summaryrefslogtreecommitdiffstats
path: root/sensors/sensors_qemu.c
blob: 6c41a9cf377982200434e2f42f1eec65c20c8867 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
 * Copyright (C) 2009 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* this implements a sensors hardware library for the Android emulator.
 * the following code should be built as a shared library that will be
 * placed into /system/lib/hw/sensors.goldfish.so
 *
 * it will be loaded by the code in hardware/libhardware/hardware.c
 * which is itself called from com_android_server_SensorService.cpp
 */


/* we connect with the emulator through the "sensors" qemud service
 */
#define  SENSORS_SERVICE_NAME "sensors"

#define LOG_TAG "QemuSensors"

#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <cutils/log.h>
#include <cutils/sockets.h>
#include <hardware/sensors.h>

#if 0
#define  D(...)  ALOGD(__VA_ARGS__)
#else
#define  D(...)  ((void)0)
#endif

#define  E(...)  ALOGE(__VA_ARGS__)

#include "qemud.h"

/** SENSOR IDS AND NAMES
 **/

#define MAX_NUM_SENSORS 8

#define SUPPORTED_SENSORS  ((1<<MAX_NUM_SENSORS)-1)

#define  ID_BASE           SENSORS_HANDLE_BASE
#define  ID_ACCELERATION   (ID_BASE+0)
#define  ID_MAGNETIC_FIELD (ID_BASE+1)
#define  ID_ORIENTATION    (ID_BASE+2)
#define  ID_TEMPERATURE    (ID_BASE+3)
#define  ID_PROXIMITY      (ID_BASE+4)
#define  ID_LIGHT          (ID_BASE+5)
#define  ID_PRESSURE       (ID_BASE+6)
#define  ID_HUMIDITY       (ID_BASE+7)

#define  SENSORS_ACCELERATION    (1 << ID_ACCELERATION)
#define  SENSORS_MAGNETIC_FIELD  (1 << ID_MAGNETIC_FIELD)
#define  SENSORS_ORIENTATION     (1 << ID_ORIENTATION)
#define  SENSORS_TEMPERATURE     (1 << ID_TEMPERATURE)
#define  SENSORS_PROXIMITY       (1 << ID_PROXIMITY)
#define  SENSORS_LIGHT           (1 << ID_LIGHT)
#define  SENSORS_PRESSURE        (1 << ID_PRESSURE)
#define  SENSORS_HUMIDITY        (1 << ID_HUMIDITY)

#define  ID_CHECK(x)  ((unsigned)((x) - ID_BASE) < MAX_NUM_SENSORS)

#define  SENSORS_LIST  \
    SENSOR_(ACCELERATION,"acceleration") \
    SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
    SENSOR_(ORIENTATION,"orientation") \
    SENSOR_(TEMPERATURE,"temperature") \
    SENSOR_(PROXIMITY,"proximity") \
    SENSOR_(LIGHT, "light") \
    SENSOR_(PRESSURE, "pressure") \
    SENSOR_(HUMIDITY, "humidity")

static const struct {
    const char*  name;
    int          id; } _sensorIds[MAX_NUM_SENSORS] =
{
#define SENSOR_(x,y)  { y, ID_##x },
    SENSORS_LIST
#undef  SENSOR_
};

static const char*
_sensorIdToName( int  id )
{
    int  nn;
    for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
        if (id == _sensorIds[nn].id)
            return _sensorIds[nn].name;
    return "<UNKNOWN>";
}

static int
_sensorIdFromName( const char*  name )
{
    int  nn;

    if (name == NULL)
        return -1;

    for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
        if (!strcmp(name, _sensorIds[nn].name))
            return _sensorIds[nn].id;

    return -1;
}

/* return the current time in nanoseconds */
static int64_t now_ns(void) {
    struct timespec  ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
}

/** SENSORS POLL DEVICE
 **
 ** This one is used to read sensor data from the hardware.
 ** We implement this by simply reading the data from the
 ** emulator through the QEMUD channel.
 **/

typedef struct SensorDevice {
    struct sensors_poll_device_1  device;
    sensors_event_t               sensors[MAX_NUM_SENSORS];
    uint32_t                      pendingSensors;
    int64_t                       timeStart;
    int64_t                       timeOffset;
    uint32_t                      active_sensors;
    int                           fd;
    pthread_mutex_t               lock;
} SensorDevice;

