). If not, or if `src` is nullptr, it simply returns `src`
+// and leaves `tinfo` at its default value of nullptr.
+//
+// The default polymorphic_type_hook just returns src. A specialization for polymorphic
+// types determines the runtime type of the passed object and adjusts the this-pointer
+// appropriately via dynamic_cast<void*>. This is what enables a C++ Animal* to appear
+// to Python as a Dog (if Dog inherits from Animal, Animal is polymorphic, Dog is
+// registered with pybind11, and this Animal is in fact a Dog).
+//
+// You may specialize polymorphic_type_hook yourself for types that want to appear
+// polymorphic to Python but do not use C++ RTTI. (This is a not uncommon pattern
+// in performance-sensitive applications, used most notably in LLVM.)
+template <typename itype, typename SFINAE = void>
+struct polymorphic_type_hook
+{
+ static const void *get(const itype *src, const std::type_info*&) { return src; }
+};
+template <typename itype>
+struct polymorphic_type_hook<itype, detail::enable_if_t<std::is_polymorphic<itype>::value>>
+{
+ static const void *get(const itype *src, const std::type_info*& type) {
+ type = src ? &typeid(*src) : nullptr;
+ return dynamic_cast<const void*>(src);
+ }
+};
+
+NAMESPACE_BEGIN(detail)
+
+/// Generic type caster for objects stored on the heap
+template <typename type> class type_caster_base : public type_caster_generic {
+ using itype = intrinsic_t<type>;
+
+public:
+ static constexpr auto name = _<type>();
+
+ type_caster_base() : type_caster_base(typeid(type)) { }
+ explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
+
+ static handle cast(const itype &src, return_value_policy policy, handle parent) {
+ if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
+ policy = return_value_policy::copy;
+ return cast(&src, policy, parent);
+ }
+
+ static handle cast(itype &&src, return_value_policy, handle parent) {
+ return cast(&src, return_value_policy::move, parent);
+ }
+
+ // Returns a (pointer, type_info) pair taking care of necessary type lookup for a
+ // polymorphic type (using RTTI by default, but can be overridden by specializing
+ // polymorphic_type_hook). If the instance isn't derived, returns the base version.
+ static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
+ auto &cast_type = typeid(itype);
+ const std::type_info *instance_type = nullptr;
+ const void *vsrc = polymorphic_type_hook<itype>::get(src, instance_type);
+ if (instance_type && !same_type(cast_type, *instance_type)) {
+ // This is a base pointer to a derived type. If the derived type is registered
+ // with pybind11, we want to make the full derived object available.
+ // In the typical case where itype is polymorphic, we get the correct
+ // derived pointer (which may be != base pointer) by a dynamic_cast to
+ // most derived type. If itype is not polymorphic, we won't get here
+ // except via a user-provided specialization of polymorphic_type_hook,
+ // and the user has promised that no this-pointer adjustment is
+ // required in that case, so it's OK to use static_cast.
+ if (const auto *tpi = get_type_info(*instance_type))
+ return {vsrc, tpi};
+ }
+ // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so
+ // don't do a cast
+ return type_caster_generic::src_and_type(src, cast_type, instance_type);
+ }
+
+ static handle cast(const itype *src, return_value_policy policy, handle parent) {
+ auto st = src_and_type(src);
+ return type_caster_generic::cast(
+ st.first, policy, parent, st.second,
+ make_copy_constructor(src), make_move_constructor(src));
+ }
+
+ static handle cast_holder(const itype *src, const void *holder) {
+ auto st = src_and_type(src);
+ return type_caster_generic::cast(
+ st.first, return_value_policy::take_ownership, {}, st.second,
+ nullptr, nullptr, holder);
+ }
+
+ template <typename T> using cast_op_type = detail::cast_op_type<T>;
+
+ operator itype*() { return (type *) value; }
+ operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
+
+protected:
+ using Constructor = void *(*)(const void *);
+
+ /* Only enabled when the types are {copy,move}-constructible *and* when the type
+ does not have a private operator new implementation. */
+ template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
+ static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) {
+ return [](const void *arg) -> void * {
+ return new T(*reinterpret_cast<const T *>(arg));
+ };
+ }
+
+ template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
+ static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) {
+ return [](const void *arg) -> void * {
+ return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
+ };
+ }
+
+ static Constructor make_copy_constructor(...) { return nullptr; }
+ static Constructor make_move_constructor(...) { return nullptr; }
+};
+
+template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
+template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
+
+// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
+template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
+ return caster.operator typename make_caster<T>::template cast_op_type<T>();
+}
+template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
+cast_op(make_caster<T> &&caster) {
+ return std::move(caster).operator
+ typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
+}
+
+template <typename type> class type_caster<std::reference_wrapper<type>> {
+private:
+ using caster_t = make_caster<type>;
+ caster_t subcaster;
+ using subcaster_cast_op_type = typename caster_t::template cast_op_type<type>;
+ static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value,
+ "std::reference_wrapper<T> caster requires T to have a caster with an `T &` operator");
+public:
+ bool load(handle src, bool convert) { return subcaster.load(src, convert); }
+ static constexpr auto name = caster_t::name;
+ static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
+ // It is definitely wrong to take ownership of this pointer, so mask that rvp
+ if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic)
+ policy = return_value_policy::automatic_reference;
+ return caster_t::cast(&src.get(), policy, parent);
+ }
+ template <typename T> using cast_op_type = std::reference_wrapper<type>;
