/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Read-only access to Zip archives, with minimal heap allocation. */ #define LOG_TAG "ziparchive" #include #include #include #include #include #include #include #include #include #include #include #include #include // TEMP_FAILURE_RETRY may or may not be in unistd #include #include #include #include #include "ziparchive/zip_archive.h" #include "zlib.h" #include "entry_name_utils-inl.h" #include "zip_archive_common.h" #include "zip_archive_private.h" using android::base::get_unaligned; // This is for windows. If we don't open a file in binary mode, weird // things will happen. #ifndef O_BINARY #define O_BINARY 0 #endif // The maximum number of bytes to scan backwards for the EOCD start. static const uint32_t kMaxEOCDSearch = kMaxCommentLen + sizeof(EocdRecord); static const char* kErrorMessages[] = { "Unknown return code.", "Iteration ended", "Zlib error", "Invalid file", "Invalid handle", "Duplicate entries in archive", "Empty archive", "Entry not found", "Invalid offset", "Inconsistent information", "Invalid entry name", "I/O Error", "File mapping failed" }; static const int32_t kErrorMessageUpperBound = 0; static const int32_t kIterationEnd = -1; // We encountered a Zlib error when inflating a stream from this file. // Usually indicates file corruption. static const int32_t kZlibError = -2; // The input file cannot be processed as a zip archive. Usually because // it's too small, too large or does not have a valid signature. static const int32_t kInvalidFile = -3; // An invalid iteration / ziparchive handle was passed in as an input // argument. static const int32_t kInvalidHandle = -4; // The zip archive contained two (or possibly more) entries with the same // name. static const int32_t kDuplicateEntry = -5; // The zip archive contains no entries. static const int32_t kEmptyArchive = -6; // The specified entry was not found in the archive. static const int32_t kEntryNotFound = -7; // The zip archive contained an invalid local file header pointer. static const int32_t kInvalidOffset = -8; // The zip archive contained inconsistent entry information. This could // be because the central directory & local file header did not agree, or // if the actual uncompressed length or crc32 do not match their declared // values. static const int32_t kInconsistentInformation = -9; // An invalid entry name was encountered. static const int32_t kInvalidEntryName = -10; // An I/O related system call (read, lseek, ftruncate, map) failed. static const int32_t kIoError = -11; // We were not able to mmap the central directory or entry contents. static const int32_t kMmapFailed = -12; static const int32_t kErrorMessageLowerBound = -13; /* * A Read-only Zip archive. * * We want "open" and "find entry by name" to be fast operations, and * we want to use as little memory as possible. We memory-map the zip * central directory, and load a hash table with pointers to the filenames * (which aren't null-terminated). The other fields are at a fixed offset * from the filename, so we don't need to extract those (but we do need * to byte-read and endian-swap them every time we want them). * * It's possible that somebody has handed us a massive (~1GB) zip archive, * so we can't expect to mmap the entire file. * * To speed comparisons when doing a lookup by name, we could make the mapping * "private" (copy-on-write) and null-terminate the filenames after verifying * the record structure. However, this requires a private mapping of * every page that the Central Directory touches. Easier to tuck a copy * of the string length into the hash table entry. */ /* * Round up to the next highest power of 2. * * Found on http://graphics.stanford.edu/~seander/bithacks.html. */ static uint32_t RoundUpPower2(uint32_t val) { val--; val |= val >> 1; val |= val >> 2; val |= val >> 4; val |= val >> 8; val |= val >> 16; val++; return val; } static uint32_t ComputeHash(const ZipString& name) { uint32_t hash = 0; uint16_t len = name.name_length; const uint8_t* str = name.name; while (len--) { hash = hash * 31 + *str++; } return hash; } /* * Convert a ZipEntry to a hash table index, verifying that it's in a * valid range. */ static int64_t EntryToIndex(const ZipString* hash_table, const uint32_t hash_table_size, const ZipString& name) { const uint32_t hash = ComputeHash(name); // NOTE: (hash_table_size - 1) is guaranteed to be non-negative. uint32_t ent = hash & (hash_table_size - 1); while (hash_table[ent].name != NULL) { if (hash_table[ent] == name) { return ent; } ent = (ent + 1) & (hash_table_size - 1); } ALOGV("Zip: Unable to find entry %.