From 1509562c0f19db5004b45d67e14c140edfd695b9 Mon Sep 17 00:00:00 2001 From: Anders Broman Date: Sat, 25 Nov 2006 13:03:48 +0000 Subject: From Julian Cable: New dissector for ETSI DCP (ETSI TS 102 821). Code rearranged to look more like other Wireshark dissectors and some warnings/errors on Windows fixed. svn path=/trunk/; revision=19981 --- epan/reedsolomon.c | 672 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 672 insertions(+) create mode 100644 epan/reedsolomon.c (limited to 'epan/reedsolomon.c') diff --git a/epan/reedsolomon.c b/epan/reedsolomon.c new file mode 100644 index 0000000000..9d2b2aa9ad --- /dev/null +++ b/epan/reedsolomon.c @@ -0,0 +1,672 @@ +/* + * Reed-Solomon coding and decoding + * Phil Karn (karn@ka9q.ampr.org) September 1996 + * Separate CCSDS version create Dec 1998, merged into this version May 1999 + * + * This file is derived from my generic RS encoder/decoder, which is + * in turn based on the program "new_rs_erasures.c" by Robert + * Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari Thirumoorthy + * (harit@spectra.eng.hawaii.edu), Aug 1995 + + * Copyright 1999 Phil Karn, KA9Q + * May be used under the terms of the GNU public license + */ +#include +#include "reedsolomon.h" + +#ifdef CCSDS +/* CCSDS field generator polynomial: 1+x+x^2+x^7+x^8 */ +int Pp[MM+1] = { 1, 1, 1, 0, 0, 0, 0, 1, 1 }; + +#else /* not CCSDS */ +/* MM, KK, B0, PRIM are user-defined in rs.h */ + +/* Primitive polynomials - see Lin & Costello, Appendix A, + * and Lee & Messerschmitt, p. 453. + */ +#if(MM == 2)/* Admittedly silly */ +int Pp[MM+1] = { 1, 1, 1 }; + +#elif(MM == 3) +/* 1 + x + x^3 */ +int Pp[MM+1] = { 1, 1, 0, 1 }; + +#elif(MM == 4) +/* 1 + x + x^4 */ +int Pp[MM+1] = { 1, 1, 0, 0, 1 }; + +#elif(MM == 5) +/* 1 + x^2 + x^5 */ +int Pp[MM+1] = { 1, 0, 1, 0, 0, 1 }; + +#elif(MM == 6) +/* 1 + x + x^6 */ +int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1 }; + +#elif(MM == 7) +/* 1 + x^3 + x^7 */ +int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 1 }; + +#elif(MM == 8) +/* 1+x^2+x^3+x^4+x^8 */ +int Pp[MM+1] = { 1, 0, 1, 1, 1, 0, 0, 0, 1 }; + +#elif(MM == 9) +/* 1+x^4+x^9 */ +int Pp[MM+1] = { 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; + +#elif(MM == 10) +/* 1+x^3+x^10 */ +int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; + +#elif(MM == 11) +/* 1+x^2+x^11 */ +int Pp[MM+1] = { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; + +#elif(MM == 12) +/* 1+x+x^4+x^6+x^12 */ +int Pp[MM+1] = { 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 }; + +#elif(MM == 13) +/* 1+x+x^3+x^4+x^13 */ +int Pp[MM+1] = { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; + +#elif(MM == 14) +/* 1+x+x^6+x^10+x^14 */ +int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 }; + +#elif(MM == 15) +/* 1+x+x^15 */ +int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; + +#elif(MM == 16) +/* 1+x+x^3+x^12+x^16 */ +int Pp[MM+1] = { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 }; + +#else +#error "Either CCSDS must be defined, or MM must be set in range 2-16" +#endif + +#endif + +#ifdef STANDARD_ORDER /* first byte transmitted is index of x**(KK-1) in message poly*/ + /* definitions used in the encode routine*/ + #define MESSAGE(i) data[KK-(i)-1] + #define REMAINDER(i) bb[NN-KK-(i)-1] + /* definitions used in the decode routine*/ + #define RECEIVED(i) data[NN-1-(i)] + #define ERAS_INDEX(i) (NN-1-eras_pos[i]) + #define INDEX_TO_POS(i) (NN-1-(i)) +#else /* first byte transmitted is