+ operator std::reference_wrapper<type>() { return subcaster.operator subcaster_cast_op_type&(); }
+};
+
+#define PYBIND11_TYPE_CASTER(type, py_name) \
+ protected: \
+ type value; \
+ public: \
+ static constexpr auto name = py_name; \
+ template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \
+ static handle cast(T_ *src, return_value_policy policy, handle parent) { \
+ if (!src) return none().release(); \
+ if (policy == return_value_policy::take_ownership) { \
+ auto h = cast(std::move(*src), policy, parent); delete src; return h; \
+ } else { \
+ return cast(*src, policy, parent); \
+ } \
+ } \
+ operator type*() { return &value; } \
+ operator type&() { return value; } \
+ operator type&&() && { return std::move(value); } \
+ template <typename T_> using cast_op_type = pybind11::detail::movable_cast_op_type<T_>
+
+
+template <typename CharT> using is_std_char_type = any_of<
+ std::is_same<CharT, char>, /* std::string */
+ std::is_same<CharT, char16_t>, /* std::u16string */
+ std::is_same<CharT, char32_t>, /* std::u32string */
+ std::is_same<CharT, wchar_t> /* std::wstring */
+>;
+
+template <typename T>
+struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
+ using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
+ using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
+ using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
+public:
+
+ bool load(handle src, bool convert) {
+ py_type py_value;
+
+ if (!src)
+ return false;
+
+ if (std::is_floating_point<T>::value) {
+ if (convert || PyFloat_Check(src.ptr()))
+ py_value = (py_type) PyFloat_AsDouble(src.ptr());
+ else
+ return false;
+ } else if (PyFloat_Check(src.ptr())) {
+ return false;
+ } else if (std::is_unsigned<py_type>::value) {
+ py_value = as_unsigned<py_type>(src.ptr());
+ } else { // signed integer:
+ py_value = sizeof(T) <= sizeof(long)
+ ? (py_type) PyLong_AsLong(src.ptr())
+ : (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
+ }
+
+ bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
+
+ // Protect std::numeric_limits::min/max with parentheses
+ if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
+ (py_value < (py_type) (std::numeric_limits<T>::min)() ||
+ py_value > (py_type) (std::numeric_limits<T>::max)()))) {
+ bool type_error = py_err && PyErr_ExceptionMatches(
+#if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION)
+ PyExc_SystemError
+#else
+ PyExc_TypeError
+#endif
+ );
+ PyErr_Clear();
+ if (type_error && convert && PyNumber_Check(src.ptr())) {
+ auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
+ ? PyNumber_Float(src.ptr())
+ : PyNumber_Long(src.ptr()));
+ PyErr_Clear();
+ return load(tmp, false);
+ }
+ return false;
+ }
+
+ value = (T) py_value;
+ return true;
+ }
+
+ template<typename U = T>
+ static typename std::enable_if<std::is_floating_point<U>::value, handle>::type
+ cast(U src, return_value_policy /* policy */, handle /* parent */) {
+ return PyFloat_FromDouble((double) src);
+ }
+
+ template<typename U = T>
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) <= sizeof(long)), handle>::type
+ cast(U src, return_value_policy /* policy */, handle /* parent */) {
+ return PYBIND11_LONG_FROM_SIGNED((long) src);
+ }
+
+ template<typename U = T>
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) <= sizeof(unsigned long)), handle>::type
+ cast(U src, return_value_policy /* policy */, handle /* parent */) {
+ return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src);
+ }
+
+ template<typename U = T>
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) > sizeof(long)), handle>::type
+ cast(U src, return_value_policy /* policy */, handle /* parent */) {
+ return PyLong_FromLongLong((long long) src);
+ }
+
+ template<typename U = T>
+ static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) > sizeof(unsigned long)), handle>::type
+ cast(U src, return_value_policy /* policy */, handle /* parent */) {
+ return PyLong_FromUnsignedLongLong((unsigned long long) src);
+ }
+
+ PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
+};
+
+template<typename T> struct void_caster {
+public:
+ bool load(handle src, bool) {
+ if (src && src.is_none())
+ return true;
+ return false;
+ }
+ static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
+ return none().inc_ref();
+ }
+ PYBIND11_TYPE_CASTER(T, _("None"));
+};
+
+template <> class type_caster<void_type> : public void_caster<void_type> {};
+
+template <> class type_caster<void> : public type_caster<void_type> {
+public:
+ using type_caster<void_type>::cast;
+
+ bool load(handle h, bool) {
+ if (!h) {
+ return false;
+ } else if (h.is_none()) {
+ value = nullptr;
+ return true;
+ }
+
+ /* Check if this is a capsule */
+ if (isinstance<capsule>(h)) {
+ value = reinterpret_borrow<capsule>(h);
+ return true;
+ }
+
+ /* Check if this is a C++ type */
+ auto &bases = all_type_info((PyTypeObject *) h.get_type().ptr());
+ if (bases.size() == 1) { // Only allowing loading from a single-value type
+ value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
+ return true;
+ }
+
+ /* Fail */
+ return false;
+ }
+
+ static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
+ if (ptr)
+ return capsule(ptr).release();
+ else
+ return none().inc_ref();
+ }
+
+ template <typename T> using cast_op_type = void*&;
+ operator void *&() { return value; }
+ static constexpr auto name = _("capsule");
+private:
+ void *value = nullptr;
+};
+
+template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };
+
+template <> class type_caster<bool> {
+public:
+ bool load(handle src, bool convert) {
+ if (!src) return false;
+ else if (src.ptr() == Py_True) { value = true; return true; }
+ else if (src.ptr() == Py_False) { value = false; return true; }
+ else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) {
+ // (allow non-implicit conversion for numpy booleans)
+
+ Py_ssize_t res = -1;
+ if (src.is_none()) {
+ res = 0; // None is implicitly converted to False
+ }
+ #if defined(PYPY_VERSION)
+ // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists
+ else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
+ res = PyObject_IsTrue(src.ptr());
+ }
+ #else
+ // Alternate approach for CPython: this does the same as the above, but optimized
+ // using the CPython API so as to avoid an unneeded attribute lookup.