*s", name.name_length, name.name); return kEntryNotFound; } /* * Add a new entry to the hash table. */ static int32_t AddToHash(ZipString *hash_table, const uint64_t hash_table_size, const ZipString& name) { const uint64_t hash = ComputeHash(name); uint32_t ent = hash & (hash_table_size - 1); /* * We over-allocated the table, so we're guaranteed to find an empty slot. * Further, we guarantee that the hashtable size is not 0. */ while (hash_table[ent].name != NULL) { if (hash_table[ent] == name) { // We've found a duplicate entry. We don't accept it ALOGW("Zip: Found duplicate entry %.*s", name.name_length, name.name); return kDuplicateEntry; } ent = (ent + 1) & (hash_table_size - 1); } hash_table[ent].name = name.name; hash_table[ent].name_length = name.name_length; return 0; } static int32_t MapCentralDirectory0(const char* debug_file_name, ZipArchive* archive, off64_t file_length, off64_t read_amount, uint8_t* scan_buffer) { const off64_t search_start = file_length - read_amount; if(!archive->mapped_zip.ReadAtOffset(scan_buffer, read_amount, search_start)) { ALOGE("Zip: read %" PRId64 " from offset %" PRId64 " failed", static_cast(read_amount), static_cast(search_start)); return kIoError; } /* * Scan backward for the EOCD magic. In an archive without a trailing * comment, we'll find it on the first try. (We may want to consider * doing an initial minimal read; if we don't find it, retry with a * second read as above.) */ int i = read_amount - sizeof(EocdRecord); for (; i >= 0; i--) { if (scan_buffer[i] == 0x50) { uint32_t* sig_addr = reinterpret_cast(&scan_buffer[i]); if (get_unaligned(sig_addr) == EocdRecord::kSignature) { ALOGV("+++ Found EOCD at buf+%d", i); break; } } } if (i < 0) { ALOGD("Zip: EOCD not found, %s is not zip", debug_file_name); return kInvalidFile; } const off64_t eocd_offset = search_start + i; const EocdRecord* eocd = reinterpret_cast(scan_buffer + i); /* * Verify that there's no trailing space at the end of the central directory * and its comment. */ const off64_t calculated_length = eocd_offset + sizeof(EocdRecord) + eocd->comment_length; if (calculated_length != file_length) { ALOGW("Zip: %" PRId64 " extraneous bytes at the end of the central directory", static_cast(file_length - calculated_length)); return kInvalidFile; } /* * Grab the CD offset and size, and the number of entries in the * archive and verify that they look reasonable. */ if (eocd->cd_start_offset + eocd->cd_size > eocd_offset) { ALOGW("Zip: bad offsets (dir %" PRIu32 ", size %" PRIu32 ", eocd %" PRId64 ")", eocd->cd_start_offset, eocd->cd_size, static_cast(eocd_offset)); return kInvalidOffset; } if (eocd->num_records == 0) { ALOGW("Zip: empty archive?"); return kEmptyArchive; } ALOGV("+++ num_entries=%" PRIu32 " dir_size=%" PRIu32 " dir_offset=%" PRIu32, eocd->num_records, eocd->cd_size, eocd->cd_start_offset); /* * It all looks good. Create a mapping for the CD, and set the fields * in archive. */ if (!archive->InitializeCentralDirectory(debug_file_name, static_cast(eocd->cd_start_offset), static_cast(eocd->cd_size))) { ALOGE("Zip: failed to intialize central directory.\n"); return kMmapFailed; } archive->num_entries = eocd->num_records; archive->directory_offset = eocd->cd_start_offset; return 0; } /* * Find the zip Central Directory and memory-map it. * * On success, returns 0 after populating fields from the EOCD area: * directory_offset * directory_ptr * num_entries */ static int32_t MapCentralDirectory(const char* debug_file_name, ZipArchive* archive) { // Test file length. We use lseek64 to make sure the file // is small enough to be a zip file (Its size must be less than // 0xffffffff bytes). off64_t file_length = archive->mapped_zip.GetFileLength(); if (file_length == -1) { return kInvalidFile; } if (file_length > static_cast(0xffffffff)) { ALOGV("Zip: zip file too long %" PRId64, static_cast(file_length)); return kInvalidFile; } if (file_length < static_cast(sizeof(EocdRecord))) { ALOGV("Zip: length %" PRId64 " is too small to be zip", static_cast(file_length)); return kInvalidFile; } /* * Perform