/* Grab the file descriptor to the emulator's sensors service pipe.
 * This function returns a file descriptor on success, or -errno on
 * failure, and assumes the SensorDevice instance's lock is held.
 *
 * This is needed because set_delay(), poll() and activate() can be called
 * from different threads, and poll() is blocking.
 *
 * Note that the emulator's sensors service creates a new client for each
 * connection through qemud_channel_open(), where each client has its own
 * delay and set of activated sensors. This precludes calling
 * qemud_channel_open() on each request, because a typical emulated system
 * will do something like:
 *
 * 1) On a first thread, de-activate() all sensors first, then call poll(),
 *    which results in the thread blocking.
 *
 * 2) On a second thread, slightly later, call set_delay() then activate()
 *    to enable the acceleration sensor.
 *
 * The system expects this to unblock the first thread which will receive
 * new sensor events after the activate() call in 2).
 *
 * This cannot work if both threads don't use the same connection.
 *
 * TODO(digit): This protocol is brittle, implement another control channel
 *              for set_delay()/activate()/batch() when supporting HAL 1.3
 */
static int sensor_device_get_fd_locked(SensorDevice* dev) {
    /* Create connection to service on first call */
    if (dev->fd < 0) {
        dev->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
        if (dev->fd < 0) {
            int ret = -errno;
            E("%s: Could not open connection to service: %s", __FUNCTION__,
                strerror(-ret));
            return ret;
        }
    }
    return dev->fd;
}

/* Send a command to the sensors virtual device. |dev| is a device instance and
 * |cmd| is a zero-terminated command string. Return 0 on success, or -errno
 * on failure. */
static int sensor_device_send_command_locked(SensorDevice* dev,
                                             const char* cmd) {
    int fd = sensor_device_get_fd_locked(dev);
    if (fd < 0) {
        return fd;
    }

    int ret = 0;
    if (qemud_channel_send(fd, cmd, strlen(cmd)) < 0) {
        ret = -errno;
        E("%s(fd=%d): ERROR: %s", __FUNCTION__, fd, strerror(errno));
    }
    return ret;
}

/* Pick up one pending sensor event. On success, this returns the sensor
 * id, and sets |*event| accordingly. On failure, i.e. if there are no
 * pending events, return -EINVAL.
 *
 * Note: The device's lock must be acquired.
 */
static int sensor_device_pick_pending_event_locked(SensorDevice* d,
                                                   sensors_event_t*  event)
{
    uint32_t mask = SUPPORTED_SENSORS & d->pendingSensors;
    if (mask) {
        uint32_t i = 31 - __builtin_clz(mask);
        d->pendingSensors &= ~(1U << i);
        // Copy the structure
        *event = d->sensors[i];

        if (d->sensors[i].type == SENSOR_TYPE_META_DATA) {
            // sensor_device_poll_event_locked() will leave
            // the meta-data in place until we have it.
            // Set |type| to something other than META_DATA
            // so sensor_device_poll_event_locked() can
            // continue.
            d->sensors[i].type = SENSOR_TYPE_META_DATA + 1;
        } else {
            event->sensor = i;
            event->version = sizeof(*event);
        }

        D("%s: %d [%f, %f, %f]", __FUNCTION__,
                i,
                event->data[0],
                event->data[1],
                event->data[2]);
        return i;
    }
    E("No sensor to return!!! pendingSensors=0x%08x", d->pendingSensors);
    // we may end-up in a busy loop, slow things down, just in case.
    usleep(1000);
    return -EINVAL;
}

/* Block until new sensor events are reported by the emulator, or if a
 * 'wake' command is received through the service. On succes, return 0
 * and updates the |pendingEvents| and |sensors| fields of |dev|.
 * On failure, return -errno.
 *
 * Note: The device lock must be acquired when calling this function, and
 *       will still be held on return. However, the function releases the
 *       lock temporarily during the blocking wait.
 */
static int sensor_device_poll_event_locked(SensorDevice* dev)
{
    D("%s: dev=%p", __FUNCTION__, dev);

    int fd = sensor_device_get_fd_locked(dev);
    if (fd < 0) {
        E("%s: Could not get pipe channel: %s", __FUNCTION__, strerror(-fd));
        return fd;
    }

