summaryrefslogtreecommitdiffstats
path: root/jni/feature_mos/src/mosaic/Blend.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'jni/feature_mos/src/mosaic/Blend.cpp')
-rw-r--r--jni/feature_mos/src/mosaic/Blend.cpp1410
1 files changed, 1410 insertions, 0 deletions
diff --git a/jni/feature_mos/src/mosaic/Blend.cpp b/jni/feature_mos/src/mosaic/Blend.cpp
new file mode 100644
index 000000000..ef983ff67
--- /dev/null
+++ b/jni/feature_mos/src/mosaic/Blend.cpp
@@ -0,0 +1,1410 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+///////////////////////////////////////////////////
+// Blend.cpp
+// $Id: Blend.cpp,v 1.22 2011/06/24 04:22:14 mbansal Exp $
+
+#include <string.h>
+
+#include "Interp.h"
+#include "Blend.h"
+
+#include "Geometry.h"
+#include "trsMatrix.h"
+
+#include "Log.h"
+#define LOG_TAG "BLEND"
+
+Blend::Blend()
+{
+ m_wb.blendingType = BLEND_TYPE_NONE;
+}
+
+Blend::~Blend()
+{
+ if (m_pFrameVPyr) free(m_pFrameVPyr);
+ if (m_pFrameUPyr) free(m_pFrameUPyr);
+ if (m_pFrameYPyr) free(m_pFrameYPyr);
+}
+
+int Blend::initialize(int blendingType, int stripType, int frame_width, int frame_height)
+{
+ this->width = frame_width;
+ this->height = frame_height;
+ this->m_wb.blendingType = blendingType;
+ this->m_wb.stripType = stripType;
+
+ m_wb.blendRange = m_wb.blendRangeUV = BLEND_RANGE_DEFAULT;
+ m_wb.nlevs = m_wb.blendRange;
+ m_wb.nlevsC = m_wb.blendRangeUV;
+
+ if (m_wb.nlevs <= 0) m_wb.nlevs = 1; // Need levels for YUV processing
+ if (m_wb.nlevsC > m_wb.nlevs) m_wb.nlevsC = m_wb.nlevs;
+
+ m_wb.roundoffOverlap = 1.5;
+
+ m_pFrameYPyr = NULL;
+ m_pFrameUPyr = NULL;
+ m_pFrameVPyr = NULL;
+
+ m_pFrameYPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevs, (unsigned short) width, (unsigned short) height, BORDER);
+ m_pFrameUPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevsC, (unsigned short) (width), (unsigned short) (height), BORDER);
+ m_pFrameVPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevsC, (unsigned short) (width), (unsigned short) (height), BORDER);
+
+ if (!m_pFrameYPyr || !m_pFrameUPyr || !m_pFrameVPyr)
+ {
+ LOGE("Error: Could not allocate pyramids for blending");
+ return BLEND_RET_ERROR_MEMORY;
+ }
+
+ return BLEND_RET_OK;
+}
+
+inline double max(double a, double b) { return a > b ? a : b; }
+inline double min(double a, double b) { return a < b ? a : b; }
+
+void Blend::AlignToMiddleFrame(MosaicFrame **frames, int frames_size)
+{
+ // Unwarp this frame and Warp the others to match
+ MosaicFrame *mb = NULL;
+ MosaicFrame *ref = frames[int(frames_size/2)]; // Middle frame
+
+ double invtrs[3][3];
+ inv33d(ref->trs, invtrs);
+
+ for(int mfit = 0; mfit < frames_size; mfit++)
+ {
+ mb = frames[mfit];
+ double temp[3][3];
+ mult33d(temp, invtrs, mb->trs);
+ memcpy(mb->trs, temp, sizeof(temp));
+ normProjMat33d(mb->trs);
+ }
+}
+
+int Blend::runBlend(MosaicFrame **oframes, MosaicFrame **rframes,
+ int frames_size,
+ ImageType &imageMosaicYVU, int &mosaicWidth, int &mosaicHeight,
+ float &progress, bool &cancelComputation)
+{
+ int ret;
+ int numCenters;
+
+ MosaicFrame **frames;
+
+ // For THIN strip mode, accept all frames for blending
+ if (m_wb.stripType == STRIP_TYPE_THIN)
+ {
+ frames = oframes;
+ }
+ else // For WIDE strip mode, first select the relevant frames to blend.
+ {
+ SelectRelevantFrames(oframes, frames_size, rframes, frames_size);
+ frames = rframes;
+ }
+
+ ComputeBlendParameters(frames, frames_size, true);
+ numCenters = frames_size;
+
+ if (numCenters == 0)
+ {
+ LOGE("Error: No frames to blend");
+ return BLEND_RET_ERROR;
+ }
+
+ if (!(m_AllSites = m_Triangulator.allocMemory(numCenters)))
+ {
+ return BLEND_RET_ERROR_MEMORY;
+ }
+
+ // Bounding rectangle (real numbers) of the final mosaic computed by projecting
+ // each input frame into the mosaic coordinate system.
+ BlendRect global_rect;
+
+ global_rect.lft = global_rect.bot = 2e30; // min values
+ global_rect.rgt = global_rect.top = -2e30; // max values
+ MosaicFrame *mb = NULL;
+ double halfwidth = width / 2.0;
+ double halfheight = height / 2.0;
+
+ double z, x0, y0, x1, y1, x2, y2, x3, y3;
+
+ // Corners of the left-most and right-most frames respectively in the
+ // mosaic coordinate system.
+ double xLeftCorners[2] = {2e30, 2e30};
+ double xRightCorners[2] = {-2e30, -2e30};
+
+ // Corners of the top-most and bottom-most frames respectively in the
+ // mosaic coordinate system.
+ double yTopCorners[2] = {2e30, 2e30};
+ double yBottomCorners[2] = {-2e30, -2e30};
+
+
+ // Determine the extents of the final mosaic
+ CSite *csite = m_AllSites ;
+ for(int mfit = 0; mfit < frames_size; mfit++)
+ {
+ mb = frames[mfit];
+
+ // Compute clipping for this frame's rect
+ FrameToMosaicRect(mb->width, mb->height, mb->trs, mb->brect);
+ // Clip global rect using this frame's rect
+ ClipRect(mb->brect, global_rect);
+
+ // Calculate the corner points
+ FrameToMosaic(mb->trs, 0.0, 0.0, x0, y0);
+ FrameToMosaic(mb->trs, 0.0, mb->height-1.0, x1, y1);
+ FrameToMosaic(mb->trs, mb->width-1.0, mb->height-1.0, x2, y2);
+ FrameToMosaic(mb->trs, mb->width-1.0, 0.0, x3, y3);
+
+ if(x0 < xLeftCorners[0] || x1 < xLeftCorners[1]) // If either of the left corners is lower
+ {
+ xLeftCorners[0] = x0;
+ xLeftCorners[1] = x1;
+ }
+
+ if(x3 > xRightCorners[0] || x2 > xRightCorners[1]) // If either of the right corners is higher
+ {
+ xRightCorners[0] = x3;
+ xRightCorners[1] = x2;
+ }
+
+ if(y0 < yTopCorners[0] || y3 < yTopCorners[1]) // If either of the top corners is lower
+ {
+ yTopCorners[0] = y0;
+ yTopCorners[1] = y3;
+ }
+
+ if(y1 > yBottomCorners[0] || y2 > yBottomCorners[1]) // If either of the bottom corners is higher
+ {
+ yBottomCorners[0] = y1;
+ yBottomCorners[1] = y2;
+ }
+
+
+ // Compute the centroid of the warped region
+ FindQuadCentroid(x0, y0, x1, y1, x2, y2, x3, y3, csite->getVCenter().x, csite->getVCenter().y);
+
+ csite->setMb(mb);
+ csite++;
+ }
+
+ // Get origin and sizes
+
+ // Bounding rectangle (int numbers) of the final mosaic computed by projecting
+ // each input frame into the mosaic coordinate system.