+ else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) {
+ if (PYBIND11_NB_BOOL(tp_as_number)) {
+ res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
+ }
+ }
+ #endif
+ if (res == 0 || res == 1) {
+ value = (bool) res;
+ return true;
+ }
+ }
+ return false;
+ }
+ static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
+ return handle(src ? Py_True : Py_False).inc_ref();
+ }
+ PYBIND11_TYPE_CASTER(bool, _("bool"));
+};
+
+// Helper class for UTF-{8,16,32} C++ stl strings:
+template <typename StringType, bool IsView = false> struct string_caster {
+ using CharT = typename StringType::value_type;
+
+ // Simplify life by being able to assume standard char sizes (the standard only guarantees
+ // minimums, but Python requires exact sizes)
+ static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
+ static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
+ static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
+ // wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
+ static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
+ "Unsupported wchar_t size != 2/4");
+ static constexpr size_t UTF_N = 8 * sizeof(CharT);
+
+ bool load(handle src, bool) {
+#if PY_MAJOR_VERSION < 3
+ object temp;
+#endif
+ handle load_src = src;
+ if (!src) {
+ return false;
+ } else if (!PyUnicode_Check(load_src.ptr())) {
+#if PY_MAJOR_VERSION >= 3
+ return load_bytes(load_src);
+#else
+ if (sizeof(CharT) == 1) {
+ return load_bytes(load_src);
+ }
+
+ // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
+ if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
+ return false;
+
+ temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
+ if (!temp) { PyErr_Clear(); return false; }
+ load_src = temp;
+#endif
+ }
+
+ object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
+ load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
+ if (!utfNbytes) { PyErr_Clear(); return false; }
+
+ const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
+ size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
+ if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
+ value = StringType(buffer, length);
+
+ // If we're loading a string_view we need to keep the encoded Python object alive:
+ if (IsView)
+ loader_life_support::add_patient(utfNbytes);
+
+ return true;
+ }
+
+ static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
+ const char *buffer = reinterpret_cast<const char *>(src.data());
+ ssize_t nbytes = ssize_t(src.size() * sizeof(CharT));
+ handle s = decode_utfN(buffer, nbytes);
+ if (!s) throw error_already_set();
+ return s;
+ }
+
+ PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));
+
+private:
+ static handle decode_utfN(const char *buffer, ssize_t nbytes) {
+#if !defined(PYPY_VERSION)
+ return
+ UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
+ UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
+ PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
+#else
+ // PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version
+ // sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a
+ // non-const char * arguments, which is also a nuisance, so bypass the whole thing by just
+ // passing the encoding as a string value, which works properly:
+ return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
+#endif
+ }
+
+ // When loading into a std::string or char*, accept a bytes object as-is (i.e.
+ // without any encoding/decoding attempt). For other C++ char sizes this is a no-op.
+ // which supports loading a unicode from a str, doesn't take this path.
+ template <typename C = CharT>
+ bool load_bytes(enable_if_t<sizeof(C) == 1, handle> src) {
+ if (PYBIND11_BYTES_CHECK(src.ptr())) {
+ // We were passed a Python 3 raw bytes; accept it into a std::string or char*
+ // without any encoding attempt.
+ const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
+ if (bytes) {
+ value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ template <typename C = CharT>
+ bool load_bytes(enable_if_t<sizeof(C) != 1, handle>) { return false; }
+};
+
+template <typename CharT, class Traits, class Allocator>
+struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
+ : string_caster<std::basic_string<CharT, Traits, Allocator>> {};
+
+#ifdef PYBIND11_HAS_STRING_VIEW
+template <typename CharT, class Traits>
+struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
+ : string_caster<std::basic_string_view<CharT, Traits>, true> {};
+#endif
+
+// Type caster for C-style strings. We basically use a std::string type caster, but also add the
+// ability to use None as a nullptr char* (which the string caster doesn't allow).
