/////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2015 Microsoft Corporation. All rights reserved. // // This code is licensed under the MIT License (MIT). // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // /////////////////////////////////////////////////////////////////////////////// #pragma once #include "array_view.h" // array_view, strided_array_view... #include "string_view.h" // zstring, string_view, zstring_builder... #include namespace Guide { // // GSL.owner: ownership pointers // using std::unique_ptr; using std::shared_ptr; // // GSL.assert: assertions // #define Expects(x) Guide::fail_fast_assert((x)) #define Ensures(x) Guide::fail_fast_assert((x)) // // GSL.util: utilities // // Final_act allows you to ensure something gets run at the end of a scope template class Final_act { public: explicit Final_act(F f) : f_(f) {} Final_act(const Final_act&& other) : f_(other.f_) {} Final_act(const Final_act&) = delete; Final_act& operator=(const Final_act&) = delete; ~Final_act() { f_(); } private: F f_; }; // finally() - convenience function to generate a Final_act template Final_act finally(F f) { return Final_act(f); } // narrow_cast(): a searchable way to do narrowing casts of values template T narrow_cast(U u) { return static_cast(u); } struct narrowing_error : public std::exception {}; // narrow() : a checked version of narrow_cast() that throws if the cast changed the value template T narrow(U u) { T t = narrow_cast(u); if (static_cast(t) != u) throw narrowing_error(); return t; } // // at() - Bounds-checked way of accessing static arrays, std::array, std::vector // template T& at(T(&arr)[N], size_t index) { fail_fast_assert(index < N); return arr[index]; } template T& at(std::array& arr, size_t index) { fail_fast_assert(index < N); return arr[index]; } template typename Cont::value_type& at(Cont& cont, size_t index) { fail_fast_assert(index < cont.size()); return cont[index]; } // // not_null // // Restricts a pointer or smart pointer to only hold non-null values. // // Has zero size overhead over T. // // If T is a pointer (i.e. T == U*) then // - allow construction from U* or U& // - disallow construction from nullptr_t // - disallow default construction // - ensure construction from U* fails with nullptr // - allow implicit conversion to U* // template class not_null { public: not_null(T t) : ptr_(t) { ensure_invariant(); } // deleting these two prevents compilation when initialized with a nullptr or literal 0 not_null(std::nullptr_t) = delete; not_null(int) = delete; not_null(const not_null &other) = default; template ::value>> not_null(const not_null &other) : ptr_(other.get()) { } not_null& operator=(const T& t) { ptr_ = t; ensure_invariant(); return *this; } // prevents compilation when someone attempts to assign a nullptr not_null& operator=(std::nullptr_t) = delete; not_null& operator=(int) = delete; T get() const { #ifdef _MSC_VER __assume(ptr_ != nullptr); #endif return ptr_; } // the assume() should help the optimizer operator T() const { return get(); } T operator->() const { return get(); } bool operator==(const T& rhs) const { return ptr_ == rhs; } bool operator!=(const T& rhs) const { return !(*this == rhs); } private: T ptr_; // we assume that the compiler can hoist/prove away most of the checks inlined from this function // if not, we could make them optional via conditional compilation void ensure_invariant() const { fail_fast_assert(ptr_ != nullptr); } // unwanted operators...pointers only point to single objects! // TODO ensure all arithmetic ops on this type are unavailable not_null& operator++() = delete; not_null& operator--() = delete; not_null operator++(int) = delete; not_null operator--(int) = delete; not_null& operator+(size_t) = delete; not_null& operator+=(size_t) = delete; not_null& operator-(size_t) = delete; not_null& operator-=(size_t) = delete; }; // // maybe_null // // Describes an optional pointer - provides symmetry with not_null // template class maybe_null_dbg { public: maybe_null_dbg() : ptr_(nullptr), tested_(false) {} maybe_null_dbg(const T& p) : ptr_(p), tested_(false) {} maybe_null_dbg(const maybe_null_dbg& rhs) : ptr_(rhs.ptr_), tested_(false) {} template ::value>> maybe_null_dbg(const not_null &other) : ptr_(other.get()), tested_(false) { } template ::value>> maybe_null_dbg(const maybe_null_dbg &other) : ptr_(other.get()), tested_(false) { } maybe_null_dbg& operator=(const T& p) { if (ptr_ != p) { ptr_ = p; tested_ = false; } return *this; } maybe_null_dbg& operator=(const maybe_null_dbg& rhs) { if (this != &rhs) { ptr_ = rhs.ptr_; tested_ = false; } return *this; } bool present() const { tested_ = true; return ptr_ != nullptr; } bool operator==(const T& rhs) const { tested_ = true; return ptr_ == rhs; } bool operator!=(const T& rhs) const { return !(*this == rhs); } T get() const { fail_fast_assert(tested_); #ifdef _MSC_VER __assume(ptr_ != nullptr); #endif return ptr_; } operator T() const { return get(); } T operator->() const { return get(); } private: const size_t ptee_size_ = sizeof(*ptr_); // T must be a pointer type // unwanted operators...pointers only point to single objects! // TODO ensure all arithmetic ops on this type are unavailable maybe_null_dbg& operator++() = delete; maybe_null_dbg& operator--() = delete; maybe_null_dbg operator++(int) = delete; maybe_null_dbg operator--(int) = delete; maybe_null_dbg& operator+(size_t) = delete; maybe_null_dbg& operator+=(size_t) = delete; maybe_null_dbg& operator-(size_t) = delete; maybe_null_dbg& operator-=(size_t) = delete; T ptr_; mutable bool tested_; }; template class maybe_null_ret { public: maybe_null_ret() : ptr_(nullptr) {} maybe_null_ret(std::nullptr_t) : ptr_(nullptr) {} maybe_null_ret(const T& p) : ptr_(p) {} maybe_null_ret(const maybe_null_ret& rhs) = default; template ::value>> maybe_null_ret(const not_null &other) : ptr_(other.get()) { } template ::value>> maybe_null_ret(const maybe_null_ret &other) : ptr_(other.get()) { } template ::value>> maybe_null_ret(const maybe_null_dbg &other) : ptr_(other.get()) { } maybe_null_ret& operator=(const T& p) { if (ptr_ != p) { ptr_ = p; } return *this; } maybe_null_ret& operator=(const maybe_null_ret& rhs) = default; bool present() const { return ptr_ != nullptr; } T get() const { return ptr_; } operator T() const { return get(); } T operator->() const { return get(); } private: // unwanted operators...pointers only point to single objects! // TODO ensure all arithmetic ops on this type are unavailable maybe_null_ret& operator++() = delete; maybe_null_ret& operator--() = delete; maybe_null_ret operator++(int) = delete; maybe_null_ret operator--(int) = delete; maybe_null_ret& operator+(size_t) = delete; maybe_null_ret& operator+=(size_t) = delete; maybe_null_ret& operator-(size_t) = delete; maybe_null_ret& operator-=(size_t) = delete; const size_t ptee_size_ = sizeof(*ptr_); // T must be a pointer type T ptr_; }; template using maybe_null = maybe_null_ret; } // namespace Guide