the traditional EOCD snipe hunt. * * We're searching for the End of Central Directory magic number, * which appears at the start of the EOCD block. It's followed by * 18 bytes of EOCD stuff and up to 64KB of archive comment. We * need to read the last part of the file into a buffer, dig through * it to find the magic number, parse some values out, and use those * to determine the extent of the CD. * * We start by pulling in the last part of the file. */ off64_t read_amount = kMaxEOCDSearch; if (file_length < read_amount) { read_amount = file_length; } std::vector scan_buffer(read_amount); int32_t result = MapCentralDirectory0(debug_file_name, archive, file_length, read_amount, scan_buffer.data()); return result; } /* * Parses the Zip archive's Central Directory. Allocates and populates the * hash table. * * Returns 0 on success. */ static int32_t ParseZipArchive(ZipArchive* archive) { const uint8_t* const cd_ptr = archive->central_directory.GetBasePtr(); const size_t cd_length = archive->central_directory.GetMapLength(); const uint16_t num_entries = archive->num_entries; /* * Create hash table. We have a minimum 75% load factor, possibly as * low as 50% after we round off to a power of 2. There must be at * least one unused entry to avoid an infinite loop during creation. */ archive->hash_table_size = RoundUpPower2(1 + (num_entries * 4) / 3); archive->hash_table = reinterpret_cast(calloc(archive->hash_table_size, sizeof(ZipString))); /* * Walk through the central directory, adding entries to the hash * table and verifying values. */ const uint8_t* const cd_end = cd_ptr + cd_length; const uint8_t* ptr = cd_ptr; for (uint16_t i = 0; i < num_entries; i++) { const CentralDirectoryRecord* cdr = reinterpret_cast(ptr); if (cdr->record_signature != CentralDirectoryRecord::kSignature) { ALOGW("Zip: missed a central dir sig (at %" PRIu16 ")", i); return -1; } if (ptr + sizeof(CentralDirectoryRecord) > cd_end) { ALOGW("Zip: ran off the end (at %" PRIu16 ")", i); return -1; } const off64_t local_header_offset = cdr->local_file_header_offset; if (local_header_offset >= archive->directory_offset) { ALOGW("Zip: bad LFH offset %" PRId64 " at entry %" PRIu16, static_cast(local_header_offset), i); return -1; } const uint16_t file_name_length = cdr->file_name_length; const uint16_t extra_length = cdr->extra_field_length; const uint16_t comment_length = cdr->comment_length; const uint8_t* file_name = ptr + sizeof(CentralDirectoryRecord); /* check that file name is valid UTF-8 and doesn't contain NUL (U+0000) characters */ if (!IsValidEntryName(file_name, file_name_length)) { return -1; } /* add the CDE filename to the hash table */ ZipString entry_name; entry_name.name = file_name; entry_name.name_length = file_name_length; const int add_result = AddToHash(archive->hash_table, archive->hash_table_size, entry_name); if (add_result != 0) { ALOGW("Zip: Error adding entry to hash table %d", add_result); return add_result; } ptr += sizeof(CentralDirectoryRecord) + file_name_length + extra_length + comment_length; if ((ptr - cd_ptr) > static_cast(cd_length)) { ALOGW("Zip: bad CD advance (%tu vs %zu) at entry %" PRIu16, ptr - cd_ptr, cd_length, i); return -1; } } ALOGV("+++ zip good scan %" PRIu16 " entries", num_entries); return 0; } static int32_t OpenArchiveInternal(ZipArchive* archive, const char* debug_file_name) { int32_t result = -1; if ((result = MapCentralDirectory(debug_file_name, archive)) != 0) { return result; } if ((result = ParseZipArchive(archive))) { return result; } return 0; } int32_t OpenArchiveFd(int fd, const char* debug_file_name, ZipArchiveHandle* handle, bool assume_ownership) { ZipArchive* archive = new ZipArchive(fd, assume_ownership); *handle = archive; return OpenArchiveInternal(archive, debug_file_name); } int32_t OpenArchive(const char* fileName, ZipArchiveHandle* handle) { const int fd = open(fileName, O_RDONLY | O_BINARY, 0); ZipArchive* archive = new ZipArchive(fd, true); *handle = archive; if (fd < 0) { ALOGW("Unable to open '%s': %s", fileName, strerror(errno)); return kIoError; } return OpenArchiveInternal(archive, fileName); } int32_t OpenArchiveFromMemory(void* address, size_t length, const char* debug_file_name, ZipArchiveHandle *handle) { ZipArchive* archive = new ZipArchive(address, length); *handle = archive; return OpenArchiveInternal(archive, debug_file_name); } /* * Close a ZipArchive, closing the file and freeing the contents. */ void CloseArchive(ZipArchiveHandle handle) { ZipArchive* archive = reinterpret_cast(handle); ALOGV("Closing archive %p", archive); delete archive; } static int32_t UpdateEntryFromDataDescriptor(MappedZipFile& mapped_zip, ZipEntry *entry) { uint8_t ddBuf[sizeof(DataDescriptor) + sizeof(DataDescriptor::kOptSignature)]; if (!mapped_zip.ReadData(ddBuf, sizeof(ddBuf))) { return kIoError; } const uint32_t ddSignature = *(reinterpret_cast(ddBuf)); const uint16_t offset = (ddSignature == DataDescriptor::kOptSignature) ? 