/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "action.h" #include "init.h" #include "keywords.h" #include "property_service.h" #include "devices.h" #include "init_parser.h" #include "util.h" #include "log.h" #define chmod DO_NOT_USE_CHMOD_USE_FCHMODAT_SYMLINK_NOFOLLOW #define UNMOUNT_CHECK_MS 5000 #define UNMOUNT_CHECK_TIMES 10 int add_environment(const char *name, const char *value); // System call provided by bionic but not in any header file. extern "C" int init_module(void *, unsigned long, const char *); static int insmod(const char *filename, char *options) { std::string module; if (!read_file(filename, &module)) { return -1; } // TODO: use finit_module for >= 3.8 kernels. return init_module(&module[0], module.size(), options); } static int __ifupdown(const char *interface, int up) { struct ifreq ifr; int s, ret; strlcpy(ifr.ifr_name, interface, IFNAMSIZ); s = socket(AF_INET, SOCK_DGRAM, 0); if (s < 0) return -1; ret = ioctl(s, SIOCGIFFLAGS, &ifr); if (ret < 0) { goto done; } if (up) ifr.ifr_flags |= IFF_UP; else ifr.ifr_flags &= ~IFF_UP; ret = ioctl(s, SIOCSIFFLAGS, &ifr); done: close(s); return ret; } static void service_start_if_not_disabled(struct service *svc) { if (!(svc->flags & SVC_DISABLED)) { service_start(svc, NULL); } else { svc->flags |= SVC_DISABLED_START; } } static void unmount_and_fsck(const struct mntent *entry) { if (strcmp(entry->mnt_type, "f2fs") && strcmp(entry->mnt_type, "ext4")) return; /* First, lazily unmount the directory. This unmount request finishes when * all processes that open a file or directory in |entry->mnt_dir| exit. */ TEMP_FAILURE_RETRY(umount2(entry->mnt_dir, MNT_DETACH)); /* Next, kill all processes except init, kthreadd, and kthreadd's * children to finish the lazy unmount. Killing all processes here is okay * because this callback function is only called right before reboot(). * It might be cleaner to selectively kill processes that actually use * |entry->mnt_dir| rather than killing all, probably by reusing a function * like killProcessesWithOpenFiles() in vold/, but the selinux policy does * not allow init to scan /proc/ files which the utility function * heavily relies on. The policy does not allow the process to execute * killall/pkill binaries either. Note that some processes might * automatically restart after kill(), but that is not really a problem * because |entry->mnt_dir| is no longer visible to such new processes. */ service_for_each(service_stop); TEMP_FAILURE_RETRY(kill(-1, SIGKILL)); int count = 0; while (count++ < UNMOUNT_CHECK_TIMES) { int fd = TEMP_FAILURE_RETRY(open(entry->mnt_fsname, O_RDONLY | O_EXCL)); if (fd >= 0) { /* |entry->mnt_dir| has sucessfully been unmounted. */ close(fd); break; } else if (errno == EBUSY) { /* Some processes using |entry->mnt_dir| are still alive. Wait for a * while then retry. */ TEMP_FAILURE_RETRY( usleep(UNMOUNT_CHECK_MS * 1000 / UNMOUNT_CHECK_TIMES)); continue; } else { /* Cannot open the device. Give up. */ return; } } int st; if (!strcmp(entry->mnt_type, "f2fs")) { const char *f2fs_argv[] = { "/system/bin/fsck.f2fs", "-f", entry->mnt_fsname, }; android_fork_execvp_ext(ARRAY_SIZE(f2fs_argv), (char **)f2fs_argv, &st, true, LOG_KLOG, true, NULL); } else if (!strcmp(entry->mnt_type, "ext4")) { const char *ext4_argv[] = { "/system/bin/e2fsck", "-f", "-y", entry->mnt_fsname, }; android_fork_execvp_ext(ARRAY_SIZE(ext4_argv), (char **)ext4_argv, &st, true, LOG_KLOG, true, NULL); } } int do_class_start(int nargs, char **args) { /* Starting