+ MosaicRect fullRect;
+
+ fullRect.left = (int) floor(global_rect.lft); // min-x
+ fullRect.top = (int) floor(global_rect.bot); // min-y
+ fullRect.right = (int) ceil(global_rect.rgt); // max-x
+ fullRect.bottom = (int) ceil(global_rect.top);// max-y
+ Mwidth = (unsigned short) (fullRect.right - fullRect.left + 1);
+ Mheight = (unsigned short) (fullRect.bottom - fullRect.top + 1);
+
+ int xLeftMost, xRightMost;
+ int yTopMost, yBottomMost;
+
+ // Rounding up, so that we don't include the gray border.
+ xLeftMost = max(0, max(xLeftCorners[0], xLeftCorners[1]) - fullRect.left + 1);
+ xRightMost = min(Mwidth - 1, min(xRightCorners[0], xRightCorners[1]) - fullRect.left - 1);
+
+ yTopMost = max(0, max(yTopCorners[0], yTopCorners[1]) - fullRect.top + 1);
+ yBottomMost = min(Mheight - 1, min(yBottomCorners[0], yBottomCorners[1]) - fullRect.top - 1);
+
+ if (xRightMost <= xLeftMost || yBottomMost <= yTopMost)
+ {
+ LOGE("RunBlend: aborting -consistency check failed,"
+ "(xLeftMost, xRightMost, yTopMost, yBottomMost): (%d, %d, %d, %d)",
+ xLeftMost, xRightMost, yTopMost, yBottomMost);
+ return BLEND_RET_ERROR;
+ }
+
+ // Make sure image width is multiple of 4
+ Mwidth = (unsigned short) ((Mwidth + 3) & ~3);
+ Mheight = (unsigned short) ((Mheight + 3) & ~3); // Round up.
+
+ ret = MosaicSizeCheck(LIMIT_SIZE_MULTIPLIER, LIMIT_HEIGHT_MULTIPLIER);
+ if (ret != BLEND_RET_OK)
+ {
+ LOGE("RunBlend: aborting - mosaic size check failed, "
+ "(frame_width, frame_height) vs (mosaic_width, mosaic_height): "
+ "(%d, %d) vs (%d, %d)", width, height, Mwidth, Mheight);
+ return ret;
+ }
+
+ LOGI("Allocate mosaic image for blending - size: %d x %d", Mwidth, Mheight);
+ YUVinfo *imgMos = YUVinfo::allocateImage(Mwidth, Mheight);
+ if (imgMos == NULL)
+ {
+ LOGE("RunBlend: aborting - couldn't alloc %d x %d mosaic image", Mwidth, Mheight);
+ return BLEND_RET_ERROR_MEMORY;
+ }
+
+ // Set the Y image to 255 so we can distinguish when frame idx are written to it
+ memset(imgMos->Y.ptr[0], 255, (imgMos->Y.width * imgMos->Y.height));
+ // Set the v and u images to black
+ memset(imgMos->V.ptr[0], 128, (imgMos->V.width * imgMos->V.height) << 1);
+
+ // Do the triangulation. It returns a sorted list of edges
+ SEdgeVector *edge;
+ int n = m_Triangulator.triangulate(&edge, numCenters, width, height);
+ m_Triangulator.linkNeighbors(edge, n, numCenters);
+
+ // Bounding rectangle that determines the positioning of the rectangle that is
+ // cropped out of the computed mosaic to get rid of the gray borders.
+ MosaicRect cropping_rect;
+
+ if (m_wb.horizontal)
+ {
+ cropping_rect.left = xLeftMost;
+ cropping_rect.right = xRightMost;
+ }
+ else
+ {
+ cropping_rect.top = yTopMost;
+ cropping_rect.bottom = yBottomMost;
+ }
+
+ // Do merging and blending :
+ ret = DoMergeAndBlend(frames, numCenters, width, height, *imgMos, fullRect,
+ cropping_rect, progress, cancelComputation);
+
+ if (m_wb.blendingType == BLEND_TYPE_HORZ)
+ CropFinalMosaic(*imgMos, cropping_rect);
+
+
+ m_Triangulator.freeMemory(); // note: can be called even if delaunay_alloc() wasn't successful
+
+ imageMosaicYVU = imgMos->Y.ptr[0];
+
+
+ if (m_wb.blendingType == BLEND_TYPE_HORZ)
+ {
+ mosaicWidth = cropping_rect.right - cropping_rect.left + 1;
+ mosaicHeight = cropping_rect.bottom - cropping_rect.top + 1;
+ }
+ else
+ {
+ mosaicWidth = Mwidth;
+ mosaicHeight = Mheight;
+ }
+
+ return ret;
+}
+
+int Blend::MosaicSizeCheck(float sizeMultiplier, float heightMultiplier) {
+ if (Mwidth < width || Mheight < height) {
+ return BLEND_RET_ERROR;
+ }
+
+ if ((Mwidth * Mheight) > (width * height * sizeMultiplier)) {
+ return BLEND_RET_ERROR;
+ }
+
+ // We won't do blending for the cases where users swing the device too much
+ // in the secondary direction. We use a short side to determine the
+ // secondary direction because users may hold the device in landsape
+ // or portrait.