4 : 0; const DataDescriptor* descriptor = reinterpret_cast(ddBuf + offset); entry->crc32 = descriptor->crc32; entry->compressed_length = descriptor->compressed_size; entry->uncompressed_length = descriptor->uncompressed_size; return 0; } static int32_t FindEntry(const ZipArchive* archive, const int ent, ZipEntry* data) { const uint16_t nameLen = archive->hash_table[ent].name_length; // Recover the start of the central directory entry from the filename // pointer. The filename is the first entry past the fixed-size data, // so we can just subtract back from that. const uint8_t* ptr = archive->hash_table[ent].name; ptr -= sizeof(CentralDirectoryRecord); // This is the base of our mmapped region, we have to sanity check that // the name that's in the hash table is a pointer to a location within // this mapped region. const uint8_t* base_ptr = archive->central_directory.GetBasePtr(); if (ptr < base_ptr || ptr > base_ptr + archive->central_directory.GetMapLength()) { ALOGW("Zip: Invalid entry pointer"); return kInvalidOffset; } const CentralDirectoryRecord *cdr = reinterpret_cast(ptr); // The offset of the start of the central directory in the zipfile. // We keep this lying around so that we can sanity check all our lengths // and our per-file structures. const off64_t cd_offset = archive->directory_offset; // Fill out the compression method, modification time, crc32 // and other interesting attributes from the central directory. These // will later be compared against values from the local file header. data->method = cdr->compression_method; data->mod_time = cdr->last_mod_date << 16 | cdr->last_mod_time; data->crc32 = cdr->crc32; data->compressed_length = cdr->compressed_size; data->uncompressed_length = cdr->uncompressed_size; // Figure out the local header offset from the central directory. The // actual file data will begin after the local header and the name / // extra comments. const off64_t local_header_offset = cdr->local_file_header_offset; if (local_header_offset + static_cast(sizeof(LocalFileHeader)) >= cd_offset) { ALOGW("Zip: bad local hdr offset in zip"); return kInvalidOffset; } uint8_t lfh_buf[sizeof(LocalFileHeader)]; if (!archive->mapped_zip.ReadAtOffset(lfh_buf, sizeof(lfh_buf), local_header_offset)) { ALOGW("Zip: failed reading lfh name from offset %" PRId64, static_cast(local_header_offset)); return kIoError; } const LocalFileHeader *lfh = reinterpret_cast(lfh_buf); if (lfh->lfh_signature != LocalFileHeader::kSignature) { ALOGW("Zip: didn't find signature at start of lfh, offset=%" PRId64, static_cast(local_header_offset)); return kInvalidOffset; } // Paranoia: Match the values specified in the local file header // to those specified in the central directory. if ((lfh->gpb_flags & kGPBDDFlagMask) == 0) { data->has_data_descriptor = 0; if (data->compressed_length != lfh->compressed_size || data->uncompressed_length != lfh->uncompressed_size || data->crc32 != lfh->crc32) { ALOGW("Zip: size/crc32 mismatch. expected {%" PRIu32 ", %" PRIu32 ", %" PRIx32 "}, was {%" PRIu32 ", %" PRIu32 ", %" PRIx32 "}", data->compressed_length, data->uncompressed_length, data->crc32, lfh->compressed_size, lfh->uncompressed_size, lfh->crc32); return kInconsistentInformation; } } else { data->has_data_descriptor = 1; } // Check that the local file header name matches the declared // name in the central directory. if (lfh->file_name_length == nameLen) { const off64_t name_offset = local_header_offset + sizeof(LocalFileHeader); if (name_offset + lfh->file_name_length > cd_offset) { ALOGW("Zip: Invalid declared length"); return kInvalidOffset; } std::vector name_buf(nameLen); if (!archive->mapped_zip.ReadAtOffset(name_buf.data(), nameLen, name_offset)) { ALOGW("Zip: failed