a class does not start services * which are explicitly disabled. They must * be started individually. */ service_for_each_class(args[1], service_start_if_not_disabled); return 0; } int do_class_stop(int nargs, char **args) { service_for_each_class(args[1], service_stop); return 0; } int do_class_reset(int nargs, char **args) { service_for_each_class(args[1], service_reset); return 0; } int do_domainname(int nargs, char **args) { return write_file("/proc/sys/kernel/domainname", args[1]); } int do_enable(int nargs, char **args) { struct service *svc; svc = service_find_by_name(args[1]); if (svc) { svc->flags &= ~(SVC_DISABLED | SVC_RC_DISABLED); if (svc->flags & SVC_DISABLED_START) { service_start(svc, NULL); } } else { return -1; } return 0; } int do_exec(int nargs, char** args) { service* svc = make_exec_oneshot_service(nargs, args); if (svc == NULL) { return -1; } service_start(svc, NULL); return 0; } int do_export(int nargs, char **args) { return add_environment(args[1], args[2]); } int do_hostname(int nargs, char **args) { return write_file("/proc/sys/kernel/hostname", args[1]); } int do_ifup(int nargs, char **args) { return __ifupdown(args[1], 1); } static int do_insmod_inner(int nargs, char **args, int opt_len) { char options[opt_len + 1]; int i; options[0] = '\0'; if (nargs > 2) { strcpy(options, args[2]); for (i = 3; i < nargs; ++i) { strcat(options, " "); strcat(options, args[i]); } } return insmod(args[1], options); } int do_insmod(int nargs, char **args) { int i; int size = 0; if (nargs > 2) { for (i = 2; i < nargs; ++i) size += strlen(args[i]) + 1; } return do_insmod_inner(nargs, args, size); } int do_mkdir(int nargs, char **args) { mode_t mode = 0755; int ret; /* mkdir [mode] [owner] [group] */ if (nargs >= 3) { mode = strtoul(args[2], 0, 8); } ret = make_dir(args[1], mode); /* chmod in case the directory already exists */ if (ret == -1 && errno == EEXIST) { ret = fchmodat(AT_FDCWD, args[1], mode, AT_SYMLINK_NOFOLLOW); } if (ret == -1) { return -errno; } if (nargs >= 4) { uid_t uid = decode_uid(args[3]); gid_t gid = -1; if (nargs == 5) { gid = decode_uid(args[4]); } if (lchown(args[1], uid, gid) == -1) { return -errno; } /* chown may have cleared S_ISUID and S_ISGID, chmod again */ if (mode & (S_ISUID | S_ISGID)) { ret = fchmodat(AT_FDCWD, args[1], mode, AT_SYMLINK_NOFOLLOW); if (ret == -1) { return -errno; } } } return e4crypt_set_directory_policy(args[1]); } static struct { const char *name; unsigned flag; } mount_flags[] = { { "noatime", MS_NOATIME }, { "noexec", MS_NOEXEC }, { "nosuid", MS_NOSUID }, { "nodev", MS_NODEV }, { "nodiratime", MS_NODIRATIME }, { "ro", MS_RDONLY }, { "rw", 0 }, { "remount", MS_REMOUNT }, { "bind", MS_BIND }, { "rec", MS_REC }, { "unbindable", MS_UNBINDABLE }, { "private", MS_PRIVATE }, { "slave", MS_SLAVE }, { "shared", MS_SHARED }, { "defaults", 0 }, { 0, 0 }, }; #define DATA_MNT_POINT "/data" /* mount */ int do_mount(int nargs, char **args) { char tmp[64]; char *source, *target, *system; char *options = NULL; unsigned flags = 0; int n, i; int wait = 0; for (n = 4; n < nargs; n++) { for (i = 0; mount_flags[i].name; i++) { if (!strcmp(args[n], mount_flags[i].name)) { flags |= mount_flags[i].flag; break; } } if (!mount_flags[i].name) { if (!strcmp(args[n], "wait")) wait = 1; /* if our last argument isn't a flag, wolf it up as an option string */ else if (n + 1 == nargs) options = args[n]; } } system = args[1]; source = args[2]; target = args[3]; if (!strncmp(source, "mtd@", 4)) { n = mtd_name_to_number(source + 4); if (n < 0) { return -1; } snprintf(tmp, sizeof(tmp), "/dev/block/mtdblock%d", n); if (wait) wait_for_file(tmp, COMMAND_RETRY_TIMEOUT); if (mount(tmp, target, system, flags, options) < 0) { return -1; } goto exit_success; } else if (!strncmp(source, "loop@", 5)) { int mode, loop, fd; struct loop_info info; mode = (flags & MS_RDONLY) ? O_RDONLY : O_RDWR; fd = open(source + 5, mode | O_CLOEXEC); if (fd < 0) { return -1; } for (n = 0; ; n++) { snprintf(tmp, sizeof(tmp), "/dev/block/loop%d", n); loop = open(tmp, mode | O_CLOEXEC); if (loop < 0) { close(fd); return -1; } /* if it is a blank loop device */ if (ioctl(loop, LOOP_GET_STATUS, &info) < 0 && errno == ENXIO) { /* if it becomes our loop device */ if (ioctl(loop, LOOP_SET_FD, fd) >= 0) { close(fd); if (mount(tmp, target, system, flags, options) < 0) { ioctl(loop, LOOP_CLR_FD, 0); close(loop); return -1; } close(loop); goto exit_success; } } close(loop); } close(fd); ERROR("out of loopback devices"); return -1; } else { if (wait) wait_for_file(source, COMMAND_RETRY_TIMEOUT); if (mount(source, target, system, flags, options) < 0) { return -1; } } exit_success: return 0; } static int wipe_data_via_recovery() { mkdir("/cache/recovery", 0700); int fd = open("/cache/recovery/command", O_RDWR|O_CREAT|O_TRUNC|O_CLOEXEC, 0600); if (fd >= 0) { write(fd, "--wipe_data\n", strlen("--wipe_data\n") + 1); write(fd, "--reason=wipe_data_via_recovery\n", strlen("--reason=wipe_data_via_recovery\n") + 1); close(fd); } else { ERROR("could not open /cache/recovery/command\n"); return -1; } android_reboot(ANDROID_RB_RESTART2, 0, "recovery"); while (1) { pause(); } // never reached } /* * This function might request a reboot, in which case it will * not return. */ int do_mount_all(int nargs, char **args) { pid_t pid; int ret = -1; int child_ret = -1; int status; struct fstab *fstab; if (nargs != 2) { return -1; } const char* fstabfile = args[1]; /* * Call fs_mgr_mount_all() to mount all filesystems. We fork(2) and * do the call in the child to provide protection to the main init * process if anything goes wrong (crash or memory leak), and wait for * the child to finish in the parent. */ pid = fork(); if (pid > 0) { /* Parent. Wait for the child to return */ int wp_ret = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); if (wp_ret < 0) { /* Unexpected error code. We will continue anyway. */ NOTICE("waitpid failed rc=%d: %s\n", wp_ret, strerror(errno)); } if (WIFEXITED(status)) { ret = WEXITSTATUS(status); } else { ret = -1; } } else if (pid == 0) { /* child, call fs_mgr_mount_all() */ klog_set_level(6); /* So we can see what fs_mgr_mount_all() does */ fstab = fs_mgr_read_fstab(fstabfile); child_ret = fs_mgr_mount_all(fstab); fs_mgr_free_fstab(fstab); if (child_ret == -1) { ERROR("fs_mgr_mount_all returned an error\n"); } _exit(child_ret); } else { /* fork failed, return an error */ return -1; } if (ret == FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION) { property_set("vold.decrypt", "trigger_encryption"); } else if (ret == FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED) { property_set("ro.crypto.state", "encrypted"); property_set("ro.crypto.type", "block"); property_set("vold.decrypt", "trigger_default_encryption"); } else if (ret == FS_MGR_MNTALL_DEV_NOT_ENCRYPTED) { property_set("ro.crypto.state", "unencrypted"); /* If fs_mgr determined this is an unencrypted device, then trigger * that action. */ ActionManager::GetInstance().QueueEventTrigger("nonencrypted"); } else if (ret == FS_MGR_MNTALL_DEV_NEEDS_RECOVERY) { /* Setup a wipe via recovery, and reboot into recovery */ ERROR("fs_mgr_mount_all suggested recovery, so wiping data via recovery.