summaryrefslogtreecommitdiffstats
path: root/jni/filters/kmeans.h
diff options
context:
space:
mode:
Diffstat (limited to 'jni/filters/kmeans.h')
-rw-r--r--jni/filters/kmeans.h59
1 files changed, 34 insertions, 25 deletions
diff --git a/jni/filters/kmeans.h b/jni/filters/kmeans.h
index eb6544c..2450605 100644
--- a/jni/filters/kmeans.h
+++ b/jni/filters/kmeans.h
@@ -17,7 +17,6 @@
#ifndef KMEANS_H
#define KMEANS_H
-#include <ctime>
#include <cstdlib>
#include <math.h>
@@ -86,11 +85,12 @@ inline N euclideanDist(T val1[], T val2[], int dimension) {
* Picks k random starting points from the data set.
*/
template <typename T>
-void initialPickHeuristicRandom(int k, T values[], int len, int dimension, int stride, T dst[]) {
+void initialPickHeuristicRandom(int k, T values[], int len, int dimension, int stride, T dst[],
+ unsigned int seed) {
int x, z, num_vals, cntr;
num_vals = len / stride;
cntr = 0;
- srand((unsigned)time(0));
+ srand(seed);
unsigned int r_vals[k];
unsigned int r;
@@ -175,36 +175,45 @@ int calculateNewCentroids(int k, T values[], int len, int dimension, int stride,
return ret;
}
+template <typename T, typename N>
+void runKMeansWithPicks(int k, T finalCentroids[], T values[], int len, int dimension, int stride,
+ int iterations, T initialPicks[]){
+ int k_len = k * stride;
+ int x;
+
+ // zero newCenters
+ for (x = 0; x < k_len; x++) {
+ finalCentroids[x] = 0;
+ }
+
+ T * c1 = initialPicks;
+ T * c2 = finalCentroids;
+ T * temp;
+ int ret = 1;
+ for (x = 0; x < iterations; x++) {
+ ret = calculateNewCentroids<T, N>(k, values, len, dimension, stride, c1, c2);
+ temp = c1;
+ c1 = c2;
+ c2 = temp;
+ if (ret == 0) {
+ x = iterations;
+ }
+ }
+ set<T, T>(finalCentroids, c1, dimension);
+}
+
/**
* Runs the k-means algorithm on dataset values with some initial centroids.
*/
template <typename T, typename N>
void runKMeans(int k, T finalCentroids[], T values[], int len, int dimension, int stride,
- int iterations){
+ int iterations, unsigned int seed){
int k_len = k * stride;
- int x;
T initialPicks [k_len];
- initialPickHeuristicRandom<T>(k, values, len, dimension, stride, initialPicks);
-
- // zero newCenters
- for (x = 0; x < k_len; x++) {
- finalCentroids[x] = 0;
- }
+ initialPickHeuristicRandom<T>(k, values, len, dimension, stride, initialPicks, seed);
- T * c1 = initialPicks;
- T * c2 = finalCentroids;
- T * temp;
- int ret = 1;
- for (x = 0; x < iterations; x++) {
- ret = calculateNewCentroids<T, N>(k, values, len, dimension, stride, c1, c2);
- temp = c1;
- c1 = c2;
- c2 = temp;
- if (ret == 0) {
- x = iterations;
- }
- }
- set<T, T>(finalCentroids, c1, dimension);
+ runKMeansWithPicks<T, N>(k, finalCentroids, values, len, dimension, stride,
+ iterations, initialPicks);
}
/**