+template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
+ using StringType = std::basic_string<CharT>;
+ using StringCaster = type_caster<StringType>;
+ StringCaster str_caster;
+ bool none = false;
+ CharT one_char = 0;
+public:
+ bool load(handle src, bool convert) {
+ if (!src) return false;
+ if (src.is_none()) {
+ // Defer accepting None to other overloads (if we aren't in convert mode):
+ if (!convert) return false;
+ none = true;
+ return true;
+ }
+ return str_caster.load(src, convert);
+ }
+
+ static handle cast(const CharT *src, return_value_policy policy, handle parent) {
+ if (src == nullptr) return pybind11::none().inc_ref();
+ return StringCaster::cast(StringType(src), policy, parent);
+ }
+
+ static handle cast(CharT src, return_value_policy policy, handle parent) {
+ if (std::is_same<char, CharT>::value) {
+ handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
+ if (!s) throw error_already_set();
+ return s;
+ }
+ return StringCaster::cast(StringType(1, src), policy, parent);
+ }
+
+ operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
+ operator CharT&() {
+ if (none)
+ throw value_error("Cannot convert None to a character");
+
+ auto &value = static_cast<StringType &>(str_caster);
+ size_t str_len = value.size();
+ if (str_len == 0)
+ throw value_error("Cannot convert empty string to a character");
+
+ // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
+ // is too high, and one for multiple unicode characters (caught later), so we need to figure
+ // out how long the first encoded character is in bytes to distinguish between these two
+ // errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those
+ // can fit into a single char value.
+ if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
+ unsigned char v0 = static_cast<unsigned char>(value[0]);
+ size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
+ (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
+ (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
+ 4; // 0b11110xxx - start of 4-byte sequence
+
+ if (char0_bytes == str_len) {
+ // If we have a 128-255 value, we can decode it into a single char:
+ if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
+ one_char = static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
+ return one_char;
+ }
+ // Otherwise we have a single character, but it's > U+00FF
+ throw value_error("Character code point not in range(0x100)");
+ }
+ }
+
+ // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
+ // surrogate pair with total length 2 instantly indicates a range error (but not a "your
+ // string was too long" error).
+ else if (StringCaster::UTF_N == 16 && str_len == 2) {
+ one_char = static_cast<CharT>(value[0]);
+ if (one_char >= 0xD800 && one_char < 0xE000)
+ throw value_error("Character code point not in range(0x10000)");
+ }
+
+ if (str_len != 1)
+ throw value_error("Expected a character, but multi-character string found");
+
+ one_char = value[0];
+ return one_char;
+ }
+
+ static constexpr auto name = _(PYBIND11_STRING_NAME);
+ template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
+};
+
+// Base implementation for std::tuple and std::pair
+template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
+ using type = Tuple<Ts...>;
+ static constexpr auto size = sizeof...(Ts);
+ using indices = make_index_sequence<size>;
+public:
+
+ bool load(handle src, bool convert) {
+ if (!isinstance<sequence>(src))
+ return false;
+ const auto seq = reinterpret_borrow<sequence>(src);
+ if (seq.size() != size)
+ return false;
+ return load_impl(seq, convert, indices{});
+ }
+
+ template <typename T>
+ static handle cast(T &&src, return_value_policy policy, handle parent) {
+ return cast_impl(std::forward<T>(src), policy, parent, indices{});
+ }
+
+ static constexpr auto name = _("Tuple[") + concat(make_caster<Ts>::name...) + _("]");
+
+ template <typename T> using cast_op_type = type;
+
+ operator type() & { return implicit_cast(indices{}); }
+ operator type() && { return std::move(*this).implicit_cast(indices{}); }
+
+protected:
+ template <size_t... Is>
+ type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
+ template <size_t... Is>
+ type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }
+
+ static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
+
+ template <size_t... Is>
+ bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
+ for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
+ if (!r)
+ return false;
+ return true;
+ }
+
+ /* Implementation: Convert a C++ tuple into a Python tuple */
+ template <typename T, size_t... Is>
+ static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
+ std::array<object, size> entries{{
+ reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
+ }};
+ for (const auto &entry: entries)
+ if (!entry)
+ return handle();
+ tuple result(size);
+ int counter = 0;
+ for (auto & entry: entries)
+ PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
+ return result.release();
+ }
+
+ Tuple<make_caster<Ts>...> subcasters;
+};
+
+template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
+ : public tuple_caster<std::pair, T1, T2> {};
+
+template <typename... Ts> class type_caster<std::tuple<Ts...>>
+ : public tuple_caster<std::tuple, Ts...> {};
+
+/// Helper class which abstracts away certain actions. Users can provide specializations for
+/// custom holders, but it's only necessary if the type has a non-standard interface.
+template <typename T>
+struct holder_helper {
+ static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
+};
+
+/// Type caster for holder types like std::shared_ptr, etc.