+ int shortSide = min(Mwidth, Mheight);
+ if (shortSide > height * heightMultiplier) {
+ return BLEND_RET_ERROR;
+ }
+
+ return BLEND_RET_OK;
+}
+
+int Blend::FillFramePyramid(MosaicFrame *mb)
+{
+ ImageType mbY, mbU, mbV;
+ // Lay this image, centered into the temporary buffer
+ mbY = mb->image;
+ mbU = mb->getU();
+ mbV = mb->getV();
+
+ int h, w;
+
+ for(h=0; h<height; h++)
+ {
+ ImageTypeShort yptr = m_pFrameYPyr->ptr[h];
+ ImageTypeShort uptr = m_pFrameUPyr->ptr[h];
+ ImageTypeShort vptr = m_pFrameVPyr->ptr[h];
+
+ for(w=0; w<width; w++)
+ {
+ yptr[w] = (short) ((*(mbY++)) << 3);
+ uptr[w] = (short) ((*(mbU++)) << 3);
+ vptr[w] = (short) ((*(mbV++)) << 3);
+ }
+ }
+
+ // Spread the image through the border
+ PyramidShort::BorderSpread(m_pFrameYPyr, BORDER, BORDER, BORDER, BORDER);
+ PyramidShort::BorderSpread(m_pFrameUPyr, BORDER, BORDER, BORDER, BORDER);
+ PyramidShort::BorderSpread(m_pFrameVPyr, BORDER, BORDER, BORDER, BORDER);
+
+ // Generate Laplacian pyramids
+ if (!PyramidShort::BorderReduce(m_pFrameYPyr, m_wb.nlevs) || !PyramidShort::BorderExpand(m_pFrameYPyr, m_wb.nlevs, -1) ||
+ !PyramidShort::BorderReduce(m_pFrameUPyr, m_wb.nlevsC) || !PyramidShort::BorderExpand(m_pFrameUPyr, m_wb.nlevsC, -1) ||
+ !PyramidShort::BorderReduce(m_pFrameVPyr, m_wb.nlevsC) || !PyramidShort::BorderExpand(m_pFrameVPyr, m_wb.nlevsC, -1))
+ {
+ LOGE("Error: Could not generate Laplacian pyramids");
+ return BLEND_RET_ERROR;
+ }
+ else
+ {
+ return BLEND_RET_OK;
+ }
+}
+
+int Blend::DoMergeAndBlend(MosaicFrame **frames, int nsite,
+ int width, int height, YUVinfo &imgMos, MosaicRect &rect,
+ MosaicRect &cropping_rect, float &progress, bool &cancelComputation)
+{
+ m_pMosaicYPyr = NULL;
+ m_pMosaicUPyr = NULL;
+ m_pMosaicVPyr = NULL;
+
+ m_pMosaicYPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevs,(unsigned short)rect.Width(),(unsigned short)rect.Height(),BORDER);
+ m_pMosaicUPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevsC,(unsigned short)rect.Width(),(unsigned short)rect.Height(),BORDER);
+ m_pMosaicVPyr = PyramidShort::allocatePyramidPacked(m_wb.nlevsC,(unsigned short)rect.Width(),(unsigned short)rect.Height(),BORDER);
+ if (!m_pMosaicYPyr || !m_pMosaicUPyr || !m_pMosaicVPyr)
+ {
+ LOGE("Error: Could not allocate pyramids for blending");
+ return BLEND_RET_ERROR_MEMORY;
+ }
+
+ MosaicFrame *mb;
+
+ CSite *esite = m_AllSites + nsite;
+ int site_idx;
+
+ // First go through each frame and for each mosaic pixel determine which frame it should come from
+ site_idx = 0;
+ for(CSite *csite = m_AllSites; csite < esite; csite++)
+ {
+ if(cancelComputation)
+ {
+ if (m_pMosaicVPyr) free(m_pMosaicVPyr);
+ if (m_pMosaicUPyr) free(m_pMosaicUPyr);
+ if (m_pMosaicYPyr) free(m_pMosaicYPyr);
+ return BLEND_RET_CANCELLED;
+ }
+
+ mb = csite->getMb();
+
+ mb->vcrect = mb->brect;
+ ClipBlendRect(csite, mb->vcrect);
+
+ ComputeMask(csite, mb->vcrect, mb->brect, rect, imgMos, site_idx);
+
+ site_idx++;
+ }
+
+ ////////// imgMos.Y, imgMos.V, imgMos.U are used as follows //////////////
+ ////////////////////// THIN STRIP MODE ///////////////////////////////////
+
+ // imgMos.Y is used to store the index of the image from which each pixel
+ // in the output mosaic can be read out for the thin-strip mode. Thus,
+ // there is no special handling for pixels around the seam. Also, imgMos.Y
+ // is set to 255 wherever we can't get its value from any input image e.g.
+ // in the gray border areas. imgMos.V and imgMos.U are set to 128 for the
+ // thin-strip mode.
+
+ ////////////////////// WIDE STRIP MODE ///////////////////////////////////
+
+ // imgMos.Y is used the same way as the thin-strip mode.
+ // imgMos.V is used to store the index of the neighboring image which
+ // should contribute to the color of an output pixel in a band around
+ // the seam. Thus, in this band, we will crossfade between the color values
+ // from the image index imgMos.Y and image index imgMos.V. imgMos.U is
+ // used to store the weight (multiplied by 100) that each image will
+ // contribute to the blending process. Thus, we start at 99% contribution
+ // from the first image, then go to 50% contribution from each image at
+ // the seam. Then, the contribution from the second image goes up to 99%.
+
+ // For WIDE mode, set the pixel masks to guide the blender to cross-fade
+ // between the images on either side of each seam:
+ if (m_wb.stripType == STRIP_TYPE_WIDE)
+ {
+ if(m_wb.horizontal)
+ {
+ // Set the number of pixels around the seam to cross-fade between
+ // the two component images,
+ int tw = STRIP_CROSS_FADE_WIDTH_PXLS;
+
+ // Proceed with the image index calculation for cross-fading
+ // only if the cross-fading width is larger than 0
+ if (tw > 0)
+ {
+ for(int y = 0; y < imgMos.Y.height; y++)
+ {
+ // Since we compare two adjecant pixels to determine
+ // whether there is a seam, the termination condition of x
+ // is set to imgMos.Y.width - tw, so that x+1 below
+ // won't exceed the imgMos' boundary.
+ for(int x = tw; x < imgMos.Y.width - tw; )
+ {
+ // Determine where the seam is...
+ if (imgMos.Y.ptr[y][x] != imgMos.Y.ptr[y][x+1] &&
+ imgMos.Y.ptr[y][x] != 255 &&
+ imgMos.Y.ptr[y][x+1] != 255)
+ {
+ // Find the image indices on both sides of the seam
+ unsigned char idx1 = imgMos.Y.ptr[y][x];
+ unsigned char idx2 = imgMos.Y.ptr[y][x+1];
+
+ for (int o = tw; o >= 0; o--)
+ {
+ // Set the image index to use for cross-fading
+ imgMos.V.ptr[y][x - o] = idx2;
+ // Set the intensity weights to use for cross-fading
+ imgMos.U.ptr[y][x - o] = 50 + (99 - 50) * o / tw;
+ }
+
+ for (int o = 1; o <= tw; o++)
+ {
+ // Set the image index to use for cross-fading
+ imgMos.V.ptr[y][x + o] = idx1;
+ // Set the intensity weights to use for cross-fading
+ imgMos.U.ptr[y][x + o] = imgMos.U.ptr[y][x - o];
+ }
+
+ x += (tw + 1);
+ }
+ else
+ {
+ x++;
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ // Set the number of pixels around the seam to cross-fade between
+ // the two component images,
+ int tw = STRIP_CROSS_FADE_WIDTH_PXLS;
+
+ // Proceed with the image index calculation for cross-fading
+ // only if the cross-fading width is larger than 0
+ if (tw > 0)
+ {
+ for(int x = 0; x < imgMos.Y.width; x++)
+ {
+ // Since we compare two adjecant pixels to determine
+ // whether there is a seam, the termination condition of y
+ // is set to imgMos.Y.height - tw, so that y+1 below
+ // won't exceed the imgMos' boundary.