    // Accumulate pending events into |events| and |new_sensors| mask
    // until a 'sync' or 'wake' command is received. This also simplifies the
    // code a bit.
    uint32_t new_sensors = 0U;
    sensors_event_t* events = dev->sensors;

    int64_t event_time = -1;
    int ret = 0;

    for (;;) {
        /* Release the lock since we're going to block on recv() */
        pthread_mutex_unlock(&dev->lock);

        /* read the next event */
        char buff[256];
        int len = qemud_channel_recv(fd, buff, sizeof(buff) - 1U);
        /* re-acquire the lock to modify the device state. */
        pthread_mutex_lock(&dev->lock);

        if (len < 0) {
            ret = -errno;
            E("%s(fd=%d): Could not receive event data len=%d, errno=%d: %s",
              __FUNCTION__, fd, len, errno, strerror(errno));
            break;
        }
        buff[len] = 0;
        D("%s(fd=%d): received [%s]", __FUNCTION__, fd, buff);


        /* "wake" is sent from the emulator to exit this loop. */
        /* TODO(digit): Is it still needed? */
        if (!strcmp((const char*)buff, "wake")) {
            ret = 0x7FFFFFFF;
            break;
        }

        float params[3];

        // If the existing entry for this sensor is META_DATA,
        // do not overwrite it. We can resume saving sensor
        // values after that meta data has been received.

        /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
        if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2)
                == 3) {
            new_sensors |= SENSORS_ACCELERATION;
            if (events[ID_ACCELERATION].type == SENSOR_TYPE_META_DATA) continue;
            events[ID_ACCELERATION].acceleration.x = params[0];
            events[ID_ACCELERATION].acceleration.y = params[1];
            events[ID_ACCELERATION].acceleration.z = params[2];
            events[ID_ACCELERATION].type = SENSOR_TYPE_ACCELEROMETER;
            continue;
        }

        /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation
         * changes */
        if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2)
                == 3) {
            new_sensors |= SENSORS_ORIENTATION;
            if (events[ID_ORIENTATION].type == SENSOR_TYPE_META_DATA) continue;
            events[ID_ORIENTATION].orientation.azimuth = params[0];
            events[ID_ORIENTATION].orientation.pitch   = params[1];
            events[ID_ORIENTATION].orientation.roll    = params[2];
            events[ID_ORIENTATION].orientation.status  =
                    SENSOR_STATUS_ACCURACY_HIGH;
            events[ID_ORIENTATION].type = SENSOR_TYPE_ORIENTATION;
            continue;
        }

        /* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic
         * field */
        if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2)
                == 3) {
            new_sensors |= SENSORS_MAGNETIC_FIELD;
            if (events[ID_MAGNETIC_FIELD].type == SENSOR_TYPE_META_DATA) continue;
            events[ID_MAGNETIC_FIELD].magnetic.x = params[0];
            events[ID_MAGNETIC_FIELD].magnetic.y = params[1];
            events[ID_MAGNETIC_FIELD].magnetic.z = params[2];
            events[ID_MAGNETIC_FIELD].magnetic.status =
                    SENSOR_STATUS_ACCURACY_HIGH;
            events[ID_MAGNETIC_FIELD].type = SENSOR_TYPE_MAGNETIC_FIELD;
            continue;
        }

        /* "temperature:<celsius>" */
        if (sscanf(buff, "temperature:%g", params+0) == 1) {
            new_sensors |= SENSORS_TEMPERATURE;
            if (events[ID_TEMPERATURE].type == SENSOR_TYPE_META_DATA) continue;
            events[ID_TEMPERATURE].temperature = params[0];
            events[ID_TEMPERATURE].type = SENSOR_TYPE_AMBIENT_TEMPERATURE;
            continue;
        }
 
        /* "proximity:<value>" */
        if (sscanf(buff, "proximity:%g", params+0) == 1) {
            new_sensors |= SENSORS_PROXIMITY;
            if (events[ID_PROXIMITY].type == SENSOR_TYPE_META_DATA) continue;
            events[ID_PROXIMITY].distance = params[0];
            events[ID_PROXIMITY].type = SENSOR_TYPE_PROXIMITY;
            continue;
        }
        /* "light:<lux>" */
        if (sscanf(buff, "light:%g", params+0) == 1) {
            new_sensors |= SENSORS_LIGHT;
            if (events[ID_LIGHT].type == SENSOR_TYPE_META_DATA) continue;
            events[ID_LIGHT].light = params[0];
            events[ID_LIGHT].type = SENSOR_TYPE_LIGHT;
            continue;
        }