+template <typename type, typename holder_type>
+struct copyable_holder_caster : public type_caster_base<type> {
+public:
+ using base = type_caster_base<type>;
+ static_assert(std::is_base_of<base, type_caster<type>>::value,
+ "Holder classes are only supported for custom types");
+ using base::base;
+ using base::cast;
+ using base::typeinfo;
+ using base::value;
+
+ bool load(handle src, bool convert) {
+ return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
+ }
+
+ explicit operator type*() { return this->value; }
+ explicit operator type&() { return *(this->value); }
+ explicit operator holder_type*() { return std::addressof(holder); }
+
+ // Workaround for Intel compiler bug
+ // see pybind11 issue 94
+ #if defined(__ICC) || defined(__INTEL_COMPILER)
+ operator holder_type&() { return holder; }
+ #else
+ explicit operator holder_type&() { return holder; }
+ #endif
+
+ static handle cast(const holder_type &src, return_value_policy, handle) {
+ const auto *ptr = holder_helper<holder_type>::get(src);
+ return type_caster_base<type>::cast_holder(ptr, &src);
+ }
+
+protected:
+ friend class type_caster_generic;
+ void check_holder_compat() {
+ if (typeinfo->default_holder)
+ throw cast_error("Unable to load a custom holder type from a default-holder instance");
+ }
+
+ bool load_value(value_and_holder &&v_h) {
+ if (v_h.holder_constructed()) {
+ value = v_h.value_ptr();
+ holder = v_h.template holder<holder_type>();
+ return true;
+ } else {
+ throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
+#if defined(NDEBUG)
+ "(compile in debug mode for type information)");
+#else
+ "of type '" + type_id<holder_type>() + "''");
+#endif
+ }
+ }
+
+ template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
+ bool try_implicit_casts(handle, bool) { return false; }
+
+ template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
+ bool try_implicit_casts(handle src, bool convert) {
+ for (auto &cast : typeinfo->implicit_casts) {
+ copyable_holder_caster sub_caster(*cast.first);
+ if (sub_caster.load(src, convert)) {
+ value = cast.second(sub_caster.value);
+ holder = holder_type(sub_caster.holder, (type *) value);
+ return true;
+ }
+ }
+ return false;
+ }
+
+ static bool try_direct_conversions(handle) { return false; }
+
+
+ holder_type holder;
+};
+
+/// Specialize for the common std::shared_ptr, so users don't need to
+template <typename T>
+class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
+
+template <typename type, typename holder_type>
+struct move_only_holder_caster {
+ static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
+ "Holder classes are only supported for custom types");
+
+ static handle cast(holder_type &&src, return_value_policy, handle) {
+ auto *ptr = holder_helper<holder_type>::get(src);
+ return type_caster_base<type>::cast_holder(ptr, std::addressof(src));
+ }
+ static constexpr auto name = type_caster_base<type>::name;
+};
+
+template <typename type, typename deleter>
+class type_caster<std::unique_ptr<type, deleter>>
+ : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
+
+template <typename type, typename holder_type>
+using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
+ copyable_holder_caster<type, holder_type>,
+ move_only_holder_caster<type, holder_type>>;
+
+template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
+
+/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
+#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
+ namespace pybind11 { namespace detail { \
+ template <typename type> \
+ struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { }; \
+ template <typename type> \
+ class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
+ : public type_caster_holder<type, holder_type> { }; \
+ }}
+
+// PYBIND11_DECLARE_HOLDER_TYPE holder types:
+template <typename base, typename holder> struct is_holder_type :
+ std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
+// Specialization for always-supported unique_ptr holders:
+template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
+ std::true_type {};
+
+template <typename T> struct handle_type_name { static constexpr auto name = _<T>(); };
+template <> struct handle_type_name<bytes> { static constexpr auto name = _(PYBIND11_BYTES_NAME); };
+template <> struct handle_type_name<args> { static constexpr auto name = _("*args"); };
+template <> struct handle_type_name<kwargs> { static constexpr auto name = _("**kwargs"); };
+
+template <typename type>
+struct pyobject_caster {
+ template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
+ bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
+
+ template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
+ bool load(handle src, bool /* convert */) {
+ if (!isinstance<type>(src))
+ return false;
+ value = reinterpret_borrow<type>(src);
+ return true;
+ }
+
+ static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
+ return src.inc_ref();
+ }
+ PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
+};
+
+template <typename T>
+class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
+
+// Our conditions for enabling moving are quite restrictive:
+// At compile time:
+// - T needs to be a non-const, non-pointer, non-reference type
+// - type_caster<T>::operator T&() must exist
+// - the type must be move constructible (obviously)
+// At run-time:
+// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
+// must have ref_count() == 1)h
+// If any of the above are not satisfied, we fall back to copying.
+template <typename T> using move_is_plain_type = satisfies_none_of<T,
+ std::is_void, std::is_pointer, std::is_reference, std::is_const
+>;
+template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
+template <typename T> struct move_always<T, enable_if_t<all_of<
+ move_is_plain_type<T>,
+ negation<is_copy_constructible<T>>,
+ std::is_move_constructible<T>,
+ std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
+>::value>> : std::true_type {};
+template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
+template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
+ move_is_plain_type<T>,
+ negation<move_always<T>>,
+ std::is_move_constructible<T>,
+ std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
+>::value>> : std::true_type {};
+template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
+
+// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
+// reference or pointer to a local variable of the type_caster. Basically, only
+// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
+// everything else returns a reference/pointer to a local variable.