reading lfh name from offset %" PRId64, static_cast(name_offset)); return kIoError; } if (memcmp(archive->hash_table[ent].name, name_buf.data(), nameLen)) { return kInconsistentInformation; } } else { ALOGW("Zip: lfh name did not match central directory."); return kInconsistentInformation; } const off64_t data_offset = local_header_offset + sizeof(LocalFileHeader) + lfh->file_name_length + lfh->extra_field_length; if (data_offset > cd_offset) { ALOGW("Zip: bad data offset %" PRId64 " in zip", static_cast(data_offset)); return kInvalidOffset; } if (static_cast(data_offset + data->compressed_length) > cd_offset) { ALOGW("Zip: bad compressed length in zip (%" PRId64 " + %" PRIu32 " > %" PRId64 ")", static_cast(data_offset), data->compressed_length, static_cast(cd_offset)); return kInvalidOffset; } if (data->method == kCompressStored && static_cast(data_offset + data->uncompressed_length) > cd_offset) { ALOGW("Zip: bad uncompressed length in zip (%" PRId64 " + %" PRIu32 " > %" PRId64 ")", static_cast(data_offset), data->uncompressed_length, static_cast(cd_offset)); return kInvalidOffset; } data->offset = data_offset; return 0; } struct IterationHandle { uint32_t position; // We're not using vector here because this code is used in the Windows SDK // where the STL is not available. ZipString prefix; ZipString suffix; ZipArchive* archive; IterationHandle(const ZipString* in_prefix, const ZipString* in_suffix) { if (in_prefix) { uint8_t* name_copy = new uint8_t[in_prefix->name_length]; memcpy(name_copy, in_prefix->name, in_prefix->name_length); prefix.name = name_copy; prefix.name_length = in_prefix->name_length; } else { prefix.name = NULL; prefix.name_length = 0; } if (in_suffix) { uint8_t* name_copy = new uint8_t[in_suffix->name_length]; memcpy(name_copy, in_suffix->name, in_suffix->name_length); suffix.name = name_copy; suffix.name_length = in_suffix->name_length; } else { suffix.name = NULL; suffix.name_length = 0; } } ~IterationHandle() { delete[] prefix.name; delete[] suffix.name; } }; int32_t StartIteration(ZipArchiveHandle handle, void** cookie_ptr, const ZipString* optional_prefix, const ZipString* optional_suffix) { ZipArchive* archive = reinterpret_cast(handle); if (archive == NULL || archive->hash_table == NULL) { ALOGW("Zip: Invalid ZipArchiveHandle"); return kInvalidHandle; } IterationHandle* cookie = new IterationHandle(optional_prefix, optional_suffix); cookie->position = 0; cookie->archive = archive; *cookie_ptr = cookie ; return 0; } void EndIteration(void* cookie) { delete reinterpret_cast(cookie); } int32_t FindEntry(const ZipArchiveHandle handle, const ZipString& entryName, ZipEntry* data) { const ZipArchive* archive = reinterpret_cast(handle); if (entryName.name_length == 0) { ALOGW("Zip: Invalid filename %.*s", entryName.name_length, entryName.name); return kInvalidEntryName; } const int64_t ent = EntryToIndex(archive->hash_table, archive->hash_table_size, entryName); if (ent < 0) { ALOGV("Zip: Could not find entry %.*s", entryName.name_length, entryName.name); return ent; } return FindEntry(archive, ent, data); } int32_t Next(void* cookie, ZipEntry* data, ZipString* name) { IterationHandle* handle = reinterpret_cast(cookie); if (handle == NULL) { return kInvalidHandle; } ZipArchive* archive = handle->archive; if (archive == NULL || archive->hash_table == NULL) { ALOGW("Zip: Invalid ZipArchiveHandle"); return kInvalidHandle; } const uint32_t currentOffset = handle->position; const uint32_t hash_table_length = archive->hash_table_size; const ZipString* hash_table = archive->hash_table; for (uint32_t i = currentOffset; i < hash_table_length; ++i) { if (hash_table[i].name != NULL && (handle->prefix.name_length == 0 || hash_table[i].StartsWith(handle->prefix)) && (handle->suffix.name_length == 0 || hash_table[i].EndsWith(handle->suffix))) { handle->position = (i + 1); const int error = FindEntry(archive, i, data); if (!error) { name->name = hash_table[i].name; name->name_length = hash_table[i].name_length; } return error; } } handle->position = 0; return kIterationEnd; } class Writer { public: virtual bool Append(uint8_t* buf, size_t buf_size) = 0; virtual ~Writer() {} protected: Writer() = default; private: DISALLOW_COPY_AND_ASSIGN(Writer); }; // A Writer that writes data to a fixed size memory region. // The size of the memory region must be equal to