+ for(int y = tw; y < imgMos.Y.height - tw; )
+ {
+ // Determine where the seam is...
+ if (imgMos.Y.ptr[y][x] != imgMos.Y.ptr[y+1][x] &&
+ imgMos.Y.ptr[y][x] != 255 &&
+ imgMos.Y.ptr[y+1][x] != 255)
+ {
+ // Find the image indices on both sides of the seam
+ unsigned char idx1 = imgMos.Y.ptr[y][x];
+ unsigned char idx2 = imgMos.Y.ptr[y+1][x];
+
+ for (int o = tw; o >= 0; o--)
+ {
+ // Set the image index to use for cross-fading
+ imgMos.V.ptr[y - o][x] = idx2;
+ // Set the intensity weights to use for cross-fading
+ imgMos.U.ptr[y - o][x] = 50 + (99 - 50) * o / tw;
+ }
+
+ for (int o = 1; o <= tw; o++)
+ {
+ // Set the image index to use for cross-fading
+ imgMos.V.ptr[y + o][x] = idx1;
+ // Set the intensity weights to use for cross-fading
+ imgMos.U.ptr[y + o][x] = imgMos.U.ptr[y - o][x];
+ }
+
+ y += (tw + 1);
+ }
+ else
+ {
+ y++;
+ }
+ }
+ }
+ }
+ }
+
+ }
+
+ // Now perform the actual blending using the frame assignment determined above
+ site_idx = 0;
+ for(CSite *csite = m_AllSites; csite < esite; csite++)
+ {
+ if(cancelComputation)
+ {
+ if (m_pMosaicVPyr) free(m_pMosaicVPyr);
+ if (m_pMosaicUPyr) free(m_pMosaicUPyr);
+ if (m_pMosaicYPyr) free(m_pMosaicYPyr);
+ return BLEND_RET_CANCELLED;
+ }
+
+ mb = csite->getMb();
+
+
+ if(FillFramePyramid(mb)!=BLEND_RET_OK)
+ return BLEND_RET_ERROR;
+
+ ProcessPyramidForThisFrame(csite, mb->vcrect, mb->brect, rect, imgMos, mb->trs, site_idx);
+
+ progress += TIME_PERCENT_BLEND/nsite;
+
+ site_idx++;
+ }
+
+
+ // Blend
+ PerformFinalBlending(imgMos, cropping_rect);
+
+ if (cropping_rect.Width() <= 0 || cropping_rect.Height() <= 0)
+ {
+ LOGE("Size of the cropping_rect is invalid - (width, height): (%d, %d)",
+ cropping_rect.Width(), cropping_rect.Height());
+ return BLEND_RET_ERROR;
+ }
+
+ if (m_pMosaicVPyr) free(m_pMosaicVPyr);
+ if (m_pMosaicUPyr) free(m_pMosaicUPyr);
+ if (m_pMosaicYPyr) free(m_pMosaicYPyr);
+
+ progress += TIME_PERCENT_FINAL;
+
+ return BLEND_RET_OK;
+}
+
+void Blend::CropFinalMosaic(YUVinfo &imgMos, MosaicRect &cropping_rect)
+{
+ int i, j, k;
+ ImageType yimg;
+ ImageType uimg;
+ ImageType vimg;
+
+
+ yimg = imgMos.Y.ptr[0];
+ uimg = imgMos.U.ptr[0];
+ vimg = imgMos.V.ptr[0];
+
+ k = 0;
+ for (j = cropping_rect.top; j <= cropping_rect.bottom; j++)
+ {
+ for (i = cropping_rect.left; i <= cropping_rect.right; i++)
+ {
+ yimg[k] = yimg[j*imgMos.Y.width+i];
+ k++;
+ }
+ }
+ for (j = cropping_rect.top; j <= cropping_rect.bottom; j++)
+ {
+ for (i = cropping_rect.left; i <= cropping_rect.right; i++)
+ {
+ yimg[k] = vimg[j*imgMos.Y.width+i];
+ k++;
+ }
+ }
+ for (j = cropping_rect.top; j <= cropping_rect.bottom; j++)
+ {
+ for (i = cropping_rect.left; i <= cropping_rect.right; i++)
+ {
+ yimg[k] = uimg[j*imgMos.Y.width+i];
+ k++;
+ }
+ }
+}
+
+int Blend::PerformFinalBlending(YUVinfo &imgMos, MosaicRect &cropping_rect)
+{
+ if (!PyramidShort::BorderExpand(m_pMosaicYPyr, m_wb.nlevs, 1) || !PyramidShort::BorderExpand(m_pMosaicUPyr, m_wb.nlevsC, 1) ||
+ !PyramidShort::BorderExpand(m_pMosaicVPyr, m_wb.nlevsC, 1))
+ {
+ LOGE("Error: Could not BorderExpand!");
+ return BLEND_RET_ERROR;
+ }
+
+ ImageTypeShort myimg;
+ ImageTypeShort muimg;
+ ImageTypeShort mvimg;
+ ImageType yimg;
+ ImageType uimg;
+ ImageType vimg;
+
+ int cx = (int)imgMos.Y.width/2;
+ int cy = (int)imgMos.Y.height/2;
+
+ // 2D boolean array that contains true wherever the mosaic image data is
+ // invalid (i.e. in the gray border).
+ bool **b = new bool*[imgMos.Y.height];
+
+ for(int j=0; j<imgMos.Y.height; j++)
+ {
+ b[j] = new bool[imgMos.Y.width];
+ }
+
+ // Copy the resulting image into the full image using the mask
+ int i, j;
+
+ yimg = imgMos.Y.ptr[0];
+ uimg = imgMos.U.ptr[0];
+ vimg = imgMos.V.ptr[0];
+
+ for (j = 0; j < imgMos.Y.height; j++)
+ {
+ myimg = m_pMosaicYPyr->ptr[j];
+ muimg = m_pMosaicUPyr->ptr[j];
+ mvimg = m_pMosaicVPyr->ptr[j];
+
+ for (i = 0; i<imgMos.Y.width; i++)
+ {
+ // A final mask was set up previously,
+ // if the value is zero skip it, otherwise replace it.