index of x**0 in message polynomial*/ + /* definitions used in the encode routine*/ + #define MESSAGE(i) data[i] + #define REMAINDER(i) bb[i] + /* definitions used in the decode routine*/ + #define RECEIVED(i) data[i] + #define ERAS_INDEX(i) eras_pos[i] + #define INDEX_TO_POS(i) i +#endif + + +/* This defines the type used to store an element of the Galois Field + * used by the code. Make sure this is something larger than a char if + * if anything larger than GF(256) is used. + * + * Note: unsigned char will work up to GF(256) but int seems to run + * faster on the Pentium. + */ +typedef int gf; + +/* index->polynomial form conversion table */ +static gf Alpha_to[NN + 1]; + +/* Polynomial->index form conversion table */ +static gf Index_of[NN + 1]; + +/* No legal value in index form represents zero, so + * we need a special value for this purpose + */ +#define A0 (NN) + +/* Generator polynomial g(x) in index form */ +static gf Gg[NN - KK + 1]; + +static int RS_init; /* Initialization flag */ + +/* Compute x % NN, where NN is 2**MM - 1, + * without a slow divide + */ +/* static inline gf*/ +static gf +modnn(int x) +{ + while (x >= NN) { + x -= NN; + x = (x >> MM) + (x & NN); + } + return x; +} + +#define min_(a,b) ((a) < (b) ? (a) : (b)) + +#define CLEAR(a,n) {\ +int ci;\ +for(ci=(n)-1;ci >=0;ci--)\ +(a)[ci] = 0;\ +} + +#define COPY(a,b,n) {\ +int ci;\ +for(ci=(n)-1;ci >=0;ci--)\ +(a)[ci] = (b)[ci];\ +} + +#define COPYDOWN(a,b,n) {\ +int ci;\ +for(ci=(n)-1;ci >=0;ci--)\ +(a)[ci] = (b)[ci];\ +} + +static void init_rs(void); + +#ifdef CCSDS +/* Conversion lookup tables from conventional alpha to Berlekamp's + * dual-basis representation. Used in the CCSDS version only. + * taltab[] -- convert conventional to dual basis + * tal1tab[] -- convert dual basis to conventional + + * Note: the actual RS encoder/decoder works with the conventional basis. + * So data is converted from dual to conventional basis before either + * encoding or decoding and then converted back. + */ +static unsigned char taltab[NN+1],tal1tab[NN+1]; + +static unsigned char tal[] = { 0x8d, 0xef, 0xec, 0x86, 0xfa, 0x99, 0xaf, 0x7b }; + +/* Generate conversion lookup tables between conventional alpha representation + * (@**7, @**6, ...@**0) + * and Berlekamp's dual basis representation + * (l0, l1, ...l7) + */ +static void +gen_ltab(void) +{ + int i,j,k; + + for(i=0;i<256;i++){/* For each value of input */ + taltab[i] = 0; + for(j=0;j<8;j++) /* for each column of matrix */ + for(k=0;k<8;k++){ /* for each row of matrix */ + if(i & (1<polynomial form alpha_to[] contains j=alpha**i; + polynomial form -> index form index_of[j=alpha**i] = i + alpha=2 is the primitive element of GF(2**m) + HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: + Let @ represent the primitive element commonly called "alpha" that + is the root of the primitive polynomial p(x). Then in GF(2^m), for any + 0 <= i <= 2^m-2, + @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) + where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation + of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for + example the polynomial representation of @^5 would be given by the binary + representation of the integer "alpha_to[5]". + Similarily, index_of[] can be used as follows: + As above, let @ represent the primitive element of GF(2^m) that is + the root of the primitive polynomial p(x). In order to find the power + of @ (alpha) that has the polynomial representation + a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) + we consider the integer "i" whose binary representation with a(0) being LSB + and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry + "index_of[i]". Now, @^index_of[i] is that element whose polynomial + representation is (a(0),a(1),a(2),...,a(m-1)). + NOTE: + The element alpha_to[2^m-1] = 0 always signifying that the + representation of "@^infinity" = 0 is (0,0,0,...,0). + Similarily, the element index_of[0] = A0 always signifying + that the power of alpha which has the polynomial representation + (0,0,...,0) is "infinity". + +*/ + +static void +generate_gf(void) +{ + register int i, mask; + + mask = 1; + Alpha_to[MM] = 0; + for (i = 0; i < MM; i++) { + Alpha_to[i] = mask; + Index_of[Alpha_to[i]] = i; + /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ + if (Pp[i] != 0) + Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */ + mask <<= 1; /* single left-shift */ + } + Index_of[Alpha_to[MM]] = MM; + /* + * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by + * poly-repr of @^i shifted left one-bit and accounting for any @^MM + * term that may occur when poly-repr of @^i is shifted. + */ + mask >>= 1; + for (i = MM + 1; i < NN; i++) { + if (Alpha_to[i - 1] >= mask) + Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); + else + Alpha_to[i] = Alpha_to[i - 1] << 1; + Index_of[Alpha_to[i]] = i; + } + Index_of[0] = A0; + Alpha_to[NN] = 0; +} + +/* + * Obtain the generator polynomial of the TT-error correcting, length + * NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0, + * ... ,(2*TT-1) + * + * Examples: + * + * If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2. + * g(x) = (x+@) (x+@**2) + * + * If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4. + * g(x) = (x+1) (x+@) (x+@**2) (x+@**3) + */ +static void +gen_poly(void) +{ + register int i, j; + + Gg[0] = 1; + for (i = 0; i < NN - KK; i++) { + Gg[i+1] = 1; + /* + * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by + * (@**(B0+i)*PRIM + x) + */ + for (j = i; j > 0; j--) + if (Gg[j] != 0) + Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + (B0 + i) *PRIM)]; + else + Gg[j] = Gg[j - 1]; + /* Gg[0] can never be zero */ + Gg[0] = Alpha_to[modnn(Index_of[Gg[0]] + (B0 + i) * PRIM)]; + } + /* convert Gg[] to index form for quicker encoding */ + for (i = 0; i <= NN - KK; i++) + Gg[i] = Index_of[Gg[i]]; +} + + +/* + * take the string of symbols in data[i], i=0..(k-1) and encode + * systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[] + * is input and bb[] is output in polynomial form. Encoding is done by using + * a feedback shift register with appropriate connections specified by the + * elements of Gg[], which was generated above. Codeword is c(X) = + * data(X)*X**(NN-KK)+ b(X) + */ + +int +encode_rs(dtype data[KK], dtype bb[NN-KK]) +{ + register int i, j; + gf feedback; + +#if DEBUG >= 1 && MM != 8 + /* Check for illegal input values */ + for(i=0;i NN) + return -1; +#endif + + if(!RS_init) + init_rs(); + + CLEAR(bb,NN-KK); + +#ifdef CCSDS + /* Convert to conventional basis */ + for(i=0;i= 0; i--) { + feedback = Index_of[MESSAGE(i) ^ REMAINDER(NN - KK - 1)]; + if (feedback != A0) { /* feedback term is non-zero */ + for (j = NN - KK - 1; j > 0; j--) + if (Gg[j] != A0) + REMAINDER(j) = REMAINDER(j - 1) ^ Alpha_to[modnn(Gg[j] + feedback)]; + else + REMAINDER(j) = REMAINDER(j - 1); + REMAINDER(0) = Alpha_to[modnn(Gg[0] + feedback)]; + } else { /* feedback term is zero. encoder becomes