the total size of // the data appended to it. class MemoryWriter : public Writer { public: MemoryWriter(uint8_t* buf, size_t size) : Writer(), buf_(buf), size_(size), bytes_written_(0) { } virtual bool Append(uint8_t* buf, size_t buf_size) override { if (bytes_written_ + buf_size > size_) { ALOGW("Zip: Unexpected size " ZD " (declared) vs " ZD " (actual)", size_, bytes_written_ + buf_size); return false; } memcpy(buf_ + bytes_written_, buf, buf_size); bytes_written_ += buf_size; return true; } private: uint8_t* const buf_; const size_t size_; size_t bytes_written_; }; // A Writer that appends data to a file |fd| at its current position. // The file will be truncated to the end of the written data. class FileWriter : public Writer { public: // Creates a FileWriter for |fd| and prepare to write |entry| to it, // guaranteeing that the file descriptor is valid and that there's enough // space on the volume to write out the entry completely and that the file // is truncated to the correct length (no truncation if |fd| references a // block device). // // Returns a valid FileWriter on success, |nullptr| if an error occurred. static std::unique_ptr Create(int fd, const ZipEntry* entry) { const uint32_t declared_length = entry->uncompressed_length; const off64_t current_offset = lseek64(fd, 0, SEEK_CUR); if (current_offset == -1) { ALOGW("Zip: unable to seek to current location on fd %d: %s", fd, strerror(errno)); return nullptr; } int result = 0; #if defined(__linux__) if (declared_length > 0) { // Make sure we have enough space on the volume to extract the compressed // entry. Note that the call to ftruncate below will change the file size but // will not allocate space on disk and this call to fallocate will not // change the file size. // Note: fallocate is only supported by the following filesystems - // btrfs, ext4, ocfs2, and xfs. Therefore fallocate might fail with // EOPNOTSUPP error when issued in other filesystems. // Hence, check for the return error code before concluding that the // disk does not have enough space. result = TEMP_FAILURE_RETRY(fallocate(fd, 0, current_offset, declared_length)); if (result == -1 && errno == ENOSPC) { ALOGW("Zip: unable to allocate %" PRId64 " bytes at offset %" PRId64 " : %s", static_cast(declared_length), static_cast(current_offset), strerror(errno)); return std::unique_ptr(nullptr); } } #endif // __linux__ struct stat sb; if (fstat(fd, &sb) == -1) { ALOGW("Zip: unable to fstat file: %s", strerror(errno)); return std::unique_ptr(nullptr); } // Block device doesn't support ftruncate(2). if (!S_ISBLK(sb.st_mode)) { result = TEMP_FAILURE_RETRY(ftruncate(fd, declared_length + current_offset)); if (result == -1) { ALOGW("Zip: unable to truncate file to %" PRId64 ": %s", static_cast(declared_length + current_offset), strerror(errno)); return std::unique_ptr(nullptr); } } return std::unique_ptr(new FileWriter(fd, declared_length)); } virtual bool Append(uint8_t* buf, size_t buf_size) override { if (total_bytes_written_ + buf_size > declared_length_) { ALOGW("Zip: Unexpected size " ZD " (declared) vs " ZD " (actual)", declared_length_, total_bytes_written_ + buf_size); return false; } const bool result = android::base::WriteFully(fd_, buf, buf_size); if (result) { total_bytes_written_ += buf_size; } else { ALOGW("Zip: unable to write " ZD " bytes to file; %s", buf_size, strerror(errno)); } return result; } private: FileWriter(const int fd, const size_t declared_length) : Writer(), fd_(fd), declared_length_(declared_length), total_bytes_written_(0) { } const int fd_; const size_t declared_length_; size_t total_bytes_written_; }; // This method is using libz macros with old-style-casts #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wold-style-cast" static inline int zlib_inflateInit2(z_stream* stream, int window_bits) { return inflateInit2(stream, window_bits); } #pragma GCC diagnostic pop static int32_t InflateEntryToWriter(MappedZipFile& mapped_zip, const ZipEntry* entry, Writer* writer, uint64_t* crc_out) { const size_t kBufSize = 32768; std::vector read_buf(kBufSize); std::vector write_buf(kBufSize); z_stream zstream; int zerr; /* * Initialize the zlib stream struct. */ memset(&zstream, 0, sizeof(zstream)); zstream.zalloc = Z_NULL; zstream.zfree = Z_NULL; zstream.opaque = Z_NULL; zstream.next_in = NULL; zstream.avail_in = 