+ if (*yimg <255)
+ {
+ short value = (short) ((*myimg) >> 3);
+ if (value < 0) value = 0;
+ else if (value > 255) value = 255;
+ *yimg = (unsigned char) value;
+
+ value = (short) ((*muimg) >> 3);
+ if (value < 0) value = 0;
+ else if (value > 255) value = 255;
+ *uimg = (unsigned char) value;
+
+ value = (short) ((*mvimg) >> 3);
+ if (value < 0) value = 0;
+ else if (value > 255) value = 255;
+ *vimg = (unsigned char) value;
+
+ b[j][i] = false;
+
+ }
+ else
+ { // set border color in here
+ *yimg = (unsigned char) 96;
+ *uimg = (unsigned char) 128;
+ *vimg = (unsigned char) 128;
+
+ b[j][i] = true;
+ }
+
+ yimg++;
+ uimg++;
+ vimg++;
+ myimg++;
+ muimg++;
+ mvimg++;
+ }
+ }
+
+ if(m_wb.horizontal)
+ {
+ //Scan through each row and increment top if the row contains any gray
+ for (j = 0; j < imgMos.Y.height; j++)
+ {
+ for (i = cropping_rect.left; i < cropping_rect.right; i++)
+ {
+ if (b[j][i])
+ {
+ break; // to next row
+ }
+ }
+
+ if (i == cropping_rect.right) //no gray pixel in this row!
+ {
+ cropping_rect.top = j;
+ break;
+ }
+ }
+
+ //Scan through each row and decrement bottom if the row contains any gray
+ for (j = imgMos.Y.height-1; j >= 0; j--)
+ {
+ for (i = cropping_rect.left; i < cropping_rect.right; i++)
+ {
+ if (b[j][i])
+ {
+ break; // to next row
+ }
+ }
+
+ if (i == cropping_rect.right) //no gray pixel in this row!
+ {
+ cropping_rect.bottom = j;
+ break;
+ }
+ }
+ }
+ else // Vertical Mosaic
+ {
+ //Scan through each column and increment left if the column contains any gray
+ for (i = 0; i < imgMos.Y.width; i++)
+ {
+ for (j = cropping_rect.top; j < cropping_rect.bottom; j++)
+ {
+ if (b[j][i])
+ {
+ break; // to next column
+ }
+ }
+
+ if (j == cropping_rect.bottom) //no gray pixel in this column!
+ {
+ cropping_rect.left = i;
+ break;
+ }
+ }
+
+ //Scan through each column and decrement right if the column contains any gray
+ for (i = imgMos.Y.width-1; i >= 0; i--)
+ {
+ for (j = cropping_rect.top; j < cropping_rect.bottom; j++)
+ {
+ if (b[j][i])
+ {
+ break; // to next column
+ }
+ }
+
+ if (j == cropping_rect.bottom) //no gray pixel in this column!
+ {
+ cropping_rect.right = i;
+ break;
+ }
+ }
+
+ }
+
+ RoundingCroppingSizeToMultipleOf8(cropping_rect);
+
+ for(int j=0; j<imgMos.Y.height; j++)
+ {
+ delete b[j];
+ }
+
+ delete b;
+
+ return BLEND_RET_OK;
+}
+
+void Blend::RoundingCroppingSizeToMultipleOf8(MosaicRect &rect) {
+ int height = rect.bottom - rect.top + 1;
+ int residue = height & 7;
+ rect.bottom -= residue;
+
+ int width = rect.right - rect.left + 1;
+ residue = width & 7;
+ rect.right -= residue;
+}
+
+void Blend::ComputeMask(CSite *csite, BlendRect &vcrect, BlendRect &brect, MosaicRect &rect, YUVinfo &imgMos, int site_idx)
+{
+ PyramidShort *dptr = m_pMosaicYPyr;
+
+ int nC = m_wb.nlevsC;
+ int l = (int) ((vcrect.lft - rect.left));
+ int b = (int) ((vcrect.bot - rect.top));
+ int r = (int) ((vcrect.rgt - rect.left));
+ int t = (int) ((vcrect.top - rect.top));
+
+ if (vcrect.lft == brect.lft)
+ l = (l <= 0) ? -BORDER : l - BORDER;
+ else if (l < -BORDER)
+ l = -BORDER;
+
+ if (vcrect.bot == brect.bot)
+ b = (b <= 0) ? -BORDER : b - BORDER;
+ else if (b < -BORDER)
+ b = -BORDER;
+
+ if (vcrect.rgt == brect.rgt)
+ r = (r >= dptr->width) ? dptr->width + BORDER - 1 : r + BORDER;
+ else if (r >= dptr->width + BORDER)
+ r = dptr->width + BORDER - 1;
+
+ if (vcrect.top == brect.top)
+ t = (t >= dptr->height) ? dptr->height + BORDER - 1 : t + BORDER;
+ else if (t >= dptr->height + BORDER)
+ t = dptr->height + BORDER - 1;
+
+ // Walk the Region of interest and populate the pyramid
+ for (int j = b; j <= t; j++)
+ {
+ int jj = j;
+ double sj = jj + rect.top;
+
+ for (int i = l; i <= r; i++)
+ {
+ int ii = i;
+ // project point and then triangulate to neighbors
+ double si = ii + rect.left;
+
+ double dself = hypotSq(csite->getVCenter().x - si, csite->getVCenter().y - sj);
+ int inMask = ((unsigned) ii < imgMos.Y.width &&
+ (unsigned) jj < imgMos.Y.height) ? 1 : 0;
+
+ if(!inMask)
+ continue;
+
+ // scan the neighbors to see if this is a valid position
+ unsigned char mask = (unsigned char) 255;
+ SEdgeVector *ce;
+ int ecnt;
+ for (ce = csite->getNeighbor(), ecnt = csite->getNumNeighbors(); ecnt--; ce++)
+ {
+ double d1 = hypotSq(m_AllSites[ce->second].getVCenter().x - si,
+ m_AllSites[ce->second].getVCenter().y - sj);
+ if (d1 < dself)
+ {
+ break;
+ }
+ }
+
+ if (ecnt >= 0) continue;
+
+ imgMos.Y.ptr[jj][ii] = (unsigned char)site_idx;
+ }
+ }
+}
+
+void Blend::ProcessPyramidForThisFrame(CSite *csite, BlendRect &vcrect, BlendRect &brect, MosaicRect &rect, YUVinfo &imgMos, double trs[3][3], int site_idx)
+{
+ // Put the Region of interest (for all levels) into m_pMosaicYPyr
+ double inv_trs[3][3];
+ inv33d(trs, inv_trs);
+
+ // Process each pyramid level
+ PyramidShort *sptr = m_pFrameYPyr;
+ PyramidShort *suptr = m_pFrameUPyr;
+ PyramidShort *svptr = m_pFrameVPyr;
+
+ PyramidShort *dptr = m_pMosaicYPyr;
+ PyramidShort *duptr = m_pMosaicUPyr;
+ PyramidShort *dvptr = m_pMosaicVPyr;
+
+ int dscale = 0; // distance scale for the current level
+ int nC = m_wb.nlevsC;
+ for (int n = m_wb.nlevs; n--; dscale++, dptr++, sptr++, dvptr++, duptr++, svptr++, suptr++, nC--)
+ {
+ int l = (int) ((vcrect.lft - rect.left) / (1 << dscale));
+ int b = (int) ((vcrect.bot - rect.top) / (1 << dscale));
+ int r = (int) ((vcrect.rgt - rect.left) / (1 << dscale) + .5);
+ int t = (int) ((vcrect.top - rect.top) / (1 << dscale) + .5);
+
+ if (vcrect.lft == brect.lft)
+ l = (l <= 0) ? -BORDER : l - BORDER;
+ else if (l < -BORDER)
+ l = -BORDER;
+
+ if (vcrect.bot == brect.bot)
+ b = (b <= 0) ? -BORDER : b - BORDER;
+ else if (b < -BORDER)
+ b = -BORDER;
+
+ if (vcrect.rgt == brect.rgt)
+ r = (r >= dptr->width) ? dptr->width + BORDER - 1 : r + BORDER;
+ else if (r >= dptr->width + BORDER)
+ r = dptr->width + BORDER - 1;
+
+ if (vcrect.top == brect.top)
+ t = (t >= dptr->height) ? dptr->height + BORDER - 1 : t + BORDER;
+ else if (t >= dptr->height + BORDER)
+ t = dptr->height + BORDER - 1;
+
+ // Walk the Region of interest and populate the pyramid
+ for (int j = b; j <= t; j++)
+ {
+ int jj = (j << dscale);
+ double sj = jj + rect.top;
+
+ for (int i = l; i <= r; i++)
+ {
+ int ii = (i << dscale);
+ // project point and then triangulate to neighbors
+ double si = ii + rect.left;
+
+ int inMask = ((unsigned) ii < imgMos.Y.width &&
+ (unsigned) jj < imgMos.Y.height) ? 1 : 0;
+
+ if(inMask && imgMos.Y.ptr[jj][ii] != site_idx &&
+ imgMos.V.ptr[jj][ii] != site_idx &&
+ imgMos.Y.ptr[jj][ii] != 255)
+ continue;
+
+ // Setup weights for cross-fading
+ // Weight of the intensity already in the output pixel
+ double wt0 = 0.0;
+ // Weight of the intensity from the input pixel (current frame)
+ double wt1 = 1.0;
+
+ if (m_wb.stripType == STRIP_TYPE_WIDE)
+ {
+ if(inMask && imgMos.Y.ptr[jj][ii] != 255)
+ {
+ // If not on a seam OR pyramid level exceeds
+ // maximum level for cross-fading.