\n"); ret = wipe_data_via_recovery(); /* If reboot worked, there is no return. */ } else if (ret == FS_MGR_MNTALL_DEV_DEFAULT_FILE_ENCRYPTED) { if (e4crypt_install_keyring()) { return -1; } property_set("ro.crypto.state", "encrypted"); property_set("ro.crypto.type", "file"); // Although encrypted, we have device key, so we do not need to // do anything different from the nonencrypted case. ActionManager::GetInstance().QueueEventTrigger("nonencrypted"); } else if (ret == FS_MGR_MNTALL_DEV_NON_DEFAULT_FILE_ENCRYPTED) { if (e4crypt_install_keyring()) { return -1; } property_set("ro.crypto.state", "encrypted"); property_set("ro.crypto.type", "file"); property_set("vold.decrypt", "trigger_restart_min_framework"); } else if (ret > 0) { ERROR("fs_mgr_mount_all returned unexpected error %d\n", ret); } /* else ... < 0: error */ return ret; } int do_swapon_all(int nargs, char **args) { struct fstab *fstab; int ret; fstab = fs_mgr_read_fstab(args[1]); ret = fs_mgr_swapon_all(fstab); fs_mgr_free_fstab(fstab); return ret; } int do_setprop(int nargs, char **args) { const char *name = args[1]; const char *value = args[2]; property_set(name, value); return 0; } int do_setrlimit(int nargs, char **args) { struct rlimit limit; int resource; resource = atoi(args[1]); limit.rlim_cur = atoi(args[2]); limit.rlim_max = atoi(args[3]); return setrlimit(resource, &limit); } int do_start(int nargs, char **args) { struct service *svc; svc = service_find_by_name(args[1]); if (svc) { service_start(svc, NULL); } return 0; } int do_stop(int nargs, char **args) { struct service *svc; svc = service_find_by_name(args[1]); if (svc) { service_stop(svc); } return 0; } int do_restart(int nargs, char **args) { struct service *svc; svc = service_find_by_name(args[1]); if (svc) { service_restart(svc); } return 0; } int do_powerctl(int nargs, char **args) { const char* command = args[1]; int len = 0; int cmd = 0; const char *reboot_target; void (*callback_on_ro_remount)(const struct mntent*) = NULL; if (strncmp(command, "shutdown", 8) == 0) { cmd = ANDROID_RB_POWEROFF; len = 8; callback_on_ro_remount = unmount_and_fsck; } else if (strncmp(command, "reboot", 6) == 0) { cmd = ANDROID_RB_RESTART2; len = 6; } else { ERROR("powerctl: unrecognized command '%s'\n", command); return -EINVAL; } if (command[len] == ',') { reboot_target = &command[len + 1]; } else if (command[len] == '\0') { reboot_target = ""; } else { ERROR("powerctl: unrecognized reboot target '%s'\n", &command[len]); return -EINVAL; } return android_reboot_with_callback(cmd, 0, reboot_target, callback_on_ro_remount); } int do_trigger(int nargs, char **args) { ActionManager::GetInstance().QueueEventTrigger(args[1]); return 0; } int do_symlink(int nargs, char **args) { return symlink(args[1], args[2]); } int do_rm(int nargs, char **args) { return unlink(args[1]); } int do_rmdir(int nargs, char **args) { return rmdir(args[1]); } int do_sysclktz(int nargs, char **args) { struct timezone tz; if (nargs != 2) return -1; memset(&tz, 0, sizeof(tz)); tz.tz_minuteswest = atoi(args[1]); if (settimeofday(NULL, &tz)) return -1; return 0; } int do_verity_load_state(int nargs, char **args) { int mode = -1; int rc = fs_mgr_load_verity_state(&mode); if (rc == 0 && mode == VERITY_MODE_LOGGING) { ActionManager::GetInstance().QueueEventTrigger("verity-logging"); } return rc; } static void verity_update_property(fstab_rec *fstab, const char *mount_point, int mode, int status) { property_set(android::base::StringPrintf("partition.