+template <typename type> using cast_is_temporary_value_reference = bool_constant<
+ (std::is_reference<type>::value || std::is_pointer<type>::value) &&
+ !std::is_base_of<type_caster_generic, make_caster<type>>::value &&
+ !std::is_same<intrinsic_t<type>, void>::value
+>;
+
+// When a value returned from a C++ function is being cast back to Python, we almost always want to
+// force `policy = move`, regardless of the return value policy the function/method was declared
+// with.
+template <typename Return, typename SFINAE = void> struct return_value_policy_override {
+ static return_value_policy policy(return_value_policy p) { return p; }
+};
+
+template <typename Return> struct return_value_policy_override<Return,
+ detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> {
+ static return_value_policy policy(return_value_policy p) {
+ return !std::is_lvalue_reference<Return>::value &&
+ !std::is_pointer<Return>::value
+ ? return_value_policy::move : p;
+ }
+};
+
+// Basic python -> C++ casting; throws if casting fails
+template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
+ if (!conv.load(handle, true)) {
+#if defined(NDEBUG)
+ throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
+#else
+ throw cast_error("Unable to cast Python instance of type " +
+ (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "'");
+#endif
+ }
+ return conv;
+}
+// Wrapper around the above that also constructs and returns a type_caster
+template <typename T> make_caster<T> load_type(const handle &handle) {
+ make_caster<T> conv;
+ load_type(conv, handle);
+ return conv;
+}
+
+NAMESPACE_END(detail)
+
+// pytype -> C++ type
+template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
+T cast(const handle &handle) {
+ using namespace detail;
+ static_assert(!cast_is_temporary_value_reference<T>::value,
+ "Unable to cast type to reference: value is local to type caster");
+ return cast_op<T>(load_type<T>(handle));
+}
+
+// pytype -> pytype (calls converting constructor)
+template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
+T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
+
+// C++ type -> py::object
+template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
+object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
+ handle parent = handle()) {
+ if (policy == return_value_policy::automatic)
+ policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
+ else if (policy == return_value_policy::automatic_reference)
+ policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
+ return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
+}
+
+template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
+template <> inline void handle::cast() const { return; }
+
+template <typename T>
+detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
+ if (obj.ref_count() > 1)
+#if defined(NDEBUG)
+ throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
+ " (compile in debug mode for details)");
+#else
+ throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
+ " instance to C++ " + type_id<T>() + " instance: instance has multiple references");
+#endif
+
+ // Move into a temporary and return that, because the reference may be a local value of `conv`
+ T ret = std::move(detail::load_type<T>(obj).operator T&());
+ return ret;
+}
+
+// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
+// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
+// object has multiple references, but trying to copy will fail to compile.
+// - If both movable and copyable, check ref count: if 1, move; otherwise copy
+// - Otherwise (not movable), copy.
+template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
+ return move<T>(std::move(object));
+}
+template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
+ if (object.ref_count() > 1)
+ return cast<T>(object);
+ else
+ return move<T>(std::move(object));
+}
+template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
+ return cast<T>(object);
+}
+
+template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
+template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
+template <> inline void object::cast() const & { return; }
+template <> inline void object::cast() && { return; }
+
+NAMESPACE_BEGIN(detail)
+
+// Declared in pytypes.h:
+template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
+object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
+
+struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
+template <typename ret_type> using overload_caster_t = conditional_t<
+ cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;
+
+// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
+// store the result in the given variable. For other types, this is a no-op.
+template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
+ return cast_op<T>(load_type(caster, o));
+}
+template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
+ pybind11_fail("Internal error: cast_ref fallback invoked"); }
+
+// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
+// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
+// cases where pybind11::cast is valid.