+ if((imgMos.V.ptr[jj][ii] == 128) ||
+ (dscale > STRIP_CROSS_FADE_MAX_PYR_LEVEL))
+ {
+ wt0 = 0.0;
+ wt1 = 1.0;
+ }
+ else
+ {
+ wt0 = 1.0;
+ wt1 = ((imgMos.Y.ptr[jj][ii] == site_idx) ?
+ (double)imgMos.U.ptr[jj][ii] / 100.0 :
+ 1.0 - (double)imgMos.U.ptr[jj][ii] / 100.0);
+ }
+ }
+ }
+
+ // Project this mosaic point into the original frame coordinate space
+ double xx, yy;
+
+ MosaicToFrame(inv_trs, si, sj, xx, yy);
+
+ if (xx < 0.0 || yy < 0.0 || xx > width - 1.0 || yy > height - 1.0)
+ {
+ if(inMask)
+ {
+ imgMos.Y.ptr[jj][ii] = 255;
+ wt0 = 0.0f;
+ wt1 = 1.0f;
+ }
+ }
+
+ xx /= (1 << dscale);
+ yy /= (1 << dscale);
+
+
+ int x1 = (xx >= 0.0) ? (int) xx : (int) floor(xx);
+ int y1 = (yy >= 0.0) ? (int) yy : (int) floor(yy);
+
+ // Final destination in extended pyramid
+#ifndef LINEAR_INTERP
+ if(inSegment(x1, sptr->width, BORDER-1) &&
+ inSegment(y1, sptr->height, BORDER-1))
+ {
+ double xfrac = xx - x1;
+ double yfrac = yy - y1;
+ dptr->ptr[j][i] = (short) (wt0 * dptr->ptr[j][i] + .5 +
+ wt1 * ciCalc(sptr, x1, y1, xfrac, yfrac));
+ if (dvptr >= m_pMosaicVPyr && nC > 0)
+ {
+ duptr->ptr[j][i] = (short) (wt0 * duptr->ptr[j][i] + .5 +
+ wt1 * ciCalc(suptr, x1, y1, xfrac, yfrac));
+ dvptr->ptr[j][i] = (short) (wt0 * dvptr->ptr[j][i] + .5 +
+ wt1 * ciCalc(svptr, x1, y1, xfrac, yfrac));
+ }
+ }
+#else
+ if(inSegment(x1, sptr->width, BORDER) && inSegment(y1, sptr->height, BORDER))
+ {
+ int x2 = x1 + 1;
+ int y2 = y1 + 1;
+ double xfrac = xx - x1;
+ double yfrac = yy - y1;
+ double y1val = sptr->ptr[y1][x1] +
+ (sptr->ptr[y1][x2] - sptr->ptr[y1][x1]) * xfrac;
+ double y2val = sptr->ptr[y2][x1] +
+ (sptr->ptr[y2][x2] - sptr->ptr[y2][x1]) * xfrac;
+ dptr->ptr[j][i] = (short) (y1val + yfrac * (y2val - y1val));
+
+ if (dvptr >= m_pMosaicVPyr && nC > 0)
+ {
+ y1val = suptr->ptr[y1][x1] +
+ (suptr->ptr[y1][x2] - suptr->ptr[y1][x1]) * xfrac;
+ y2val = suptr->ptr[y2][x1] +
+ (suptr->ptr[y2][x2] - suptr->ptr[y2][x1]) * xfrac;
+
+ duptr->ptr[j][i] = (short) (y1val + yfrac * (y2val - y1val));
+
+ y1val = svptr->ptr[y1][x1] +
+ (svptr->ptr[y1][x2] - svptr->ptr[y1][x1]) * xfrac;
+ y2val = svptr->ptr[y2][x1] +
+ (svptr->ptr[y2][x2] - svptr->ptr[y2][x1]) * xfrac;
+
+ dvptr->ptr[j][i] = (short) (y1val + yfrac * (y2val - y1val));
+ }
+ }
+#endif
+ else
+ {
+ clipToSegment(x1, sptr->width, BORDER);
+ clipToSegment(y1, sptr->height, BORDER);
+
+ dptr->ptr[j][i] = (short) (wt0 * dptr->ptr[j][i] + 0.5 +
+ wt1 * sptr->ptr[y1][x1] );
+ if (dvptr >= m_pMosaicVPyr && nC > 0)
+ {
+ dvptr->ptr[j][i] = (short) (wt0 * dvptr->ptr[j][i] +
+ 0.5 + wt1 * svptr->ptr[y1][x1] );
+ duptr->ptr[j][i] = (short) (wt0 * duptr->ptr[j][i] +
+ 0.5 + wt1 * suptr->ptr[y1][x1] );
+ }
+ }
+ }
+ }
+ }
+}
+
+void Blend::MosaicToFrame(double trs[3][3], double x, double y, double &wx, double &wy)
+{
+ double X, Y, z;
+ if (m_wb.theta == 0.0)
+ {
+ X = x;
+ Y = y;
+ }
+ else if (m_wb.horizontal)
+ {
+ double alpha = x * m_wb.direction / m_wb.width;
+ double length = (y - alpha * m_wb.correction) * m_wb.direction + m_wb.radius;
+ double deltaTheta = m_wb.theta * alpha;
+ double sinTheta = sin(deltaTheta);
+ double cosTheta = sqrt(1.0 - sinTheta * sinTheta) * m_wb.direction;
+ X = length * sinTheta + m_wb.x;
+ Y = length * cosTheta + m_wb.y;
+ }
+ else
+ {
+ double alpha = y * m_wb.direction / m_wb.width;
+ double length = (x - alpha * m_wb.correction) * m_wb.direction + m_wb.radius;
+ double deltaTheta = m_wb.theta * alpha;
+ double sinTheta = sin(deltaTheta);
+ double cosTheta = sqrt(1.0 - sinTheta * sinTheta) * m_wb.direction;
+ Y = length * sinTheta + m_wb.y;
+ X = length * cosTheta + m_wb.x;
+ }
+ z = ProjZ(trs, X, Y, 1.0);
+ wx = ProjX(trs, X, Y, z, 1.0);
+ wy = ProjY(trs, X, Y, z, 1.0);
+}
+
+void Blend::FrameToMosaic(double trs[3][3], double x, double y, double &wx, double &wy)
+{
+ // Project into the intermediate Mosaic coordinate system
+ double z = ProjZ(trs, x, y, 1.0);
+ double X = ProjX(trs, x, y, z, 1.0);
+ double Y = ProjY(trs, x, y, z, 1.0);
+
+ if (m_wb.theta == 0.0)
+ {
+ // No rotation, then this is all we need to do.