        /* "pressure:<hpa>" */
        if (sscanf(buff, "pressure:%g", params+0) == 1) {
            new_sensors |= SENSORS_PRESSURE;
            if (events[ID_PRESSURE].type == SENSOR_TYPE_META_DATA) continue;
            events[ID_PRESSURE].pressure = params[0];
            events[ID_PRESSURE].type = SENSOR_TYPE_PRESSURE;
            continue;
        }

        /* "humidity:<percent>" */
        if (sscanf(buff, "humidity:%g", params+0) == 1) {
            new_sensors |= SENSORS_HUMIDITY;
            if (events[ID_HUMIDITY].type == SENSOR_TYPE_META_DATA) continue;
            events[ID_HUMIDITY].relative_humidity = params[0];
            events[ID_HUMIDITY].type = SENSOR_TYPE_RELATIVE_HUMIDITY;
            continue;
        }

        /* "sync:<time>" is sent after a series of sensor events.
         * where 'time' is expressed in micro-seconds and corresponds
         * to the VM time when the real poll occured.
         */
        if (sscanf(buff, "sync:%lld", &event_time) == 1) {
            if (new_sensors) {
                goto out;
            }
            D("huh ? sync without any sensor data ?");
            continue;
        }
        D("huh ? unsupported command");
    }
out:
    if (new_sensors) {
        /* update the time of each new sensor event. */
        dev->pendingSensors |= new_sensors;
        int64_t t = (event_time < 0) ? 0 : event_time * 1000LL;

        /* Use the time at the first "sync:" as the base for later
         * time values.
         * CTS tests require sensors to return an event timestamp (sync) that is
         * strictly before the time of the event arrival. We don't actually have
         * a time syncronization protocol here, and the only data point is the
         * "sync:" timestamp - which is an emulator's timestamp of a clock that
         * is synced with the guest clock, and it only the timestamp after all
         * events were sent.
         * To make it work, let's compare the calculated timestamp with current
         * time and take the lower value - we don't believe in events from the
         * future anyway.
         */
        const int64_t now = now_ns();

        if (dev->timeStart == 0) {
            dev->timeStart  = now;
            dev->timeOffset = dev->timeStart - t;
        }
        t += dev->timeOffset;
        if (t > now) {
            t = now;
        }

        while (new_sensors) {
            uint32_t i = 31 - __builtin_clz(new_sensors);
            new_sensors &= ~(1U << i);
            dev->sensors[i].timestamp = t;
        }
    }
    return ret;
}

/** SENSORS POLL DEVICE FUNCTIONS **/

static int sensor_device_close(struct hw_device_t* dev0)
{
    SensorDevice* dev = (void*)dev0;
    // Assume that there are no other threads blocked on poll()
    if (dev->fd >= 0) {
        close(dev->fd);
        dev->fd = -1;
    }
    pthread_mutex_destroy(&dev->lock);
    free(dev);
    return 0;
}

/* Return an array of sensor data. This function blocks until there is sensor
 * related events to report. On success, it will write the events into the
 * |data| array, which contains |count| items. The function returns the number
 * of events written into the array, which shall never be greater than |count|.
 * On error, return -errno code.
 *
 * Note that according to the sensor HAL [1], it shall never return 0!
 *
 * [1] http://source.android.com/devices/sensors/hal-interface.html
 */
static int sensor_device_poll(struct sensors_poll_device_t *dev0,
                              sensors_event_t* data, int count)
{
    SensorDevice* dev = (void*)dev0;
    D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);

    if (count <= 0) {
        return -EINVAL;
    }

    int result = 0;
    pthread_mutex_lock(&dev->lock);
    if (!dev->pendingSensors) {
        /* Block until there are pending events. Note that this releases
         * the lock during the blocking call, then re-acquires it before
         * returning. */
        int ret = sensor_device_poll_event_locked(dev);
        if (ret < 0) {
            result = ret;
            goto out;
        }
        if (!dev->pendingSensors) {
            /* 'wake' event received before any sensor data. */
            result = -EIO;
            goto out;
        }
    }
    /* Now read as many pending events as needed. */
    int i;
    for (i = 0; i < count; i++)  {
        if (!dev->pendingSensors) {
            break;
        }
        int ret = sensor_device_pick_pending_event_locked(dev, data);
        if (ret < 0) {
            if (!result) {
                result = ret;
            }
            break;
        }
        data++;
        result++;
    }
out:
    pthread_mutex_unlock(&dev->lock);
    D("%s: result=%d", __FUNCTION__, result);
    return result;
}

static int sensor_device_activate(struct sensors_poll_device_t *dev0,
                                  int handle,
                                  int enabled)
{
    SensorDevice* dev = (void*)dev0;