+template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
+ return pybind11::cast<T>(std::move(o)); }
+template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
+ pybind11_fail("Internal error: cast_safe fallback invoked"); }
+template <> inline void cast_safe<void>(object &&) {}
+
+NAMESPACE_END(detail)
+
+template <return_value_policy policy = return_value_policy::automatic_reference>
+tuple make_tuple() { return tuple(0); }
+
+template <return_value_policy policy = return_value_policy::automatic_reference,
+ typename... Args> tuple make_tuple(Args&&... args_) {
+ constexpr size_t size = sizeof...(Args);
+ std::array<object, size> args {
+ { reinterpret_steal<object>(detail::make_caster<Args>::cast(
+ std::forward<Args>(args_), policy, nullptr))... }
+ };
+ for (size_t i = 0; i < args.size(); i++) {
+ if (!args[i]) {
+#if defined(NDEBUG)
+ throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
+#else
+ std::array<std::string, size> argtypes { {type_id<Args>()...} };
+ throw cast_error("make_tuple(): unable to convert argument of type '" +
+ argtypes[i] + "' to Python object");
+#endif
+ }
+ }
+ tuple result(size);
+ int counter = 0;
+ for (auto &arg_value : args)
+ PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
+ return result;
+}
+
+/// \ingroup annotations
+/// Annotation for arguments
+struct arg {
+ /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
+ constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
+ /// Assign a value to this argument
+ template <typename T> arg_v operator=(T &&value) const;
+ /// Indicate that the type should not be converted in the type caster
+ arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
+ /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
+ arg &none(bool flag = true) { flag_none = flag; return *this; }
+
+ const char *name; ///< If non-null, this is a named kwargs argument
+ bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
+ bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
+};
+
+/// \ingroup annotations
+/// Annotation for arguments with values
+struct arg_v : arg {
+private:
+ template <typename T>
+ arg_v(arg &&base, T &&x, const char *descr = nullptr)
+ : arg(base),
+ value(reinterpret_steal<object>(
+ detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
+ )),
+ descr(descr)
+#if !defined(NDEBUG)
+ , type(type_id<T>())
+#endif
+ { }
+
+public:
+ /// Direct construction with name, default, and description
+ template <typename T>
+ arg_v(const char *name, T &&x, const char *descr = nullptr)
+ : arg_v(arg(name), std::forward<T>(x), descr) { }
+
+ /// Called internally when invoking `py::arg("a") = value`
+ template <typename T>
+ arg_v(const arg &base, T &&x, const char *descr = nullptr)
+ : arg_v(arg(base), std::forward<T>(x), descr) { }
+
+ /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
+ arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
+
+ /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
+ arg_v &none(bool flag = true) { arg::none(flag); return *this; }
+
+ /// The default value
+ object value;
+ /// The (optional) description of the default value
+ const char *descr;
+#if !defined(NDEBUG)
+ /// The C++ type name of the default value (only available when compiled in debug mode)
+ std::string type;
+#endif
+};
+
+template <typename T>
+arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }
+
+/// Alias for backward compatibility -- to be removed in version 2.0
+template <typename /*unused*/> using arg_t = arg_v;
+
+inline namespace literals {
+/** \rst
+ String literal version of `arg`
+ \endrst */
+constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
+}
+
+NAMESPACE_BEGIN(detail)
+
+// forward declaration (definition in attr.h)
+struct function_record;
+
+/// Internal data associated with a single function call
+struct function_call {
+ function_call(const function_record &f, handle p); // Implementation in attr.h
+
+ /// The function data:
+ const function_record &func;
+
+ /// Arguments passed to the function:
+ std::vector<handle> args;
+
+ /// The `convert` value the arguments should be loaded with
+ std::vector<bool> args_convert;
+
+ /// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if
+ /// present, are also in `args` but without a reference).
+ object args_ref, kwargs_ref;
+
+ /// The parent, if any
+ handle parent;
+
+ /// If this is a call to an initializer, this argument contains `self`
+ handle init_self;
+};
+
+
+/// Helper class which loads arguments for C++ functions called from Python
+template <typename... Args>
+class argument_loader {
+ using indices = make_index_sequence<sizeof...(Args)>;
+
+ template <typename Arg> using argument_is_args = std::is_same<intrinsic_t<Arg>, args>;
+ template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
+ // Get args/kwargs argument positions relative to the end of the argument list:
+ static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
+ kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);
+
+ static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;
+
+ static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");
+
+public:
+ static constexpr bool has_kwargs = kwargs_pos < 0;
+ static constexpr bool has_args = args_pos < 0;
+
+ static constexpr auto arg_names = concat(type_descr(make_caster<Args>::name)...);
+
+ bool load_args(function_call &call) {
+ return load_impl_sequence(call, indices{});
+ }
+
+ template <typename Return, typename Guard, typename Func>
+ enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
+ return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
+ }
+
+ template <typename Return, typename Guard, typename Func>
+ enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
+ std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
+ return void_type();
+ }
+
+private:
+
+ static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
+
+ template <size_t... Is>
+ bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
+ for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...})
+ if (!r)
+ return false;
+ return true;
+ }
+
+ template <typename Return, typename Func, size_t... Is, typename Guard>
+ Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) {
+ return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
+ }
+
+ std::tuple<make_caster<Args>...> argcasters;
+};
+
+/// Helper class which collects only positional arguments for a Python function call.
+/// A fancier version below can collect any argument, but this one is optimal for simple calls.
+template <return_value_policy policy>
+class simple_collector {
+public:
+ template <typename... Ts>
+ explicit simple_collector(Ts &&...values)
+ : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
+
+ const tuple &args() const & { return m_args; }
+ dict kwargs() const { return {}; }
+
+ tuple args() && { return std::move(m_args); }
+
+ /// Call a Python function and pass the collected arguments
+ object call(PyObject *ptr) const {
+ PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
+ if (!result)
+ throw error_already_set();
+ return reinterpret_steal<object>(result);
+ }
+
+private:
+ tuple m_args;
+};
+
+/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
+template <return_value_policy policy>
+class unpacking_collector {
+public:
+ template <typename... Ts>
+ explicit unpacking_collector(Ts &&...values) {
+ // Tuples aren't (easily) resizable so a list is needed for collection,
+ // but the actual function call strictly requires a tuple.
