summaryrefslogtreecommitdiffstats
path: root/libs/minikin/CmapCoverage.cpp
blob: 64310006fd7c195073b0cafe9645c20b1481f152 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// Determine coverage of font given its raw "cmap" OpenType table

#define LOG_TAG "Minikin"
#include <cutils/log.h>

#include <vector>
using std::vector;

#include <minikin/SparseBitSet.h>
#include <minikin/CmapCoverage.h>

namespace android {

// These could perhaps be optimized to use __builtin_bswap16 and friends.
static uint32_t readU16(const uint8_t* data, size_t offset) {
    return ((uint32_t)data[offset]) << 8 | ((uint32_t)data[offset + 1]);
}

static uint32_t readU32(const uint8_t* data, size_t offset) {
    return ((uint32_t)data[offset]) << 24 | ((uint32_t)data[offset + 1]) << 16 |
        ((uint32_t)data[offset + 2]) << 8 | ((uint32_t)data[offset + 3]);
}

static void addRange(vector<uint32_t> &coverage, uint32_t start, uint32_t end) {
#ifdef VERBOSE_DEBUG
    ALOGD("adding range %d-%d\n", start, end);
#endif
    if (coverage.empty() || coverage.back() < start) {
        coverage.push_back(start);
        coverage.push_back(end);
    } else {
        coverage.back() = end;
    }
}

// Get the coverage information out of a Format 12 subtable, storing it in the coverage vector
static bool getCoverageFormat4(vector<uint32_t>& coverage, const uint8_t* data, size_t size) {
    const size_t kSegCountOffset = 6;
    const size_t kEndCountOffset = 14;
    const size_t kHeaderSize = 16;
    const size_t kSegmentSize = 8;  // total size of array elements for one segment
    if (kEndCountOffset > size) {
        return false;
    }
    size_t segCount = readU16(data, kSegCountOffset) >> 1;
    if (kHeaderSize + segCount * kSegmentSize > size) {
        return false;
    }
    for (size_t i = 0; i < segCount; i++) {
        int end = readU16(data, kEndCountOffset + 2 * i);
        int start = readU16(data, kHeaderSize + 2 * (segCount + i));
        int rangeOffset = readU16(data, kHeaderSize + 2 * (3 * segCount + i));
        if (rangeOffset == 0) {
            int delta = readU16(data, kHeaderSize + 2 * (2 * segCount + i));
            if (((end + delta) & 0xffff) > end - start) {
                addRange(coverage, start, end + 1);
            } else {
                for (int j = start; j < end + 1; j++) {
                    if (((j + delta) & 0xffff) != 0) {
                        addRange(coverage, j, j + 1);
                    }
                }
            }
        } else {
            for (int j = start; j < end + 1; j++) {
                uint32_t actualRangeOffset = kHeaderSize + 6 * segCount + rangeOffset +
                    (i + j - start) * 2;
                if (actualRangeOffset + 2 > size) {
                    // invalid rangeOffset is considered a "warning" by OpenType Sanitizer
                    continue;
                }
                int glyphId = readU16(data, actualRangeOffset);
                if (glyphId != 0) {
                    addRange(coverage, j, j + 1);
                }
            }
        }
    }
    return true;
}

// Get the coverage information out of a Format 12 subtable, storing it in the coverage vector
static bool getCoverageFormat12(vector<uint32_t>& coverage, const uint8_t* data, size_t size) {
    const size_t kNGroupsOffset = 12;
    const size_t kFirstGroupOffset = 16;
    const size_t kGroupSize = 12;
    const size_t kStartCharCodeOffset = 0;
    const size_t kEndCharCodeOffset = 4;
    const size_t kMaxNGroups = 0xfffffff0 / kGroupSize;  // protection against overflow
    // For all values < kMaxNGroups, kFirstGroupOffset + nGroups * kGroupSize fits in 32 bits.
    if (kFirstGroupOffset > size) {
        return false;
    }
    uint32_t nGroups = readU32(data, kNGroupsOffset);
    if (nGroups >= kMaxNGroups || kFirstGroupOffset + nGroups * kGroupSize > size) {
        return false;
    }
    for (uint32_t i = 0; i < nGroups; i++) {
        uint32_t groupOffset = kFirstGroupOffset + i * kGroupSize;
        uint32_t start = readU32(data, groupOffset + kStartCharCodeOffset);
        uint32_t end = readU32(data, groupOffset + kEndCharCodeOffset);
        addRange(coverage, start, end + 1);  // file is inclusive, vector is exclusive
    }
    return true;
}

bool CmapCoverage::getCoverage(SparseBitSet& coverage, const uint8_t* cmap_data, size_t cmap_size) {
    vector<uint32_t> coverageVec;
    const size_t kHeaderSize = 4;
    const size_t kNumTablesOffset = 2;
    const size_t kTableSize = 8;
    const size_t kPlatformIdOffset = 0;
    const size_t kEncodingIdOffset = 2;
    const size_t kOffsetOffset = 4;
    const int kMicrosoftPlatformId = 3;
    const int kUnicodeBmpEncodingId = 1;
    const int kUnicodeUcs4EncodingId = 10;
    if (kHeaderSize > cmap_size) {
        return false;
    }
    int numTables = readU16(cmap_data, kNumTablesOffset);
    if (kHeaderSize + numTables * kTableSize > cmap_size) {
        return false;
    }
    int bestTable = -1;
    for (int i = 0; i < numTables; i++) {
        uint16_t platformId = readU16(cmap_data, kHeaderSize + i * kTableSize + kPlatformIdOffset);
        uint16_t encodingId = readU16(cmap_data, kHeaderSize + i * kTableSize + kEncodingIdOffset);
        if (platformId == kMicrosoftPlatformId && encodingId == kUnicodeUcs4EncodingId) {
            bestTable = i;
            break;
        } else if (platformId == kMicrosoftPlatformId && encodingId == kUnicodeBmpEncodingId) {
            bestTable = i;
        }
    }
#ifdef VERBOSE_DEBUG
    ALOGD("best table = %d\n", bestTable);
#endif
    if (bestTable < 0) {
        return false;
    }
    uint32_t offset = readU32(cmap_data, kHeaderSize + bestTable * kTableSize + kOffsetOffset);
    if (offset + 2 > cmap_size) {
        return false;
    }
    uint16_t format = readU16(cmap_data, offset);
    bool success = false;
    const uint8_t* tableData = cmap_data + offset;
    const size_t tableSize = cmap_size - offset;
    if (format == 4) {
        success = getCoverageFormat4(coverageVec, tableData, tableSize);
    } else if (format == 12) {
        success = getCoverageFormat12(coverageVec, tableData, tableSize);
    }
    if (success) {
        coverage.initFromRanges(&coverageVec.front(), coverageVec.size() >> 1);
    }
#ifdef VERBOSE_DEBUG
    for (size_t i = 0; i < coverageVec.size(); i += 2) {
        ALOGD("%x:%x\n", coverageVec[i], coverageVec[i + 1]);
    }
    ALOGD("success = %d", success);
#endif
    return success;
}

}  // namespace android