a + * single-byte shifter */ + for (j = NN - KK - 1; j > 0; j--) + REMAINDER(j) = REMAINDER(j - 1); + REMAINDER(0) = 0; + } + } +#ifdef CCSDS + /* Convert to l-basis */ + for(i=0;i= 1 && MM != 8 + /* Check for illegal input values */ + for(i=0;i NN) + return -1; +#endif + /* form the syndromes; i.e., evaluate data(x) at roots of g(x) + * namely @**(B0+i)*PRIM, i = 0, ... ,(NN-KK-1) + */ + for(i=1;i<=NN-KK;i++){ + s[i] = RECEIVED(0); + } + for(j=1;j 0) { + /* Init lambda to be the erasure locator polynomial */ + lambda[1] = Alpha_to[modnn(PRIM * ERAS_INDEX(0))]; + for (i = 1; i < no_eras; i++) { + u = modnn(PRIM*ERAS_INDEX(i)); + for (j = i+1; j > 0; j--) { + tmp = Index_of[lambda[j - 1]]; + if(tmp != A0) + lambda[j] ^= Alpha_to[modnn(u + tmp)]; + } + } +#if DEBUG >= 1 + /* Test code that verifies the erasure locator polynomial just constructed + Needed only for decoder debugging. */ + + /* find roots of the erasure location polynomial */ + for(i=1;i<=no_eras;i++) + reg[i] = Index_of[lambda[i]]; + count = 0; + for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { + q = 1; + for (j = 1; j <= no_eras; j++) + if (reg[j] != A0) { + reg[j] = modnn(reg[j] + j); + q ^= Alpha_to[reg[j]]; + } + if (q != 0) + continue; + /* store root and error location number indices */ + root[count] = i; + loc[count] = k; + count++; + } + if (count != no_eras) { + printf("\n lambda(x) is WRONG\n"); + count = -1; + goto finish; + } +#if DEBUG >= 2 + printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); + for (i = 0; i < count; i++) + printf("%d ", loc[i]); + printf("\n"); +#endif +#endif + } + for(i=0;i 0; j--){ + if (reg[j] != A0) { + reg[j] = modnn(reg[j] + j); + q ^= Alpha_to[reg[j]]; + } + } + if (q != 0) + continue; + /* store root (index-form) and error location number */ + root[count] = i; + loc[count] = k; + /* If we've already found max possible roots, + * abort the search to save time + */ + if(++count == deg_lambda) + break; + } + if (deg_lambda != count) { + /* + * deg(lambda) unequal to number of roots => uncorrectable + * error detected + */ + count = -1; + goto finish; + } + /* + * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo + * x**(NN-KK)). in index form. Also find deg(omega). + */ + deg_omega = 0; + for (i = 0; i < NN-KK;i++){ + tmp = 0; + j = (deg_lambda < i) ? deg_lambda : i; + for(;j >= 0; j--){ + if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) + tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; + } + if(tmp != 0) + deg_omega = i; + omega[i] = Index_of[tmp]; + } + omega[NN-KK] = A0; + + /* + * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = + * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form + */ + for (j = count-1; j >=0; j--) { + num1 = 0; + for (i = deg_omega; i >= 0; i--) { + if (omega[i] != A0) + num1 ^= Alpha_to[modnn(omega[i] + i * root[j])]; + } + num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; + den = 0; + + /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ + for (i = min_(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { + if(lambda[i+1] != A0) + den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; + } + if (den == 0) { +#if DEBUG >= 1 + printf("\n ERROR: denominator = 0\n"); +#endif + /* Convert to dual- basis */ + count = -1; + goto finish; + } + /* Apply error to data */ + if (num1 != 0) { + RECEIVED(loc[j]) ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; + } + } + finish: +#ifdef CCSDS + /* Convert to dual- basis */ + for(i=0;i