+ auto args_list = list();
+ int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
+ ignore_unused(_);
+
+ m_args = std::move(args_list);
+ }
+
+ const tuple &args() const & { return m_args; }
+ const dict &kwargs() const & { return m_kwargs; }
+
+ tuple args() && { return std::move(m_args); }
+ dict kwargs() && { return std::move(m_kwargs); }
+
+ /// Call a Python function and pass the collected arguments
+ object call(PyObject *ptr) const {
+ PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
+ if (!result)
+ throw error_already_set();
+ return reinterpret_steal<object>(result);
+ }
+
+private:
+ template <typename T>
+ void process(list &args_list, T &&x) {
+ auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
+ if (!o) {
+#if defined(NDEBUG)
+ argument_cast_error();
+#else
+ argument_cast_error(std::to_string(args_list.size()), type_id<T>());
+#endif
+ }
+ args_list.append(o);
+ }
+
+ void process(list &args_list, detail::args_proxy ap) {
+ for (const auto &a : ap)
+ args_list.append(a);
+ }
+
+ void process(list &/*args_list*/, arg_v a) {
+ if (!a.name)
+#if defined(NDEBUG)
+ nameless_argument_error();
+#else
+ nameless_argument_error(a.type);
+#endif
+
+ if (m_kwargs.contains(a.name)) {
+#if defined(NDEBUG)
+ multiple_values_error();
+#else
+ multiple_values_error(a.name);
+#endif
+ }
+ if (!a.value) {
+#if defined(NDEBUG)
+ argument_cast_error();
+#else
+ argument_cast_error(a.name, a.type);
+#endif
+ }
+ m_kwargs[a.name] = a.value;
+ }
+
+ void process(list &/*args_list*/, detail::kwargs_proxy kp) {
+ if (!kp)
+ return;
+ for (const auto &k : reinterpret_borrow<dict>(kp)) {
+ if (m_kwargs.contains(k.first)) {
+#if defined(NDEBUG)
+ multiple_values_error();
+#else
+ multiple_values_error(str(k.first));
+#endif
+ }
+ m_kwargs[k.first] = k.second;
+ }
+ }
+
+ [[noreturn]] static void nameless_argument_error() {
+ throw type_error("Got kwargs without a name; only named arguments "
+ "may be passed via py::arg() to a python function call. "
+ "(compile in debug mode for details)");
+ }
+ [[noreturn]] static void nameless_argument_error(std::string type) {
+ throw type_error("Got kwargs without a name of type '" + type + "'; only named "
+ "arguments may be passed via py::arg() to a python function call. ");
+ }
+ [[noreturn]] static void multiple_values_error() {
+ throw type_error("Got multiple values for keyword argument "
+ "(compile in debug mode for details)");
+ }
+
+ [[noreturn]] static void multiple_values_error(std::string name) {
+ throw type_error("Got multiple values for keyword argument '" + name + "'");
+ }
+
+ [[noreturn]] static void argument_cast_error() {
+ throw cast_error("Unable to convert call argument to Python object "
+ "(compile in debug mode for details)");
+ }
+
+ [[noreturn]] static void argument_cast_error(std::string name, std::string type) {
+ throw cast_error("Unable to convert call argument '" + name
+ + "' of type '" + type + "' to Python object");
+ }
+
+private:
+ tuple m_args;
+ dict m_kwargs;
+};
+
+/// Collect only positional arguments for a Python function call
+template <return_value_policy policy, typename... Args,
+ typename = enable_if_t<all_of<is_positional<Args>...>::value>>
+simple_collector<policy> collect_arguments(Args &&...args) {
+ return simple_collector<policy>(std::forward<Args>(args)...);
+}
+
+/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
+template <return_value_policy policy, typename... Args,
+ typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
+unpacking_collector<policy> collect_arguments(Args &&...args) {
+ // Following argument order rules for generalized unpacking according to PEP 448
+ static_assert(
+ constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
+ && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
+ "Invalid function call: positional args must precede keywords and ** unpacking; "
+ "* unpacking must precede ** unpacking"
+ );
+ return unpacking_collector<policy>(std::forward<Args>(args)...);
+}
+
+template <typename Derived>
+template <return_value_policy policy, typename... Args>
+object object_api<Derived>::operator()(Args &&...args) const {
+ return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
+}
+
+template <typename Derived>
+template <return_value_policy policy, typename... Args>
+object object_api<Derived>::call(Args &&...args) const {
+ return operator()<policy>(std::forward<Args>(args)...);
+}
+
+NAMESPACE_END(detail)
+
+#define PYBIND11_MAKE_OPAQUE(...) \
+ namespace pybind11 { namespace detail { \
+ template<> class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> { }; \
+ }}
+
+/// Lets you pass a type containing a `,` through a macro parameter without needing a separate
+/// typedef, e.g.: `PYBIND11_OVERLOAD(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)`
+#define PYBIND11_TYPE(...) __VA_ARGS__
+
+NAMESPACE_END(PYBIND11_NAMESPACE)