summaryrefslogtreecommitdiffstats
path: root/jni/feature_mos/src/mosaic/Delaunay.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'jni/feature_mos/src/mosaic/Delaunay.cpp')
-rw-r--r--jni/feature_mos/src/mosaic/Delaunay.cpp633
1 files changed, 633 insertions, 0 deletions
diff --git a/jni/feature_mos/src/mosaic/Delaunay.cpp b/jni/feature_mos/src/mosaic/Delaunay.cpp
new file mode 100644
index 000000000..0ce09fc51
--- /dev/null
+++ b/jni/feature_mos/src/mosaic/Delaunay.cpp
@@ -0,0 +1,633 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// Delaunay.cpp
+// $Id: Delaunay.cpp,v 1.10 2011/06/17 13:35:48 mbansal Exp $
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <memory.h>
+#include "Delaunay.h"
+
+#define QQ 9 // Optimal value as determined by testing
+#define DM 38 // 2^(1+DM/2) element sort capability. DM=38 for >10^6 elements
+#define NYL -1
+#define valid(l) ccw(orig(basel), dest(l), dest(basel))
+
+
+CDelaunay::CDelaunay()
+{
+}
+
+CDelaunay::~CDelaunay()
+{
+}
+
+// Allocate storage, construct triangulation, compute voronoi corners
+int CDelaunay::triangulate(SEdgeVector **edges, int n_sites, int width, int height)
+{
+ EdgePointer cep;
+
+ deleteAllEdges();
+ buildTriangulation(n_sites);
+ cep = consolidateEdges();
+ *edges = ev;
+
+ // Note: construction_list will change ev
+ return constructList(cep, width, height);
+}
+
+// builds delaunay triangulation
+void CDelaunay::buildTriangulation(int size)
+{
+ int i, rows;
+ EdgePointer lefte, righte;
+
+ rows = (int)( 0.5 + sqrt( (double) size / log( (double) size )));
+
+ // Sort the pointers by x-coordinate of site
+ for ( i=0 ; i < size ; i++ ) {
+ sp[i] = (SitePointer) i;
+ }
+
+ spsortx( sp, 0, size-1 );
+ build( 0, size-1, &lefte, &righte, rows );
+ oneBndryEdge = lefte;
+}
+
+// Recursive Delaunay Triangulation Procedure
+// Contains modifications for axis-switching division.
+void CDelaunay::build(int lo, int hi, EdgePointer *le, EdgePointer *re, int rows)
+{
+ EdgePointer a, b, c, ldo, rdi, ldi, rdo, maxx, minx;
+ int split, lowrows;
+ int low, high;
+ SitePointer s1, s2, s3;
+ low = lo;
+ high = hi;
+
+ if ( low < (high-2) ) {
+ // more than three elements; do recursion
+ minx = sp[low];
+ maxx = sp[high];
+ if (rows == 1) { // time to switch axis of division
+ spsorty( sp, low, high);
+ rows = 65536;
+ }
+ lowrows = rows/2;
+ split = low - 1 + (int)
+ (0.5 + ((double)(high-low+1) * ((double)lowrows / (double)rows)));
+ build( low, split, &ldo, &ldi, lowrows );
+ build( split+1, high, &rdi, &rdo, (rows-lowrows) );
+ doMerge(&ldo, ldi, rdi, &rdo);
+ while (orig(ldo) != minx) {
+ ldo = rprev(ldo);
+ }
+ while (orig(rdo) != maxx) {
+ rdo = (SitePointer) lprev(rdo);
+ }
+ *le = ldo;
+ *re = rdo;
+ }