+ wx = X;
+ wy = Y;
+ }
+ else if (m_wb.horizontal)
+ {
+ double deltaX = X - m_wb.x;
+ double deltaY = Y - m_wb.y;
+ double length = sqrt(deltaX * deltaX + deltaY * deltaY);
+ double deltaTheta = asin(deltaX / length);
+ double alpha = deltaTheta / m_wb.theta;
+ wx = alpha * m_wb.width * m_wb.direction;
+ wy = (length - m_wb.radius) * m_wb.direction + alpha * m_wb.correction;
+ }
+ else
+ {
+ double deltaX = X - m_wb.x;
+ double deltaY = Y - m_wb.y;
+ double length = sqrt(deltaX * deltaX + deltaY * deltaY);
+ double deltaTheta = asin(deltaY / length);
+ double alpha = deltaTheta / m_wb.theta;
+ wy = alpha * m_wb.width * m_wb.direction;
+ wx = (length - m_wb.radius) * m_wb.direction + alpha * m_wb.correction;
+ }
+}
+
+
+
+// Clip the region of interest as small as possible by using the Voronoi edges of
+// the neighbors
+void Blend::ClipBlendRect(CSite *csite, BlendRect &brect)
+{
+ SEdgeVector *ce;
+ int ecnt;
+ for (ce = csite->getNeighbor(), ecnt = csite->getNumNeighbors(); ecnt--; ce++)
+ {
+ // calculate the Voronoi bisector intersection
+ const double epsilon = 1e-5;
+ double dx = (m_AllSites[ce->second].getVCenter().x - m_AllSites[ce->first].getVCenter().x);
+ double dy = (m_AllSites[ce->second].getVCenter().y - m_AllSites[ce->first].getVCenter().y);
+ double xmid = m_AllSites[ce->first].getVCenter().x + dx/2.0;
+ double ymid = m_AllSites[ce->first].getVCenter().y + dy/2.0;
+ double inter;
+
+ if (dx > epsilon)
+ {
+ // neighbor is on right
+ if ((inter = m_wb.roundoffOverlap + xmid - dy * (((dy >= 0.0) ? brect.bot : brect.top) - ymid) / dx) < brect.rgt)
+ brect.rgt = inter;
+ }
+ else if (dx < -epsilon)
+ {
+ // neighbor is on left
+ if ((inter = -m_wb.roundoffOverlap + xmid - dy * (((dy >= 0.0) ? brect.bot : brect.top) - ymid) / dx) > brect.lft)
+ brect.lft = inter;
+ }
+ if (dy > epsilon)
+ {
+ // neighbor is above
+ if ((inter = m_wb.roundoffOverlap + ymid - dx * (((dx >= 0.0) ? brect.lft : brect.rgt) - xmid) / dy) < brect.top)
+ brect.top = inter;
+ }
+ else if (dy < -epsilon)
+ {
+ // neighbor is below
+ if ((inter = -m_wb.roundoffOverlap + ymid - dx * (((dx >= 0.0) ? brect.lft : brect.rgt) - xmid) / dy) > brect.bot)
+ brect.bot = inter;
+ }
+ }
+}
+
+void Blend::FrameToMosaicRect(int width, int height, double trs[3][3], BlendRect &brect)
+{
+ // We need to walk the perimeter since the borders can be bent.
+ brect.lft = brect.bot = 2e30;
+ brect.rgt = brect.top = -2e30;
+ double xpos, ypos;
+ double lasty = height - 1.0;
+ double lastx = width - 1.0;
+ int i;
+
+ for (i = width; i--;)
+ {
+
+ FrameToMosaic(trs, (double) i, 0.0, xpos, ypos);
+ ClipRect(xpos, ypos, brect);
+ FrameToMosaic(trs, (double) i, lasty, xpos, ypos);
+ ClipRect(xpos, ypos, brect);
+ }
+ for (i = height; i--;)
+ {
+ FrameToMosaic(trs, 0.0, (double) i, xpos, ypos);
+ ClipRect(xpos, ypos, brect);
+ FrameToMosaic(trs, lastx, (double) i, xpos, ypos);
+ ClipRect(xpos, ypos, brect);
+ }
+}
+
+void Blend::SelectRelevantFrames(MosaicFrame **frames, int frames_size,
+ MosaicFrame **relevant_frames, int &relevant_frames_size)
+{
+ MosaicFrame *first = frames[0];
+ MosaicFrame *last = frames[frames_size-1];
+ MosaicFrame *mb;
+
+ double fxpos = first->trs[0][2], fypos = first->trs[1][2];
+
+ double midX = last->width / 2.0;
+ double midY = last->height / 2.0;
+ double z = ProjZ(first->trs, midX, midY, 1.0);
+ double firstX, firstY;
+ double prevX = firstX = ProjX(first->trs, midX, midY, z, 1.0);
+ double prevY = firstY = ProjY(first->trs, midX, midY, z, 1.0);
+
+ relevant_frames[0] = first; // Add first frame by default
+ relevant_frames_size = 1;
+
+ for (int i = 0; i < frames_size - 1; i++)
+ {
+ mb = frames[i];
+ double currX, currY;
+ z = ProjZ(mb->trs, midX, midY, 1.0);
+ currX = ProjX(mb->trs, midX, midY, z, 1.0);
+ currY = ProjY(mb->trs, midX, midY, z, 1.0);
+ double deltaX = currX - prevX;
+ double deltaY = currY - prevY;
+ double center2centerDist = sqrt(deltaY * deltaY + deltaX * deltaX);
+
+ if (fabs(deltaX) > STRIP_SEPARATION_THRESHOLD_PXLS ||
+ fabs(deltaY) > STRIP_SEPARATION_THRESHOLD_PXLS)
+ {
+ relevant_frames[relevant_frames_size] = mb;
+ relevant_frames_size++;
+
+ prevX = currX;
+ prevY = currY;
+ }
+ }
+
+ // Add last frame by default
+ relevant_frames[relevant_frames_size] = last;
+ relevant_frames_size++;
+}
+
+void Blend::ComputeBlendParameters(MosaicFrame **frames, int frames_size, int is360)
+{
+ // For FULL and PAN modes, we do not unwarp the mosaic into a rectangular coordinate system
+ // and so we set the theta to 0 and return.