    D("%s: handle=%s (%d) enabled=%d", __FUNCTION__,
        _sensorIdToName(handle), handle, enabled);

    /* Sanity check */
    if (!ID_CHECK(handle)) {
        E("%s: bad handle ID", __FUNCTION__);
        return -EINVAL;
    }

    /* Exit early if sensor is already enabled/disabled. */
    uint32_t mask = (1U << handle);
    uint32_t sensors = enabled ? mask : 0;

    pthread_mutex_lock(&dev->lock);

    uint32_t active = dev->active_sensors;
    uint32_t new_sensors = (active & ~mask) | (sensors & mask);
    uint32_t changed = active ^ new_sensors;

    int ret = 0;
    if (changed) {
        /* Send command to the emulator. */
        char command[64];
        snprintf(command,
                 sizeof command,
                 "set:%s:%d",
                 _sensorIdToName(handle),
                 enabled != 0);

        ret = sensor_device_send_command_locked(dev, command);
        if (ret < 0) {
            E("%s: when sending command errno=%d: %s", __FUNCTION__, -ret,
              strerror(-ret));
        } else {
            dev->active_sensors = new_sensors;
        }
    }
    pthread_mutex_unlock(&dev->lock);
    return ret;
}

static int sensor_device_default_flush(
        struct sensors_poll_device_1* dev0,
        int handle) {

    SensorDevice* dev = (void*)dev0;

    D("%s: handle=%s (%d)", __FUNCTION__,
        _sensorIdToName(handle), handle);

    /* Sanity check */
    if (!ID_CHECK(handle)) {
        E("%s: bad handle ID", __FUNCTION__);
        return -EINVAL;
    }

    pthread_mutex_lock(&dev->lock);
    dev->sensors[handle].version = META_DATA_VERSION;
    dev->sensors[handle].type = SENSOR_TYPE_META_DATA;
    dev->sensors[handle].sensor = 0;
    dev->sensors[handle].timestamp = 0;
    dev->sensors[handle].meta_data.sensor = handle;
    dev->sensors[handle].meta_data.what = META_DATA_FLUSH_COMPLETE;
    dev->pendingSensors |= (1U << handle);
    pthread_mutex_unlock(&dev->lock);

    return 0;
}

static int sensor_device_set_delay(struct sensors_poll_device_t *dev0,
                                   int handle __unused,
                                   int64_t ns)
{
    SensorDevice* dev = (void*)dev0;

    int ms = (int)(ns / 1000000);
    D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);

    char command[64];
    snprintf(command, sizeof command, "set-delay:%d", ms);

    pthread_mutex_lock(&dev->lock);
    int ret = sensor_device_send_command_locked(dev, command);
    pthread_mutex_unlock(&dev->lock);
    if (ret < 0) {
        E("%s: Could not send command: %s", __FUNCTION__, strerror(-ret));
    }
    return ret;
}

static int sensor_device_default_batch(
     struct sensors_poll_device_1* dev,
     int sensor_handle,
     int flags,
     int64_t sampling_period_ns,
     int64_t max_report_latency_ns) {
    return sensor_device_set_delay(dev, sensor_handle, sampling_period_ns);
}

/** MODULE REGISTRATION SUPPORT
 **
 ** This is required so that hardware/libhardware/hardware.c
 ** will dlopen() this library appropriately.
 **/