+ else if (low >= (high - 1)) { // two or one points
+ a = makeEdge(sp[low], sp[high]);
+ *le = a;
+ *re = (EdgePointer) sym(a);
+ } else { // three points
+ // 3 cases: triangles of 2 orientations, and 3 points on a line
+ a = makeEdge((s1 = sp[low]), (s2 = sp[low+1]));
+ b = makeEdge(s2, (s3 = sp[high]));
+ splice((EdgePointer) sym(a), b);
+ if (ccw(s1, s3, s2)) {
+ c = connectLeft(b, a);
+ *le = (EdgePointer) sym(c);
+ *re = c;
+ } else {
+ *le = a;
+ *re = (EdgePointer) sym(b);
+ if (ccw(s1, s2, s3)) {
+ // not colinear
+ c = connectLeft(b, a);
+ }
+ }
+ }
+}
+
+// Quad-edge manipulation primitives
+EdgePointer CDelaunay::makeEdge(SitePointer origin, SitePointer destination)
+{
+ EdgePointer temp, ans;
+ temp = allocEdge();
+ ans = temp;
+
+ onext(temp) = ans;
+ orig(temp) = origin;
+ onext(++temp) = (EdgePointer) (ans + 3);
+ onext(++temp) = (EdgePointer) (ans + 2);
+ orig(temp) = destination;
+ onext(++temp) = (EdgePointer) (ans + 1);
+
+ return(ans);
+}
+
+void CDelaunay::splice(EdgePointer a, EdgePointer b)
+{
+ EdgePointer alpha, beta, temp;
+ alpha = (EdgePointer) rot(onext(a));
+ beta = (EdgePointer) rot(onext(b));
+ temp = onext(alpha);
+ onext(alpha) = onext(beta);
+ onext(beta) = temp;
+ temp = onext(a);
+ onext(a) = onext(b);
+ onext(b) = temp;
+}
+
+EdgePointer CDelaunay::connectLeft(EdgePointer a, EdgePointer b)
+{
+ EdgePointer ans;
+ ans = makeEdge(dest(a), orig(b));
+ splice(ans, (EdgePointer) lnext(a));
+ splice((EdgePointer) sym(ans), b);
+ return(ans);
+}
+
+EdgePointer CDelaunay::connectRight(EdgePointer a, EdgePointer b)
+{
+ EdgePointer ans;
+ ans = makeEdge(dest(a), orig(b));
+ splice(ans, (EdgePointer) sym(a));
+ splice((EdgePointer) sym(ans), (EdgePointer) oprev(b));
+ return(ans);
+}
+
+// disconnects e from the rest of the structure and destroys it
+void CDelaunay::deleteEdge(EdgePointer e)
+{
+ splice(e, (EdgePointer) oprev(e));
+ splice((EdgePointer) sym(e), (EdgePointer) oprev(sym(e)));
+ freeEdge(e);
+}
+
+//
+// Overall storage allocation
+//
+
+// Quad-edge storage allocation
+CSite *CDelaunay::allocMemory(int n)
+{
+ unsigned int size;
+
+ size = ((sizeof(CSite) + sizeof(SitePointer)) * n +
+ (sizeof(SitePointer) + sizeof(EdgePointer)) * 12
+ ) * n;
+ if (!(sa = (CSite*) malloc(size))) {
+ return NULL;
+ }
+ sp = (SitePointer *) (sa + n);
+ ev = (SEdgeVector *) (org = sp + n);
+ next = (EdgePointer *) (org + 12 * n);
+ ei = (struct EDGE_INFO *) (next + 12 * n);
+ return sa;
+}
+
+void CDelaunay::freeMemory()
+{
+ if (sa) {
+ free(sa);
+ sa = (CSite*)NULL;
+ }
+}
+
+//
+// Edge storage management
+//
+
+void CDelaunay::deleteAllEdges()
+{
+ nextEdge = 0;
+ availEdge = NYL;
+}
+
+EdgePointer CDelaunay::allocEdge()
+{
+ EdgePointer ans;
+
+ if (availEdge == NYL) {