+ if (m_wb.blendingType != BLEND_TYPE_CYLPAN && m_wb.blendingType != BLEND_TYPE_HORZ)
+ {
+ m_wb.theta = 0.0;
+ return;
+ }
+
+ MosaicFrame *first = frames[0];
+ MosaicFrame *last = frames[frames_size-1];
+ MosaicFrame *mb;
+
+ double lxpos = last->trs[0][2], lypos = last->trs[1][2];
+ double fxpos = first->trs[0][2], fypos = first->trs[1][2];
+
+ // Calculate warp to produce proper stitching.
+ // get x, y displacement
+ double midX = last->width / 2.0;
+ double midY = last->height / 2.0;
+ double z = ProjZ(first->trs, midX, midY, 1.0);
+ double firstX, firstY;
+ double prevX = firstX = ProjX(first->trs, midX, midY, z, 1.0);
+ double prevY = firstY = ProjY(first->trs, midX, midY, z, 1.0);
+
+ double arcLength, lastTheta;
+ m_wb.theta = lastTheta = arcLength = 0.0;
+
+ // Step through all the frames to compute the total arc-length of the cone
+ // swept while capturing the mosaic (in the original conical coordinate system).
+ for (int i = 0; i < frames_size; i++)
+ {
+ mb = frames[i];
+ double currX, currY;
+ z = ProjZ(mb->trs, midX, midY, 1.0);
+ currX = ProjX(mb->trs, midX, midY, z, 1.0);
+ currY = ProjY(mb->trs, midX, midY, z, 1.0);
+ double deltaX = currX - prevX;
+ double deltaY = currY - prevY;
+
+ // The arcLength is computed by summing the lengths of the chords
+ // connecting the pairwise projected image centers of the input image frames.
+ arcLength += sqrt(deltaY * deltaY + deltaX * deltaX);
+
+ if (!is360)
+ {
+ double thisTheta = asin(mb->trs[1][0]);
+ m_wb.theta += thisTheta - lastTheta;
+ lastTheta = thisTheta;
+ }
+
+ prevX = currX;
+ prevY = currY;
+ }
+
+ // Stretch this to end at the proper alignment i.e. the width of the
+ // rectangle is determined by the arcLength computed above and the cone
+ // sector angle is determined using the rotation of the last frame.
+ m_wb.width = arcLength;
+ if (is360) m_wb.theta = asin(last->trs[1][0]);
+
+ // If there is no rotation, we're done.
+ if (m_wb.theta != 0.0)
+ {
+ double dx = prevX - firstX;
+ double dy = prevY - firstY;
+
+ // If the mosaic was captured by sweeping horizontally
+ if (abs(lxpos - fxpos) > abs(lypos - fypos))
+ {
+ m_wb.horizontal = 1;
+ // Calculate radius position to make ends exactly the same Y offset
+ double radiusTheta = dx / cos(3.14159 / 2.0 - m_wb.theta);
+ m_wb.radius = dy + radiusTheta * cos(m_wb.theta);
+ if (m_wb.radius < 0.0) m_wb.radius = -m_wb.radius;
+ }
+ else
+ {
+ m_wb.horizontal = 0;
+ // Calculate radius position to make ends exactly the same Y offset
+ double radiusTheta = dy / cos(3.14159 / 2.0 - m_wb.theta);
+ m_wb.radius = dx + radiusTheta * cos(m_wb.theta);
+ if (m_wb.radius < 0.0) m_wb.radius = -m_wb.radius;
+ }
+
+ // Determine major direction
+ if (m_wb.horizontal)
+ {
+ // Horizontal strip
+ // m_wb.x,y record the origin of the rectangle coordinate system.
+ if (is360) m_wb.x = firstX;
+ else
+ {
+ if (lxpos - fxpos < 0)
+ {
+ m_wb.x = firstX + midX;
+ z = ProjZ(last->trs, 0.0, midY, 1.0);
+ prevX = ProjX(last->trs, 0.0, midY, z, 1.0);
+ prevY = ProjY(last->trs, 0.0, midY, z, 1.0);
+ }
+ else
+ {
+ m_wb.x = firstX - midX;
+ z = ProjZ(last->trs, last->width - 1.0, midY, 1.0);
+ prevX = ProjX(last->trs, last->width - 1.0, midY, z, 1.0);
+ prevY = ProjY(last->trs, last->width - 1.0, midY, z, 1.0);
+ }
+ }
+ dy = prevY - firstY;
+ if (dy < 0.0) m_wb.direction = 1.0;
+ else m_wb.direction = -1.0;
+ m_wb.y = firstY - m_wb.radius * m_wb.direction;
+ if (dy * m_wb.theta > 0.0) m_wb.width = -m_wb.width;
+ }
+ else
+ {
+ // Vertical strip
+ if (is360) m_wb.y = firstY;
+ else
+ {
+ if (lypos - fypos < 0)
+ {
+ m_wb.x = firstY + midY;
+ z = ProjZ(last->trs, midX, 0.0, 1.0);
+ prevX = ProjX(last->trs, midX, 0.0, z, 1.0);
+ prevY = ProjY(last->trs, midX, 0.0, z, 1.0);
+ }
+ else
+ {
+ m_wb.x = firstX - midX;
+ z = ProjZ(last->trs, midX, last->height - 1.0, 1.0);
+ prevX = ProjX(last->trs, midX, last->height - 1.0, z, 1.0);
+ prevY = ProjY(last->trs, midX, last->height - 1.0, z, 1.0);
+ }
+ }
+ dx = prevX - firstX;
+ if (dx < 0.0) m_wb.direction = 1.0;
+ else m_wb.direction = -1.0;
+ m_wb.x = firstX - m_wb.radius * m_wb.direction;
+ if (dx * m_wb.theta > 0.0) m_wb.width = -m_wb.width;
+ }
+
+ // Calculate the correct correction factor
+ double deltaX = prevX - m_wb.x;
+ double deltaY = prevY - m_wb.y;
+ double length = sqrt(deltaX * deltaX + deltaY * deltaY);
+ double deltaTheta = (m_wb.horizontal) ? deltaX : deltaY;
+ deltaTheta = asin(deltaTheta / length);
+ m_wb.correction = ((m_wb.radius - length) * m_wb.direction) /
+ (deltaTheta / m_wb.theta);
+ }
+}