/*
 * the following is the list of all supported sensors.
 * this table is used to build sSensorList declared below
 * according to which hardware sensors are reported as
 * available from the emulator (see get_sensors_list below)
 *
 * note: numerical values for maxRange/resolution/power for
 *       all sensors but light, pressure and humidity were
 *       taken from the reference AK8976A implementation
 */
static const struct sensor_t sSensorListInit[] = {
        { .name       = "Goldfish 3-axis Accelerometer",
          .vendor     = "The Android Open Source Project",
          .version    = 1,
          .handle     = ID_ACCELERATION,
          .type       = SENSOR_TYPE_ACCELEROMETER,
          .maxRange   = 2.8f,
          .resolution = 1.0f/4032.0f,
          .power      = 3.0f,
          .minDelay   = 10000,
          .maxDelay   = 60 * 1000 * 1000,
          .fifoReservedEventCount = 0,
          .fifoMaxEventCount =   0,
          .stringType =         0,
          .requiredPermission = 0,
          .flags = SENSOR_FLAG_CONTINUOUS_MODE,
          .reserved   = {}
        },

        { .name       = "Goldfish 3-axis Magnetic field sensor",
          .vendor     = "The Android Open Source Project",
          .version    = 1,
          .handle     = ID_MAGNETIC_FIELD,
          .type       = SENSOR_TYPE_MAGNETIC_FIELD,
          .maxRange   = 2000.0f,
          .resolution = 1.0f,
          .power      = 6.7f,
          .minDelay   = 10000,
          .maxDelay   = 60 * 1000 * 1000,
          .fifoReservedEventCount = 0,
          .fifoMaxEventCount =   0,
          .stringType =         0,
          .requiredPermission = 0,
          .flags = SENSOR_FLAG_CONTINUOUS_MODE,
          .reserved   = {}
        },

        { .name       = "Goldfish Orientation sensor",
          .vendor     = "The Android Open Source Project",
          .version    = 1,
          .handle     = ID_ORIENTATION,
          .type       = SENSOR_TYPE_ORIENTATION,
          .maxRange   = 360.0f,
          .resolution = 1.0f,
          .power      = 9.7f,
          .minDelay   = 10000,
          .maxDelay   = 60 * 1000 * 1000,
          .fifoReservedEventCount = 0,
          .fifoMaxEventCount =   0,
          .stringType =         0,
          .requiredPermission = 0,
          .flags = SENSOR_FLAG_CONTINUOUS_MODE,
          .reserved   = {}
        },

        { .name       = "Goldfish Temperature sensor",
          .vendor     = "The Android Open Source Project",
          .version    = 1,
          .handle     = ID_TEMPERATURE,
          .type       = SENSOR_TYPE_AMBIENT_TEMPERATURE,
          .maxRange   = 80.0f,
          .resolution = 1.0f,
          .power      = 0.0f,
          .minDelay   = 10000,
          .maxDelay   = 60 * 1000 * 1000,
          .fifoReservedEventCount = 0,
          .fifoMaxEventCount =   0,
          .stringType =         0,
          .requiredPermission = 0,
          .flags = SENSOR_FLAG_CONTINUOUS_MODE,
          .reserved   = {}
        },

        { .name       = "Goldfish Proximity sensor",
          .vendor     = "The Android Open Source Project",
          .version    = 1,
          .handle     = ID_PROXIMITY,
          .type       = SENSOR_TYPE_PROXIMITY,
          .maxRange   = 1.0f,
          .resolution = 1.0f,
          .power      = 20.0f,
          .minDelay   = 10000,
          .maxDelay   = 60 * 1000 * 1000,
          .fifoReservedEventCount = 0,
          .fifoMaxEventCount =   0,
          .stringType =         0,
          .requiredPermission = 0,
          .flags = SENSOR_FLAG_WAKE_UP | SENSOR_FLAG_ON_CHANGE_MODE,
          .reserved   = {}
        },

        { .name       = "Goldfish Light sensor",
          .vendor     = "The Android Open Source Project",
          .version    = 1,
          .handle     = ID_LIGHT,
          .type       = SENSOR_TYPE_LIGHT,
          .maxRange   = 40000.0f,
          .resolution = 1.0f,
          .power      = 20.0f,
          .minDelay   = 10000,
          .maxDelay   = 60 * 1000 * 1000,
          .fifoReservedEventCount = 0,
          .fifoMaxEventCount =   0,
          .stringType =         0,
          .requiredPermission = 0,
          .flags = SENSOR_FLAG_WAKE_UP | SENSOR_FLAG_ON_CHANGE_MODE,
          .reserved   = {}
        },