+ ans = nextEdge, nextEdge += 4;
+ } else {
+ ans = availEdge, availEdge = onext(availEdge);
+ }
+ return(ans);
+}
+
+void CDelaunay::freeEdge(EdgePointer e)
+{
+ e ^= e & 3;
+ onext(e) = availEdge;
+ availEdge = e;
+}
+
+EdgePointer CDelaunay::consolidateEdges()
+{
+ EdgePointer e;
+ int i,j;
+
+ while (availEdge != NYL) {
+ nextEdge -= 4; e = availEdge; availEdge = onext(availEdge);
+
+ if (e==nextEdge) {
+ continue; // the one deleted was the last one anyway
+ }
+ if ((oneBndryEdge&~3) == nextEdge) {
+ oneBndryEdge = (EdgePointer) (e | (oneBndryEdge&3));
+ }
+ for (i=0,j=3; i<4; i++,j=rot(j)) {
+ onext(e+i) = onext(nextEdge+i);
+ onext(rot(onext(e+i))) = (EdgePointer) (e+j);
+ }
+ }
+ return nextEdge;
+}
+
+//
+// Sorting Routines
+//
+
+int CDelaunay::xcmpsp(int i, int j)
+{
+ double d = sa[(i>=0)?sp[i]:sp1].X() - sa[(j>=0)?sp[j]:sp1].X();
+ if ( d > 0. ) {
+ return 1;
+ }
+ if ( d < 0. ) {
+ return -1;
+ }
+ d = sa[(i>=0)?sp[i]:sp1].Y() - sa[(j>=0)?sp[j]:sp1].Y();
+ if ( d > 0. ) {
+ return 1;
+ }
+ if ( d < 0. ) {
+ return -1;
+ }
+ return 0;
+}
+
+int CDelaunay::ycmpsp(int i, int j)
+{
+ double d = sa[(i>=0)?sp[i]:sp1].Y() - sa[(j>=0)?sp[j]:sp1].Y();
+ if ( d > 0. ) {
+ return 1;
+ }
+ if ( d < 0. ) {
+ return -1;
+ }
+ d = sa[(i>=0)?sp[i]:sp1].X() - sa[(j>=0)?sp[j]:sp1].X();
+ if ( d > 0. ) {
+ return 1;
+ }
+ if ( d < 0. ) {
+ return -1;
+ }
+ return 0;
+}
+
+int CDelaunay::cmpev(int i, int j)
+{
+ return (ev[i].first - ev[j].first);
+}
+
+void CDelaunay::swapsp(int i, int j)
+{
+ int t;
+ t = (i>=0) ? sp[i] : sp1;
+
+ if (i>=0) {
+ sp[i] = (j>=0)?sp[j]:sp1;
+ } else {
+ sp1 = (j>=0)?sp[j]:sp1;
+ }
+
+ if (j>=0) {
+ sp[j] = (SitePointer) t;
+ } else {
+ sp1 = (SitePointer) t;
+ }
+}
+
+void CDelaunay::swapev(int i, int j)
+{
+ SEdgeVector temp;
+
+ temp = ev[i];
+ ev[i] = ev[j];
+ ev[j] = temp;
+}
+
+void CDelaunay::copysp(int i, int j)
+{
+ if (j>=0) {
+ sp[j] = (i>=0)?sp[i]:sp1;
+ } else {
+ sp1 = (i>=0)?sp[i]:sp1;
+ }
+}
+
+void CDelaunay::copyev(int i, int j)
+{
+ ev[j] = ev[i];
+}
+
+void CDelaunay::spsortx(SitePointer *sp_in, int low, int high)
+{
+ sp = sp_in;
+ rcssort(low,high,-1,&CDelaunay::xcmpsp,&CDelaunay::swapsp,&CDelaunay::copysp);
+}
+
+void CDelaunay::spsorty(SitePointer *sp_in, int low, int high )
+{
+ sp = sp_in;
+ rcssort(low,high,-1,&CDelaunay::ycmpsp,&CDelaunay::swapsp,&CDelaunay::copysp);
+}
+
+void CDelaunay::rcssort(int lowelt, int highelt, int temp,
+ int (CDelaunay::*comparison)(int,int),
+ void (CDelaunay::*swap)(int,int),
+ void (CDelaunay::*copy)(int,int))
+{
+ int m,sij,si,sj,sL,sk;
+ int stack[DM];
+
+ if (highelt-lowelt<=1) {
+ return;
+ }
+ if (highelt-lowelt>QQ) {
+ m = 0;
+ si = lowelt; sj = highelt;
+ for (;;) { // partition [si,sj] about median-of-3.