0; zstream.next_out = &write_buf[0]; zstream.avail_out = kBufSize; zstream.data_type = Z_UNKNOWN; /* * Use the undocumented "negative window bits" feature to tell zlib * that there's no zlib header waiting for it. */ zerr = zlib_inflateInit2(&zstream, -MAX_WBITS); if (zerr != Z_OK) { if (zerr == Z_VERSION_ERROR) { ALOGE("Installed zlib is not compatible with linked version (%s)", ZLIB_VERSION); } else { ALOGW("Call to inflateInit2 failed (zerr=%d)", zerr); } return kZlibError; } auto zstream_deleter = [](z_stream* stream) { inflateEnd(stream); /* free up any allocated structures */ }; std::unique_ptr zstream_guard(&zstream, zstream_deleter); const uint32_t uncompressed_length = entry->uncompressed_length; uint32_t compressed_length = entry->compressed_length; do { /* read as much as we can */ if (zstream.avail_in == 0) { const size_t getSize = (compressed_length > kBufSize) ? kBufSize : compressed_length; if (!mapped_zip.ReadData(read_buf.data(), getSize)) { ALOGW("Zip: inflate read failed, getSize = %zu: %s", getSize, strerror(errno)); return kIoError; } compressed_length -= getSize; zstream.next_in = &read_buf[0]; zstream.avail_in = getSize; } /* uncompress the data */ zerr = inflate(&zstream, Z_NO_FLUSH); if (zerr != Z_OK && zerr != Z_STREAM_END) { ALOGW("Zip: inflate zerr=%d (nIn=%p aIn=%u nOut=%p aOut=%u)", zerr, zstream.next_in, zstream.avail_in, zstream.next_out, zstream.avail_out); return kZlibError; } /* write when we're full or when we're done */ if (zstream.avail_out == 0 || (zerr == Z_STREAM_END && zstream.avail_out != kBufSize)) { const size_t write_size = zstream.next_out - &write_buf[0]; if (!writer->Append(&write_buf[0], write_size)) { // The file might have declared a bogus length. return kInconsistentInformation; } zstream.next_out = &write_buf[0]; zstream.avail_out = kBufSize; } } while (zerr == Z_OK); assert(zerr == Z_STREAM_END); /* other errors should've been caught */ // stream.adler holds the crc32 value for such streams. *crc_out = zstream.adler; if (zstream.total_out != uncompressed_length || compressed_length != 0) { ALOGW("Zip: size mismatch on inflated file (%lu vs %" PRIu32 ")", zstream.total_out, uncompressed_length); return kInconsistentInformation; } return 0; } static int32_t CopyEntryToWriter(MappedZipFile& mapped_zip, const ZipEntry* entry, Writer* writer, uint64_t *crc_out) { static const uint32_t kBufSize = 32768; std::vector buf(kBufSize); const uint32_t length = entry->uncompressed_length; uint32_t count = 0; uint64_t crc = 0; while (count < length) { uint32_t remaining = length - count; // Safe conversion because kBufSize is narrow enough for a 32 bit signed // value. const size_t block_size = (remaining > kBufSize) ? kBufSize : remaining; if (!mapped_zip.ReadData(buf.data(), block_size)) { ALOGW("CopyFileToFile: copy read failed, block_size = %zu: %s", block_size, strerror(errno)); return kIoError; } if (!writer->Append(&buf[0], block_size)) { return kIoError; } crc = crc32(crc, &buf[0], block_size); count += block_size; } *crc_out = crc; return 0; } int32_t ExtractToWriter(ZipArchiveHandle handle, ZipEntry* entry, Writer* writer) { ZipArchive* archive = reinterpret_cast(handle); const uint16_t method = entry->method; off64_t data_offset = entry->offset; if (!archive->mapped_zip.SeekToOffset(data_offset)) { ALOGW("Zip: lseek to data at %" PRId64 " failed", static_cast(data_offset)); return kIoError; } // this should default to kUnknownCompressionMethod. int32_t return_value = -1; uint64_t crc = 0; if (method == kCompressStored) { return_value = CopyEntryToWriter(archive->mapped_zip, entry, writer, &crc); } else if (method == kCompressDeflated) { return_value = InflateEntryToWriter(archive->mapped_zip, entry, writer, &crc); } if (!return_value && entry->has_data_descriptor) { return_value = UpdateEntryFromDataDescriptor(archive->mapped_zip, entry); if (return_value) { return return_value; } } // TODO: Fix this check by passing the right flags to inflate2 so that // it calculates the CRC for us. if (entry->crc32 != crc && false) { ALOGW("Zip: crc mismatch: expected %" PRIu32 ", was %" PRIu64, entry->crc32, crc); return kInconsistentInformation; } return return_value; } int32_t ExtractToMemory(ZipArchiveHandle handle, ZipEntry* entry, uint8_t* begin, uint32_t size) { std::unique_ptr writer(new MemoryWriter(begin, size)); return