        { .name       = "Goldfish Pressure sensor",
          .vendor     = "The Android Open Source Project",
          .version    = 1,
          .handle     = ID_PRESSURE,
          .type       = SENSOR_TYPE_PRESSURE,
          .maxRange   = 800.0f,
          .resolution = 1.0f,
          .power      = 20.0f,
          .minDelay   = 10000,
          .maxDelay   = 60 * 1000 * 1000,
          .fifoReservedEventCount = 0,
          .fifoMaxEventCount =   0,
          .stringType =         0,
          .requiredPermission = 0,
          .flags = SENSOR_FLAG_CONTINUOUS_MODE,
          .reserved   = {}
        },

        { .name       = "Goldfish Humidity sensor",
          .vendor     = "The Android Open Source Project",
          .version    = 1,
          .handle     = ID_HUMIDITY,
          .type       = SENSOR_TYPE_RELATIVE_HUMIDITY,
          .maxRange   = 100.0f,
          .resolution = 1.0f,
          .power      = 20.0f,
          .minDelay   = 10000,
          .maxDelay   = 60 * 1000 * 1000,
          .fifoReservedEventCount = 0,
          .fifoMaxEventCount =   0,
          .stringType =         0,
          .requiredPermission = 0,
          .flags = SENSOR_FLAG_CONTINUOUS_MODE,
          .reserved   = {}
        }
};

static struct sensor_t  sSensorList[MAX_NUM_SENSORS];

static int sensors__get_sensors_list(struct sensors_module_t* module __unused,
        struct sensor_t const** list)
{
    int  fd = qemud_channel_open(SENSORS_SERVICE_NAME);
    char buffer[12];
    int  mask, nn, count;
    int  ret = 0;

    if (fd < 0) {
        E("%s: no qemud connection", __FUNCTION__);
        goto out;
    }
    ret = qemud_channel_send(fd, "list-sensors", -1);
    if (ret < 0) {
        E("%s: could not query sensor list: %s", __FUNCTION__,
          strerror(errno));
        goto out;
    }
    ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
    if (ret < 0) {
        E("%s: could not receive sensor list: %s", __FUNCTION__,
          strerror(errno));
        goto out;
    }
    buffer[ret] = 0;

    /* the result is a integer used as a mask for available sensors */
    mask  = atoi(buffer);
    count = 0;
    for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
        if (((1 << nn) & mask) == 0)
            continue;
        sSensorList[count++] = sSensorListInit[nn];
    }
    D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
    *list = sSensorList;

    ret = count;
out:
    if (fd >= 0) {
        close(fd);
    }
    return ret;
}


static int
open_sensors(const struct hw_module_t* module,
             const char*               name,
             struct hw_device_t*      *device)
{
    int  status = -EINVAL;

    D("%s: name=%s", __FUNCTION__, name);

    if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
        SensorDevice *dev = malloc(sizeof(*dev));

        memset(dev, 0, sizeof(*dev));

        dev->device.common.tag     = HARDWARE_DEVICE_TAG;
        dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_3;
        dev->device.common.module  = (struct hw_module_t*) module;
        dev->device.common.close   = sensor_device_close;
        dev->device.poll           = sensor_device_poll;
        dev->device.activate       = sensor_device_activate;
        dev->device.setDelay       = sensor_device_set_delay;

        // (dev->sensors[i].type == SENSOR_TYPE_META_DATA) is
        // sticky. Don't start off with that setting.
        for (int idx = 0; idx < MAX_NUM_SENSORS; idx++) {
            dev->sensors[idx].type = SENSOR_TYPE_META_DATA + 1;
        }

        // Version 1.3-specific functions
        dev->device.batch       = sensor_device_default_batch;
        dev->device.flush       = sensor_device_default_flush;

        dev->fd = -1;
        pthread_mutex_init(&dev->lock, NULL);

        *device = &dev->device.common;
        status  = 0;
    }
    return status;
}


static struct hw_module_methods_t sensors_module_methods = {
    .open = open_sensors
};

struct sensors_module_t HAL_MODULE_INFO_SYM = {
    .common = {
        .tag = HARDWARE_MODULE_TAG,
        .version_major = 1,
        .version_minor = 3,
        .id = SENSORS_HARDWARE_MODULE_ID,
        .name = "Goldfish SENSORS Module",
        .author = "The Android Open Source Project",
        .methods = &sensors_module_methods,
    },
    .get_sensors_list = sensors__get_sensors_list
};