+ sij = (sj+si) >> 1;
+
+ // Now to sort elements si,sij,sj into order & set temp=their median
+ if ( (this->*comparison)( si,sij ) > 0 ) {
+ (this->*swap)( si,sij );
+ }
+ if ( (this->*comparison)( sij,sj ) > 0 ) {
+ (this->*swap)( sj,sij );
+ if ( (this->*comparison)( si,sij ) > 0 ) {
+ (this->*swap)( si,sij );
+ }
+ }
+ (this->*copy)( sij,temp );
+
+ // Now to partition into elements <=temp, >=temp, and ==temp.
+ sk = si; sL = sj;
+ do {
+ do {
+ sL--;
+ } while( (this->*comparison)( sL,temp ) > 0 );
+ do {
+ sk++;
+ } while( (this->*comparison)( temp,sk ) > 0 );
+ if ( sk < sL ) {
+ (this->*swap)( sL,sk );
+ }
+ } while(sk <= sL);
+
+ // Now to recurse on shorter partition, store longer partition on stack
+ if ( sL-si > sj-sk ) {
+ if ( sL-si < QQ ) {
+ if( m==0 ) {
+ break; // empty stack && both partitions < QQ so break
+ } else {
+ sj = stack[--m];
+ si = stack[--m];
+ }
+ }
+ else {
+ if ( sj-sk < QQ ) {
+ sj = sL;
+ } else {
+ stack[m++] = si;
+ stack[m++] = sL;
+ si = sk;
+ }
+ }
+ }
+ else {
+ if ( sj-sk < QQ ) {
+ if ( m==0 ) {
+ break; // empty stack && both partitions < QQ so break
+ } else {
+ sj = stack[--m];
+ si = stack[--m];
+ }
+ }
+ else {
+ if ( sL-si < QQ ) {
+ si = sk;
+ } else {
+ stack[m++] = sk;
+ stack[m++] = sj;
+ sj = sL;
+ }
+ }
+ }
+ }
+ }
+
+ // Now for 0 or Data bounded "straight insertion" sort of [0,nels-1]; if it is
+ // known that el[-1] = -INF, then can omit the "sk>=0" test and save time.
+ for (si=lowelt; si<highelt; si++) {
+ if ( (this->*comparison)( si,si+1 ) > 0 ) {
+ (this->*copy)( si+1,temp );
+ sj = sk = si;
+ sj++;
+ do {
+ (this->*copy)( sk,sj );
+ sj = sk;
+ sk--;
+ } while ( (this->*comparison)( sk,temp ) > 0 && sk>=lowelt );
+ (this->*copy)( temp,sj );
+ }
+ }
+}
+
+//
+// Geometric primitives
+//
+
+// incircle, as in the Guibas-Stolfi paper.
+int CDelaunay::incircle(SitePointer a, SitePointer b, SitePointer c, SitePointer d)
+{
+ double adx, ady, bdx, bdy, cdx, cdy, dx, dy, nad, nbd, ncd;
+ dx = sa[d].X();
+ dy = sa[d].Y();
+ adx = sa[a].X() - dx;
+ ady = sa[a].Y() - dy;
+ bdx = sa[b].X() - dx;
+ bdy = sa[b].Y() - dy;
+ cdx = sa[c].X() - dx;
+ cdy = sa[c].Y() - dy;
+ nad = adx*adx+ady*ady;
+ nbd = bdx*bdx+bdy*bdy;
+ ncd = cdx*cdx+cdy*cdy;
+ return( (0.0 < (nad * (bdx * cdy - bdy * cdx)
+ + nbd * (cdx * ady - cdy * adx)
+ + ncd * (adx * bdy - ady * bdx))) ? TRUE : FALSE );
+}
+
+// TRUE iff A, B, C form a counterclockwise oriented triangle
+int CDelaunay::ccw(SitePointer a, SitePointer b, SitePointer c)
+{
+ int result;
+
+ double ax = sa[a].X();
+ double bx = sa[b].X();
+ double cx = sa[c].X();
+ double ay = sa[a].Y();
+ double by = sa[b].Y();
+ double cy = sa[c].Y();
+
+ double val = (ax - cx)*(by - cy) - (bx - cx)*(ay - cy);
+ if ( val > 0.0) {
+ return true;
+ }
+
+ return false;
+}
+
+//
+// The Merge Procedure.