ExtractToWriter(handle, entry, writer.get()); } int32_t ExtractEntryToFile(ZipArchiveHandle handle, ZipEntry* entry, int fd) { std::unique_ptr writer(FileWriter::Create(fd, entry)); if (writer.get() == nullptr) { return kIoError; } return ExtractToWriter(handle, entry, writer.get()); } const char* ErrorCodeString(int32_t error_code) { if (error_code > kErrorMessageLowerBound && error_code < kErrorMessageUpperBound) { return kErrorMessages[error_code * -1]; } return kErrorMessages[0]; } int GetFileDescriptor(const ZipArchiveHandle handle) { return reinterpret_cast(handle)->mapped_zip.GetFileDescriptor(); } ZipString::ZipString(const char* entry_name) : name(reinterpret_cast(entry_name)) { size_t len = strlen(entry_name); CHECK_LE(len, static_cast(UINT16_MAX)); name_length = static_cast(len); } #if !defined(_WIN32) class ProcessWriter : public Writer { public: ProcessWriter(ProcessZipEntryFunction func, void* cookie) : Writer(), proc_function_(func), cookie_(cookie) { } virtual bool Append(uint8_t* buf, size_t buf_size) override { return proc_function_(buf, buf_size, cookie_); } private: ProcessZipEntryFunction proc_function_; void* cookie_; }; int32_t ProcessZipEntryContents(ZipArchiveHandle handle, ZipEntry* entry, ProcessZipEntryFunction func, void* cookie) { ProcessWriter writer(func, cookie); return ExtractToWriter(handle, entry, &writer); } #endif //!defined(_WIN32) int MappedZipFile::GetFileDescriptor() const { if (!has_fd_) { ALOGW("Zip: MappedZipFile doesn't have a file descriptor."); return -1; } return fd_; } void* MappedZipFile::GetBasePtr() const { if (has_fd_) { ALOGW("Zip: MappedZipFile doesn't have a base pointer."); return nullptr; } return base_ptr_; } off64_t MappedZipFile::GetFileLength() const { if (has_fd_) { off64_t result = lseek64(fd_, 0, SEEK_END); if (result == -1) { ALOGE("Zip: lseek on fd %d failed: %s", fd_, strerror(errno)); } return result; } else { if (base_ptr_ == nullptr) { ALOGE("Zip: invalid file map\n"); return -1; } return static_cast(data_length_); } } bool MappedZipFile::SeekToOffset(off64_t offset) { if (has_fd_) { if (lseek64(fd_, offset, SEEK_SET) != offset) { ALOGE("Zip: lseek to %" PRId64 " failed: %s\n", offset, strerror(errno)); return false; } return true; } else { if (offset < 0 || offset > static_cast(data_length_)) { ALOGE("Zip: invalid offset: %" PRId64 ", data length: %" PRId64 "\n" , offset, data_length_); return false; } read_pos_ = offset; return true; } } bool MappedZipFile::ReadData(uint8_t* buffer, size_t read_amount) { if (has_fd_) { if(!android::base::ReadFully(fd_, buffer, read_amount)) { ALOGE("Zip: read from %d failed\n", fd_); return false; } } else { memcpy(buffer, static_cast(base_ptr_) + read_pos_, read_amount); read_pos_ += read_amount; } return true; } // Attempts to read |len| bytes into |buf| at offset |off|. bool MappedZipFile::ReadAtOffset(uint8_t* buf, size_t len, off64_t off) { #if !defined(_WIN32) if (has_fd_) { if (static_cast(TEMP_FAILURE_RETRY(pread64(fd_, buf, len, off))) != len) { ALOGE("Zip: failed to read at offset %" PRId64 "\n", off); return false; } return true; } #endif if (!SeekToOffset(off)) { return false; } return ReadData(buf, len); } void CentralDirectory::Initialize(void* map_base_ptr, off64_t cd_start_offset, size_t cd_size) { base_ptr_ = static_cast(map_base_ptr) + cd_start_offset; length_ = cd_size; } bool ZipArchive::InitializeCentralDirectory(const char* debug_file_name, off64_t cd_start_offset, size_t cd_size) { if (mapped_zip.HasFd()) { if (!directory_map->create(debug_file_name, mapped_zip.GetFileDescriptor(), cd_start_offset, cd_size, true /* read only */)) { return false; } CHECK_EQ(directory_map->getDataLength(), cd_size); central_directory.Initialize(directory_map->getDataPtr(), 0/*offset*/, cd_size); } else { if (mapped_zip.GetBasePtr() == nullptr) { ALOGE("Zip: Failed to map central directory, bad mapped_zip base pointer\n"); return false; } if (static_cast(cd_start_offset) + static_cast(cd_size) > mapped_zip.GetFileLength()) { ALOGE("Zip: Failed to map central directory, offset exceeds mapped memory region (" "start_offset %" PRId64 ", cd_size %zu, mapped_region_size %" PRId64 ")", static_cast(cd_start_offset), cd_size, mapped_zip.GetFileLength()); return false; } central_directory.Initialize(mapped_zip.GetBasePtr(), cd_start_offset, cd_size); } return true; }