%s.verified", mount_point).c_str(), android::base::StringPrintf("%d", mode).c_str()); } int do_verity_update_state(int nargs, char** args) { return fs_mgr_update_verity_state(verity_update_property); } int do_write(int nargs, char **args) { const char *path = args[1]; const char *value = args[2]; return write_file(path, value); } int do_copy(int nargs, char **args) { char *buffer = NULL; int rc = 0; int fd1 = -1, fd2 = -1; struct stat info; int brtw, brtr; char *p; if (nargs != 3) return -1; if (stat(args[1], &info) < 0) return -1; if ((fd1 = open(args[1], O_RDONLY|O_CLOEXEC)) < 0) goto out_err; if ((fd2 = open(args[2], O_WRONLY|O_CREAT|O_TRUNC|O_CLOEXEC, 0660)) < 0) goto out_err; if (!(buffer = (char*) malloc(info.st_size))) goto out_err; p = buffer; brtr = info.st_size; while(brtr) { rc = read(fd1, p, brtr); if (rc < 0) goto out_err; if (rc == 0) break; p += rc; brtr -= rc; } p = buffer; brtw = info.st_size; while(brtw) { rc = write(fd2, p, brtw); if (rc < 0) goto out_err; if (rc == 0) break; p += rc; brtw -= rc; } rc = 0; goto out; out_err: rc = -1; out: if (buffer) free(buffer); if (fd1 >= 0) close(fd1); if (fd2 >= 0) close(fd2); return rc; } int do_chown(int nargs, char **args) { /* GID is optional. */ if (nargs == 3) { if (lchown(args[2], decode_uid(args[1]), -1) == -1) return -errno; } else if (nargs == 4) { if (lchown(args[3], decode_uid(args[1]), decode_uid(args[2])) == -1) return -errno; } else { return -1; } return 0; } static mode_t get_mode(const char *s) { mode_t mode = 0; while (*s) { if (*s >= '0' && *s <= '7') { mode = (mode<<3) | (*s-'0'); } else { return -1; } s++; } return mode; } int do_chmod(int nargs, char **args) { mode_t mode = get_mode(args[1]); if (fchmodat(AT_FDCWD, args[2], mode, AT_SYMLINK_NOFOLLOW) < 0) { return -errno; } return 0; } int do_restorecon(int nargs, char **args) { int i; int ret = 0; for (i = 1; i < nargs; i++) { if (restorecon(args[i]) < 0) ret = -errno; } return ret; } int do_restorecon_recursive(int nargs, char **args) { int i; int ret = 0; for (i = 1; i < nargs; i++) { if (restorecon_recursive(args[i]) < 0) ret = -errno; } return ret; } int do_loglevel(int nargs, char **args) { if (nargs != 2) { ERROR("loglevel: missing argument\n"); return -EINVAL; } int log_level = atoi(args[1]); if (log_level < KLOG_ERROR_LEVEL || log_level > KLOG_DEBUG_LEVEL) { ERROR("loglevel: invalid log level'%d'\n", log_level); return -EINVAL; } klog_set_level(log_level); return 0; } int do_load_persist_props(int nargs, char **args) { if (nargs == 1) { load_persist_props(); return 0; } return -1; } int do_load_all_props(int nargs, char **args) { if (nargs == 1) { load_all_props(); return 0; } return -1; } int do_wait(int nargs, char **args) { if (nargs == 2) { return wait_for_file(args[1], COMMAND_RETRY_TIMEOUT); } else if (nargs == 3) { return wait_for_file(args[1], atoi(args[2])); } else return -1; } /* * Callback to make a directory from the ext4 code */ static int do_installkeys_ensure_dir_exists(const char* dir) { if (make_dir(dir, 0700) && errno != EEXIST) { return -1; } return 0; } int do_installkey(int nargs, char **args) { if (nargs != 2) { return -1; } std::string prop_value = property_get("ro.crypto.type"); if (prop_value != "file") { return 0; } return e4crypt_create_device_key(args[1], do_installkeys_ensure_dir_exists); }