+//
+
+void CDelaunay::doMerge(EdgePointer *ldo, EdgePointer ldi, EdgePointer rdi, EdgePointer *rdo)
+{
+ int rvalid, lvalid;
+ EdgePointer basel,lcand,rcand,t;
+
+ for (;;) {
+ while (ccw(orig(ldi), dest(ldi), orig(rdi))) {
+ ldi = (EdgePointer) lnext(ldi);
+ }
+ if (ccw(dest(rdi), orig(rdi), orig(ldi))) {
+ rdi = (EdgePointer)rprev(rdi);
+ } else {
+ break;
+ }
+ }
+
+ basel = connectLeft((EdgePointer) sym(rdi), ldi);
+ lcand = rprev(basel);
+ rcand = (EdgePointer) oprev(basel);
+ if (orig(basel) == orig(*rdo)) {
+ *rdo = basel;
+ }
+ if (dest(basel) == orig(*ldo)) {
+ *ldo = (EdgePointer) sym(basel);
+ }
+
+ for (;;) {
+#if 1
+ if (valid(t=onext(lcand))) {
+#else
+ t = (EdgePointer)onext(lcand);
+ if (valid(basel, t)) {
+#endif
+ while (incircle(dest(lcand), dest(t), orig(lcand), orig(basel))) {
+ deleteEdge(lcand);
+ lcand = t;
+ t = onext(lcand);
+ }
+ }
+#if 1
+ if (valid(t=(EdgePointer)oprev(rcand))) {
+#else
+ t = (EdgePointer)oprev(rcand);
+ if (valid(basel, t)) {
+#endif
+ while (incircle(dest(t), dest(rcand), orig(rcand), dest(basel))) {
+ deleteEdge(rcand);
+ rcand = t;
+ t = (EdgePointer)oprev(rcand);
+ }
+ }
+
+#if 1
+ lvalid = valid(lcand);
+ rvalid = valid(rcand);
+#else
+ lvalid = valid(basel, lcand);
+ rvalid = valid(basel, rcand);
+#endif
+ if ((! lvalid) && (! rvalid)) {
+ return;
+ }
+
+ if (!lvalid ||
+ (rvalid && incircle(dest(lcand), orig(lcand), orig(rcand), dest(rcand)))) {
+ basel = connectLeft(rcand, (EdgePointer) sym(basel));
+ rcand = (EdgePointer) lnext(sym(basel));
+ } else {
+ basel = (EdgePointer) sym(connectRight(lcand, basel));
+ lcand = rprev(basel);
+ }
+ }
+}
+
+int CDelaunay::constructList(EdgePointer last, int width, int height)
+{
+ int c, i;
+ EdgePointer curr, src, nex;
+ SEdgeVector *currv, *prevv;
+
+ c = (int) ((curr = (EdgePointer) ((last & ~3))) >> 1);
+
+ for (last -= 4; last >= 0; last -= 4) {
+ src = orig(last);
+ nex = dest(last);
+ orig(--curr) = src;
+ orig(--curr) = nex;
+ orig(--curr) = nex;
+ orig(--curr) = src;
+ }
+ rcssort(0, c - 1, -1, &CDelaunay::cmpev, &CDelaunay::swapev, &CDelaunay::copyev);
+
+ // Throw out any edges that are too far apart
+ currv = prevv = ev;
+ for (i = c; i--; currv++) {
+ if ((int) fabs(sa[currv->first].getVCenter().x - sa[currv->second].getVCenter().x) <= width &&
+ (int) fabs(sa[currv->first].getVCenter().y - sa[currv->second].getVCenter().y) <= height) {
+ *(prevv++) = *currv;
+ } else {
+ c--;
+ }
+ }
+ return c;
+}
+
+// Fill in site neighbor information
+void CDelaunay::linkNeighbors(SEdgeVector *edge, int nedge, int nsite)
+{
+ int i;
+
+ for (i = 0; i < nsite; i++) {
+ sa[i].setNeighbor(edge);
+ sa[i].setNumNeighbors(0);
+ for (; edge->first == i && nedge; edge++, nedge--) {
+ sa[i].incrNumNeighbors();
+ }
+ }
+}